-
Notifications
You must be signed in to change notification settings - Fork 0
/
LSM9DS0.c
472 lines (406 loc) · 17.4 KB
/
LSM9DS0.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
/******************************************************************************
LSM9DS0.c
LSM9DS0 Library Source File
Author:
In Hwan “Chris” Baek @ Wireless Health Institute, UCLA
Based on C++ libraries by:
Jim Lindblom @ SparkFun Electronics
Original Creation Date: February 14, 2014 (Happy Valentines Day!)
Modified 14 Jul 2015 by Mike Hord to add Edison support
https://github.com/sparkfun/SparkFun_9DOF_Block_for_Edison_CPP_Library
License Information:
GPL
Distributed as-is; no warranty is given.
This file implements all functions for the LSM9DS0. Functions here range
from higher level stuff, like reading/writing LSM9DS0 registers to low-level,
hardware reads and writes.
** Supports only I2C connections!!! **
Development environment specifics:
Code developed in Intel's Eclipse IOT-DK
This code requires the Intel mraa library to function; for more
information see https://github.com/intel-iot-devkit/mraa
******************************************************************************/
#include <stdio.h>
#include <mraa/i2c.h>
#include "LSM9DS0.h"
#define XM_ADDR 0x1d
#define GYRO_ADDR 0x6B
mraa_i2c_context gyro_init()
{
mraa_i2c_context gyro;
gyro = mraa_i2c_init(1);
if (gyro == NULL) {
fprintf(stderr, "Failed to initialize I2C.\n");
exit(1);
}
mraa_i2c_address(gyro, GYRO_ADDR);
uint8_t gyro_id = mraa_i2c_read_byte_data(gyro, WHO_AM_I_G);
if (gyro_id != 0xD4) {
fprintf(stderr, "Gyroscope ID does not match.\n");
}
/* CTRL_REG1_G sets output data rate, bandwidth, power-down and enables
Bits[7:0]: DR1 DR0 BW1 BW0 PD Zen Xen Yen
DR[1:0] - Output data rate selection
00=95Hz, 01=190Hz, 10=380Hz, 11=760Hz
BW[1:0] - Bandwidth selection (sets cutoff frequency)
Value depends on ODR. See datasheet table 21.
PD - Power down enable (0=power down mode, 1=normal or sleep mode)
Zen, Xen, Yen - Axis enable (o=disabled, 1=enabled) */
//gWriteByte(CTRL_REG1_G, 0x0F); // Normal mode, enable all axes
mraa_i2c_write_byte_data(gyro, 0x0F, CTRL_REG1_G);
/* CTRL_REG2_G sets up the HPF
Bits[7:0]: 0 0 HPM1 HPM0 HPCF3 HPCF2 HPCF1 HPCF0
HPM[1:0] - High pass filter mode selection
00=normal (reset reading HP_RESET_FILTER, 01=ref signal for filtering,
10=normal, 11=autoreset on interrupt
HPCF[3:0] - High pass filter cutoff frequency
Value depends on data rate. See datasheet table 26.
