-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgauss_smooth.py
57 lines (49 loc) · 1.92 KB
/
gauss_smooth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from scipy import *
from scipy import signal
import cPickle as pkl
import numpy as np
def gauss_kern(size, sizey=None):
""" Returns a normalized 2D gauss kernel array for convolutions """
size = int(size)
if not sizey:
sizey = size
else:
sizey = int(sizey)
x, y = mgrid[-size:size+1, -sizey:sizey+1]
g = exp(-(x**2/float(size)+y**2/float(sizey)))
return g / g.sum()
def blur_image(im, n, ny=None) :
""" blurs the image by convolving with a gaussian kernel of typical
size n. The optional keyword argument ny allows for a different
size in the y direction.
"""
g = gauss_kern(n, sizey=ny)
improc = signal.convolve(im,g, mode='valid')
return improc
if __name__ == "__main__":
import sys
new_fdir = '/sciclone/home04/jberwald/data10/wyss/data/Cells_Jesse/New/frames/'
old_fdir = '/sciclone/home04/jberwald/data10/wyss/data/Cells_Jesse/Old/frames/'
new_cells = [ 'new_110125/', 'new_130125/', 'new_140125/', 'new_40125/', 'new_50125/' ]
old_cells = [ 'old_100125/', 'old_120125/', 'old_50125/', 'old_90125/' ]
# modes = [ ('04','05'), ('05','06'), ('06','07'),('07','08'),('08','09')]
arg = int( sys.argv[1] )
#modes_arg= int( sys.argv[2] )
#modes
rlow = '07' #modes[0]
rhigh = '08' #modes[1]
path = new_fdir + new_cells[ arg ] + 'fft_frames/bandpass/'
fname = 'fft_r'+rlow+'_r'+rhigh+'.pkl'
print "Loading data from", path+fname
with open( path+fname ) as fh:
data = pkl.load( fh )
# smooth the images
print "smoothing images..."
frames = [ frame['ifft_nonzero'] for frame in data ]
smoothed = [ blur_image( f, 3 ) for f in frames[:1000] ]
masked = [ np.ma.masked_less( f, f.mean() ).mask for f in smoothed ]
savename = path + 'smooth_r'+rlow+rhigh+'/smooth_mask_'
print "saving smoothed images..."
print ""
for i,ma in enumerate( masked ):
np.save( savename+str(i), ma )