-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrbc_persistence.py
188 lines (147 loc) · 5.79 KB
/
rbc_persistence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import numpy as np
from matplotlib import pyplot as plt
# To compute differences between 4-connected neighbors in 3 x 3 patch
Dnorm = np.array( [[ 2, -1, 0,-1, 0,0,0,0,0 ],
[-1, 3, -1, 0, -1, 0,0,0,0],
[0, -1, 2, 0, 0, -1, 0,0,0],
[-1, 0,0,3,-1,0,-1,0,0],
[0,-1,0,-1,4,-1,0,-1,0],
[0,0,-1,0,-1,3,0,0,-1],
[0,0,0,-1,0,0,2,-1,0],
[0,0,0,0,-1,0,-1,3,-1],
[0,0,0,0,0,-1,0,-1,2]], dtype=np.float )
class Patch( object ):
"""
A single N x N patch from an image.
"""
def __init__( self, pixels ):
"""
A collection of methods to deal with the individual patches in an image.
Input:
-----
pixels : Square of pixels of size NxN from data image in
RBCFrame. The pixels are raveled in order to place them into
an N^2- dimensional space. Note: order='F' implies
column-major Fortran ordering. This is the raveling used in
[1].
self.patch is stored as a column vector and in matrix form for
proper multiplication below.
"""
#self.patch = np.asmatrix( np.log( pixels.ravel( order='F' ) ) ).T
self.patch = np.asmatrix( pixels.ravel( order='F' ) ).T
self.dnorm = 0
## def dist( self, v ):
## """
## Angular distance between two vectors/patches
## """
## np.arccos( s
def __repr__( self ):
return repr( self.patch )
def _subtract_mean( self ):
return self.patch -self.patch.mean()
def _D_norm( self, D ):
"""
This is the 'contrast-normailization' procedure from [1]. In
order to play safe with memory, D is stored only once and
passed in for each patch.
"""
v = self._subtract_mean()
self.dnorm = np.sqrt( v.T * D * v )
def ellipsoid_transform( self, D=Dnorm ):
"""
Subtract the mean and normalize by the 'D-norm'. (See [1]).
"""
xmean = self._subtract_mean()
y= self._D_norm( xmean, D )
self.patch = xnum / xdenom
class RBCFrame( Patch ):
"""
Holds a single image of a red blood cell.
Input:
-----
Either a filename pointing to an image array (matrix, not jpg) on
disk, or the actual array itself.
RBCFrame( fname='cell_frame' )
or
RBCFrame( data=<np.ndarray> )
We take the absoute value since eventually we will take logs.
Methods:
-------
mask_image : mask the background so we only 'see' the circular cell
extract_patches : expects a masked array. Extracts patches (3x3 by default). See [1]
transform2ellipsoid : Using Dnorm, transform patches to 'contrast-normalized' ellipsoid
sort_patches : Sort patches by
[1] : Lee, et al., 'The Nonlinear Statistics of High-Contrast Patches in Natural Images', Int. Jour. Comp. Vis., 2003
[2] : Ghrist, 'Barcodes: The Persistence Topology of Data', Bull. AMS, 2008
"""
def __init__( self, fname=None, data=None, delimiter=',' ):
# truncate to 65x70, vestige larger array with multiple modes. FIXME later.
if fname is not None:
try:
self.image = np.absolute( np.loadtxt( fname )[:,:70] )
except ValueError:
self.image = np.absolute( np.loadtxt( fname, delimiter=delimiter )[:,:70] )
except:
print "Problem loading file. Check the delimiter."
# reshape data, just in case we have the original 65x280 version
elif data is not None:
self.image = np.absolute( data[:,:70] )
else:
raise ValueError, "Must pass in either file name or data array!"
# Other stuff
self.debug = True
self.masked = False
self.patches = []
def mask_image( self ):
self.masked_image = mask_data( self.image, level='bg' )
self.masked = True
def extract_patches( self, size=3 ):
"""
From the masked array, which matches the circular portion,
construct a collection of nx x ny disjoint patches. See [1] and [2].
"""
# create stride arrays
nx, ny = self.image.shape
sx = np.arange( 0, nx, size )
sy = np.arange( 0, ny, size )
# Consider size x size blocks in image. If all entries
# non-zero, then we assume it is interior to the boundary, so
# we append it the list of patches.
z = 0
for i in range( len(sx)-1 ):
for j in range( len(sy)-1 ):
p = self.image[sx[i]:sx[i+1], sy[i]:sy[i+1]]
z += 1
if np.all( p != 0 ):
self.patches.append( Patch( np.log(p) ) )
if self.debug:
print "Found", len(self.patches), "interior patches out of a total of", z, "possible."
def transform( self ):
"""
Use D-norm to transfom data to a 7-dimensional ellipsoid
embedded in R^9.
"""
self.ellipsoid = [ p.ellipsoid_transform() for p in self.patches ]
def show_mat( self ):
if self.masked:
plt.imshow( self.masked_image )
plt.colorbar()
else:
plt.imshow( self.image )
plt.colorbar()
def mask_data( data, level='bg' ):
# mask background values
if level == 'mean':
md = np.ma.masked_less_equal( data, data.mean() )
elif level == 'bg':
md = np.ma.masked_less_equal( data, 0 )
else:
print "eek!"
return md
if __name__ == "__main__":
patch = np.arange( 9 )
patch.resize( (3,3) )
P = Patch ( patch )
fname = '/Users/jesseberwald/data/rbc/C_4/frames/matC1_100'
R = RBCFrame( fname=fname )
R.extract_patches()