*/
//gWriteByte(CTRL_REG2_G, 0x00); // Normal mode, high cutoff frequency
mraa_i2c_write_byte_data(gyro, 0x00, CTRL_REG2_G);
/* CTRL_REG3_G sets up interrupt and DRDY_G pins
Bits[7:0]: I1_IINT1 I1_BOOT H_LACTIVE PP_OD I2_DRDY I2_WTM I2_ORUN I2_EMPTY
I1_INT1 - Interrupt enable on INT_G pin (0=disable, 1=enable)
I1_BOOT - Boot status available on INT_G (0=disable, 1=enable)
H_LACTIVE - Interrupt active configuration on INT_G (0:high, 1:low)
PP_OD - Push-pull/open-drain (0=push-pull, 1=open-drain)
I2_DRDY - Data ready on DRDY_G (0=disable, 1=enable)
I2_WTM - FIFO watermark interrupt on DRDY_G (0=disable 1=enable)
I2_ORUN - FIFO overrun interrupt on DRDY_G (0=disable 1=enable)
I2_EMPTY - FIFO empty interrupt on DRDY_G (0=disable 1=enable) */
// Int1 enabled (pp, active low), data read on DRDY_G:
//gWriteByte(CTRL_REG3_G, 0x88);
mraa_i2c_write_byte_data(gyro, 0x88, CTRL_REG3_G);
/* CTRL_REG4_G sets the scale, update mode
Bits[7:0] - BDU BLE FS1 FS0 - ST1 ST0 SIM
BDU - Block data update (0=continuous, 1=output not updated until read
BLE - Big/little endian (0=data LSB @ lower address, 1=LSB @ higher add)
FS[1:0] - Full-scale selection
00=245dps, 01=500dps, 10=2000dps, 11=2000dps
ST[1:0] - Self-test enable
00=disabled, 01=st 0 (x+, y-, z-), 10=undefined, 11=st 1 (x-, y+, z+)
SIM - SPI serial interface mode select
0=4 wire, 1=3 wire */
//gWriteByte(CTRL_REG4_G, 0x00); // Set scale to 245 dps
mraa_i2c_write_byte_data(gyro, 0x00, CTRL_REG4_G);
/* CTRL_REG5_G sets up the FIFO, HPF, and INT1
Bits[7:0] - BOOT FIFO_EN - HPen INT1_Sel1 INT1_Sel0 Out_Sel1 Out_Sel0
BOOT - Reboot memory content (0=normal, 1=reboot)
FIFO_EN - FIFO enable (0=disable, 1=enable)
HPen - HPF enable (0=disable, 1=enable)
INT1_Sel[1:0] - Int 1 selection configuration
Out_Sel[1:0] - Out selection configuration */
//gWriteByte(CTRL_REG5_G, 0x00);
mraa_i2c_write_byte_data(gyro, 0x00, CTRL_REG5_G);
return gyro;
}
mraa_i2c_context accel_init()
{
mraa_i2c_context accel;
accel = mraa_i2c_init(1);
if (accel == NULL) {
fprintf(stderr, "Failed to initialize I2C.\n");
exit(1);
}
mraa_i2c_address(accel, XM_ADDR);
uint8_t accel_id = mraa_i2c_read_byte_data(accel, WHO_AM_I_XM);
if (accel_id != 0x49) {
fprintf(stderr, "Accelerometer/Magnetometer ID does not match.\n");
}
/* CTRL_REG0_XM (0x1F) (Default value: 0x00)
Bits (7-0): BOOT FIFO_EN WTM_EN 0 0 HP_CLICK HPIS1 HPIS2
BOOT - Reboot memory content (0: normal, 1: reboot)
FIFO_EN - Fifo enable (0: disable, 1: enable)
WTM_EN - FIFO watermark enable (0: disable, 1: enable)
HP_CLICK - HPF enabled for click (0: filter bypassed, 1: enabled)
HPIS1 - HPF enabled for interrupt generator 1 (0: bypassed, 1: enabled)
HPIS2 - HPF enabled for interrupt generator 2 (0: bypassed, 1 enabled) */
//xmWriteByte(CTRL_REG0_XM, 0x00);
mraa_i2c_write_byte_data(accel, 0x00, CTRL_REG0_XM);
/* CTRL_REG1_XM (0x20) (Default value: 0x07)
Bits (7-0): AODR3 AODR2 AODR1 AODR0 BDU AZEN AYEN AXEN
AODR[3:0] - select the acceleration data rate:
0000=power down, 0001=3.125Hz, 0010=6.25Hz, 0011=12.5Hz,
0100=25Hz, 0101=50Hz, 0110=100Hz, 0111=200Hz, 1000=400Hz,
1001=800Hz, 1010=1600Hz, (remaining combinations undefined).
BDU - block data update for accel AND mag
0: Continuous update
1: Output registers aren't updated until MSB and LSB have been read.
AZEN, AYEN, and AXEN - Acceleration x/y/z-axis enabled.
0: Axis disabled, 1: Axis enabled */
//xmWriteByte(CTRL_REG1_XM, 0x57); // 100Hz data rate, x/y/z all enabled
mraa_i2c_write_byte_data(accel, 0x57, CTRL_REG1_XM);
//Serial.println(xmReadByte(CTRL_REG1_XM));
/* CTRL_REG2_XM (0x21) (Default value: 0x00)
Bits (7-0): ABW1 ABW0 AFS2 AFS1 AFS0 AST1 AST0 SIM
ABW[1:0] - Accelerometer anti-alias filter bandwidth
00=773Hz, 01=194Hz, 10=362Hz, 11=50Hz
AFS[2:0] - Accel full-scale selection
000=+/-2g, 001=+/-4g, 010=+/-6g, 011=+/-8g, 100=+/-16g
AST[1:0] - Accel self-test enable
00=normal (no self-test), 01=positive st, 10=negative st, 11=not allowed
SIM - SPI mode selection
0=4-wire, 1=3-wire */
//xmWriteByte(CTRL_REG2_XM, 0x00); // Set scale to 2g
mraa_i2c_write_byte_data(accel, 0x00, CTRL_REG2_XM);
/* CTRL_REG3_XM is used to set interrupt generators on INT1_XM
Bits (7-0): P1_BOOT P1_TAP P1_INT1 P1_INT2 P1_INTM P1_DRDYA P1_DRDYM P1_EMPTY
*/
// Accelerometer data ready on INT1_XM (0x04)
//xmWriteByte(CTRL_REG3_XM, 0x04);
mraa_i2c_write_byte_data(accel, 0x04, CTRL_REG3_XM);
return accel;
}
mraa_i2c_context mag_init()
{
mraa_i2c_context mag;
mag = mraa_i2c_init(1);
if (mag == NULL) {
fprintf(stderr, "Failed to initialize I2C.\n");
exit(1);
}
mraa_i2c_address(mag, XM_ADDR);
uint8_t mag_id = mraa_i2c_read_byte_data(mag, WHO_AM_I_XM);
if (mag_id != 0x49) {
fprintf(stderr, "Accelerometer/Magnetometer ID does not match.\n");
}
/* CTRL_REG5_XM enables temp sensor, sets mag resolution and data rate
Bits (7-0): TEMP_EN M_RES1 M_RES0 M_ODR2 M_ODR1 M_ODR0 LIR2 LIR1
TEMP_EN - Enable temperature sensor (0=disabled, 1=enabled)
M_RES[1:0] - Magnetometer resolution select (0=low, 3=high)
M_ODR[2:0] - Magnetometer data rate select
000=3.125Hz, 001=6.25Hz, 010=12.5Hz, 011=25Hz, 100=50Hz, 101=100Hz
LIR2 - Latch interrupt request on INT2_SRC (cleared by reading INT2_SRC)
0=interrupt request not latched, 1=interrupt request latched
LIR1 - Latch interrupt request on INT1_SRC (cleared by readging INT1_SRC)
0=irq not latched, 1=irq latched */
//xmWriteByte(CTRL_REG5_XM, 0x94); // Mag data rate - 100 Hz, enable temperature sensor
mraa_i2c_write_byte_data(mag, 0x94, CTRL_REG5_XM);
/* CTRL_REG6_XM sets the magnetometer full-scale
Bits (7-0): 0 MFS1 MFS0 0 0 0 0 0
MFS[1:0] - Magnetic full-scale selection
00:+/-2Gauss, 01:+/-4Gs, 10:+/-8Gs, 11:+/-12Gs */
//xmWriteByte(CTRL_REG6_XM, 0x00); // Mag scale to +/- 2GS
mraa_i2c_write_byte_data(mag, 0x00, CTRL_REG6_XM);
/* CTRL_REG7_XM sets magnetic sensor mode, low power mode, and filters
AHPM1 AHPM0 AFDS 0 0 MLP MD1 MD0
AHPM[1:0] - HPF mode selection
00=normal (resets reference registers), 01=reference signal for filtering,
10=normal, 11=autoreset on interrupt event
AFDS - Filtered acceleration data selection
0=internal filter bypassed, 1=data from internal filter sent to FIFO
MLP - Magnetic data low-power mode
0=data rate is set by M_ODR bits in CTRL_REG5
1=data rate is set to 3.125Hz
MD[1:0] - Magnetic sensor mode selection (default 10)
00=continuous-conversion, 01=single-conversion, 10 and 11=power-down */
//xmWriteByte(CTRL_REG7_XM, 0x00); // Continuous conversion mode
mraa_i2c_write_byte_data(mag, 0x00, CTRL_REG7_XM);
/* CTRL_REG4_XM is used to set interrupt generators on INT2_XM
Bits (7-0): P2_TAP P2_INT1 P2_INT2 P2_INTM P2_DRDYA P2_DRDYM P2_Overrun P2_WTM
*/
//xmWriteByte(CTRL_REG4_XM, 0x04); // Magnetometer data ready on INT2_XM (0x08)
mraa_i2c_write_byte_data(mag, 0x04, CTRL_REG4_XM);
/* INT_CTRL_REG_M to set push-pull/open drain, and active-low/high
Bits[7:0] - XMIEN YMIEN ZMIEN PP_OD IEA IEL 4D MIEN
XMIEN, YMIEN, ZMIEN - Enable interrupt recognition on axis for mag data
PP_OD - Push-pull/open-drain interrupt configuration (0=push-pull, 1=od)
IEA - Interrupt polarity for accel and magneto
0=active-low, 1=active-high
IEL - Latch interrupt request for accel and magneto
0=irq not latched, 1=irq latched
4D - 4D enable. 4D detection is enabled when 6D bit in INT_GEN1_REG is set
MIEN - Enable interrupt generation for magnetic data
0=disable, 1=enable) */
//xmWriteByte(INT_CTRL_REG_M, 0x09); // Enable interrupts for mag, active-low, push-pull
mraa_i2c_write_byte_data(mag, 0x09, INT_CTRL_REG_M);
return mag;
}
float calc_accel_res(accel_scale_t a_scale)
{
// Possible accelerometer scales (and their register bit settings) are:
// 2 g (000), 4g (001), 6g (010) 8g (011), 16g (100). Here's a bit of an
// algorithm to calculate g/(ADC tick) based on that 3-bit value:
float a_res = a_scale == A_SCALE_16G ? 16.0 / 32768.0 :
(((float) a_scale + 1.0) * 2.0) / 32768.0;
return a_res;
}
float calc_gyro_res(gyro_scale_t g_scale)
{
// Possible gyro scales (and their register bit settings) are:
// 245 DPS (00), 500 DPS (01), 2000 DPS (10). Here's a bit of an algorithm
// to calculate DPS/(ADC tick) based on that 2-bit value:
float g_res;
switch (g_scale)
{
case G_SCALE_245DPS:
g_res = 245.0 / 32768.0;
break;
case G_SCALE_500DPS:
g_res = 500.0 / 32768.0;
break;
case G_SCALE_2000DPS:
g_res = 2000.0 / 32768.0;
break;
}
return g_res;
}
float calc_mag_res(mag_scale_t m_scale)
{
// Possible magnetometer scales (and their register bit settings) are:
// 2 Gs (00), 4 Gs (01), 8 Gs (10) 12 Gs (11). Here's a bit of an algorithm
// to calculate Gs/(ADC tick) based on that 2-bit value:
float m_res = m_scale == M_SCALE_2GS ? 2.0 / 32768.0 :
(float) (m_scale << 2) / 32768.0;
return m_res;
}
void set_accel_ODR(mraa_i2c_context accel, accel_odr_t a_rate)
{
// We need to preserve the other bytes in CTRL_REG1_XM. So, first read it:
uint8_t temp = mraa_i2c_read_byte_data(accel, CTRL_REG1_XM);
// Then mask out the accel ODR bits:
temp &= 0xFF^(0xF << 4);
// Then shift in our new ODR bits:
temp |= (a_rate << 4);
// And write the new register value back into CTRL_REG1_XM:
mraa_i2c_write_byte_data(accel, temp, CTRL_REG1_XM);
}
void set_gyro_ODR(mraa_i2c_context gyro, gyro_odr_t g_rate)
{
// We need to preserve the other bytes in CTRL_REG1_G. So, first read it:
uint8_t temp = mraa_i2c_read_byte_data(gyro, CTRL_REG1_G);
// Then mask out the gyro ODR bits:
temp &= 0xFF^(0xF << 4);
// Then shift in our new ODR bits:
temp |= (g_rate << 4);
// And write the new register value back into CTRL_REG1_G:
mraa_i2c_write_byte_data(gyro, temp, CTRL_REG1_G);
}
void set_mag_ODR(mraa_i2c_context mag, mag_odr_t m_rate)
{
// We need to preserve the other bytes in CTRL_REG5_XM. So, first read it:
uint8_t temp = mraa_i2c_read_byte_data(mag, CTRL_REG5_XM);
// Then mask out the mag ODR bits:
temp &= 0xFF^(0x7 << 2);
// Then shift in our new ODR bits:
temp |= (m_rate << 2);
// And write the new register value back into CTRL_REG5_XM:
mraa_i2c_write_byte_data(mag, temp, CTRL_REG5_XM);
}
void set_accel_scale(mraa_i2c_context accel, accel_scale_t a_scale)
{
// We need to preserve the other bytes in CTRL_REG2_XM. So, first read it:
uint8_t temp = mraa_i2c_read_byte_data(accel, CTRL_REG2_XM);
// Then mask out the accel scale bits:
temp &= 0xFF^(0x3 << 3);
// Then shift in our new scale bits:
temp |= a_scale << 3;
// And write the new register value back into CTRL_REG2_XM:
mraa_i2c_write_byte_data(accel, temp, CTRL_REG2_XM);
}
void set_gyro_scale(mraa_i2c_context gyro, gyro_scale_t g_scale)
{
// We need to preserve the other bytes in CTRL_REG4_G. So, first read it:
uint8_t temp = mraa_i2c_read_byte_data(gyro, CTRL_REG4_G);
// Then mask out the gyro scale bits:
temp &= 0xFF^(0x3 << 4);
// Then shift in our new scale bits:
temp |= g_scale << 4;
// And write the new register value back into CTRL_REG4_G:
mraa_i2c_write_byte_data(gyro, temp, CTRL_REG4_G);
}
void set_mag_scale(mraa_i2c_context mag, mag_scale_t m_scale)
{
// We need to preserve the other bytes in CTRL_REG6_XM. So, first read it:
uint8_t temp = mraa_i2c_read_byte_data(mag, CTRL_REG6_XM);
// Then mask out the mag scale bits:
temp &= 0xFF^(0x3 << 5);
// Then shift in our new scale bits:
temp |= m_scale << 5;
// And write the new register value back into CTRL_REG6_XM:
mraa_i2c_write_byte_data(mag, temp, CTRL_REG6_XM);
}
data_t read_accel(mraa_i2c_context accel, float a_res)
{
int16_t raw_accel_x, raw_accel_y, raw_accel_z;
uint8_t data_byte[6];
data_t data;
data_byte[0] = mraa_i2c_read_byte_data(accel, OUT_X_L_A);
data_byte[1] = mraa_i2c_read_byte_data(accel, OUT_X_H_A);
data_byte[2] = mraa_i2c_read_byte_data(accel, OUT_Y_L_A);
data_byte[3] = mraa_i2c_read_byte_data(accel, OUT_Y_H_A);
data_byte[4] = mraa_i2c_read_byte_data(accel, OUT_Z_L_A);
data_byte[5] = mraa_i2c_read_byte_data(accel, OUT_Z_H_A);
raw_accel_x = ((data_byte[1] << 8) | data_byte[0]);
raw_accel_y = ((data_byte[3] << 8) | data_byte[2]);
raw_accel_z = ((data_byte[5] << 8) | data_byte[4]);
//printf("\t%d \t%d \t%d\n", raw_accel_x, raw_accel_y, raw_accel_z);
data.x = raw_accel_x * a_res;
data.y = raw_accel_y * a_res;
data.z = raw_accel_z * a_res;
return data;
}
data_t read_gyro(mraa_i2c_context gyro, float g_res)
{
int16_t raw_gyro_x, raw_gyro_y, raw_gyro_z;
uint8_t data_byte[6];
data_t data;
data_byte[0] = mraa_i2c_read_byte_data(gyro, OUT_X_L_G);
data_byte[1] = mraa_i2c_read_byte_data(gyro, OUT_X_H_G);
data_byte[2] = mraa_i2c_read_byte_data(gyro, OUT_Y_L_G);
data_byte[3] = mraa_i2c_read_byte_data(gyro, OUT_Y_H_G);
data_byte[4] = mraa_i2c_read_byte_data(gyro, OUT_Z_L_G);
data_byte[5] = mraa_i2c_read_byte_data(gyro, OUT_Z_H_G);
raw_gyro_x = ((data_byte[1] << 8) | data_byte[0]);
raw_gyro_y = ((data_byte[3] << 8) | data_byte[2]);
raw_gyro_z = ((data_byte[5] << 8) | data_byte[4]);
//printf("\t%d \t%d \t%d\n", raw_gyro_x, raw_gyro_y, raw_gyro_z);
data.x = raw_gyro_x * g_res;
data.y = raw_gyro_y * g_res;
data.z = raw_gyro_z * g_res;
return data;
}
data_t read_mag(mraa_i2c_context mag, float m_res)
{
int16_t raw_mag_x, raw_mag_y, raw_mag_z;
uint8_t data_byte[6];
data_t data;
data_byte[0] = mraa_i2c_read_byte_data(mag, OUT_X_L_M);
data_byte[1] = mraa_i2c_read_byte_data(mag, OUT_X_H_M);
data_byte[2] = mraa_i2c_read_byte_data(mag, OUT_Y_L_M);
data_byte[3] = mraa_i2c_read_byte_data(mag, OUT_Y_H_M);
data_byte[4] = mraa_i2c_read_byte_data(mag, OUT_Z_L_M);
data_byte[5] = mraa_i2c_read_byte_data(mag, OUT_Z_H_M);
raw_mag_x = ((data_byte[1] << 8) | data_byte[0]);
raw_mag_y = ((data_byte[3] << 8) | data_byte[2]);
raw_mag_z = ((data_byte[5] << 8) | data_byte[4]);
//printf("\t%d \t%d \t%d\n", raw_gyro_x, raw_gyro_y, raw_gyro_z);
data.x = raw_mag_x * m_res;
data.y = raw_mag_y * m_res;
data.z = raw_mag_z * m_res;
return data;
}
int16_t read_temp(mraa_i2c_context xm)
{
uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp
temp[0] = mraa_i2c_read_byte_data(xm, OUT_TEMP_L_XM); // Read 2 bytes, beginning at OUT_TEMP_L_M
temp[1] = mraa_i2c_read_byte_data(xm, OUT_TEMP_H_XM);
int16_t temperature = temp[0] | (temp[1] & 0x0F) <<8; // Temperature is a 12-bit signed integer
return temperature;
}
data_t calc_gyro_offset(mraa_i2c_context gyro, float g_res)
{
data_t offset;
data_t new_gyro_data;
int i;
offset = read_gyro(gyro, g_res);
printf("Calculating the offsets...\n");
for (i=2; i<102; i++) {
new_gyro_data = read_gyro(gyro, g_res);
offset.x = ((i-1)/(float)i)*offset.x + new_gyro_data.x/i;
offset.y = ((i-1)/(float)i)*offset.y + new_gyro_data.y/i;
offset.z = ((i-1)/(float)i)*offset.z + new_gyro_data.z/i;
usleep(100000);
}
return offset;
}