-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
305 lines (235 loc) · 10.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# if executing in spyder, run:
# %matplotlib inline
# to get LiveLossPlots in the console
"""
Import the libraries
"""
from matplotlib import pyplot as plt
import tensorflow as tf
import numpy as np
import time
import keras
import keras.backend as K
from keras.callbacks import ModelCheckpoint
from keras.backend.tensorflow_backend import set_session
from keras.models import Model
from keras.models import load_model
from keras.models import save_model
from livelossplot.keras import PlotLossesCallback #liveloss plot has to be installed
from networks.PF_net_4branches import * #our proposed 3D CNN
import pore_utils #my library
#K.set_epsilon(1e-2) #fixes crazy high numbers when using MAPE
from numpy.random import seed
#from tensorflow import set_random_seed
"""
Main inputs
"""
num_gpus = 1 #number of graphic-processing units to train model
mem_fraction = 0.95 #fraction of GPU to use
use_generator = False #option to use data-generator instead of loading all the data to the RAM
#num_features = 1
net_branches = 4
num_filters = 10 #number of conv filters in the first layer
batch_size = 5
epochs = 750
rnd_num = 280691 #rnd seed to initialize the model
dir_data = 'D:/SPLBM_output/finney' #location of the training data
"""
Set the random number seeds
"""
seed(rnd_num)
#set_random_seed(rnd_num)
#os.environ['PYTHONHASHSEED'] = '0'
"""
Data options
"""
input_size = 80 #lenght of the side of a training cube (pixels)
train_on_sets = [21,22,23,24,25] #training sets to use (each int is a domain)
validation_split = 0.2 #splits the last x %
patience_training = 100 #epochs before it stops training
total_samples = 1080 #for data generator
use_customloss = False
"""
This is where we select the data transform that will be applied to our features
'minMax_2' sets the bounds of the distribution to [-1,1]
"""
data_transform_pore = 'minMax_2'
data_transform_tof = 'minMax_2'
data_transform_vel = 'minMax_2'
data_transform_MIS = 'minMax_2'
"""
Set a name for the model
"""
model_name = f'PoreFlow_minMax2_branches_{net_branches}_filters_{num_filters}_{rnd_num}'
pore_utils.create_dir( model_name ) #creates a folder to store the output
"""
Load Data for training
"""
if use_generator == False:
"""
Loading the selected training Data: This gives us a dictionary
with all the inputs and outputs
(i.e. 'vx' : vx, 'vy' :vy, 'vz' : vz, 'p' : pressure,
'e_poreZ' : eDist in Z dirr, 'e_pore' : E_dist,
'e_total':E_dist pore and solid,'tof_L':tof_L,'tof_R':tof_R)
if the user has its own data, this step can be skipped
"""
train_set = pore_utils.load_data( sets = train_on_sets, path=dir_data,
split=True,input_size = input_size,
overlap=0 )
binary_mask = train_set['binary'] #binary mask for the custom loss
"""
Now, we can select and transform our inputs.
The summary stats are saved in a file for later use
"""
e_train, e_stats = pore_utils.transform( train_set['e_pore'],
data_transform_pore,
model_name,
fileName='e_stats')
MIS_z_train, MIS_z_stats = pore_utils.transform( train_set['mis_z'],
data_transform_MIS,
model_name,
fileName='mis_z_stats')
MIS_f_train, MIS_f_stats = pore_utils.transform( train_set['mis_f'],
data_transform_MIS,
model_name,
fileName='mis_f_stats')
tof_L_train, tof_L_stats = pore_utils.transform( train_set['tof_L'],
data_transform_tof,
model_name,
fileName='tof_L_stats')
tof_R_train, tof_R_stats = pore_utils.transform( train_set['tof_R'],
data_transform_tof,
model_name,
fileName='tof_R_stats')
vz , vz_stats = pore_utils.transform( train_set['vz'],
data_transform_vel,
model_name,
fileName='Vz_trainStats')
del train_set #deletes the file to free-up memory
X_train = np.concatenate( (
np.expand_dims(e_train,axis=4) ,
np.expand_dims(tof_L_train,axis=4),
np.expand_dims(tof_R_train,axis=4),
np.expand_dims(MIS_z_train,axis=4),
), axis=4)
y_train = np.expand_dims(vz,axis=4)
del e_train, vz, tof_L_train, tof_R_train
if X_train.ndim <= 4:
X_train = np.expand_dims( X_train , axis=4 )
if y_train.ndim <= 4:
y_train = np.expand_dims( y_train , axis=4 )
"""
Shuffles data
"""
mask = np.arange( X_train.shape[0] )
np.random.shuffle( mask ) #get a mask to shuffle data
X_train = X_train[ mask ,:,:,:,: ]
y_train = y_train[ mask ,:,:,:,: ]
binary_mask = binary_mask[ mask ,:,:,: ]
else:
## Data-generator
IDs = np.arange(0,total_samples)
np.random.shuffle( IDs ) #get a mask to shuffle data
val_split = int( total_samples*validation_split )
train_IDs =IDs[:-val_split]
val_IDs =IDs[-val_split:]
###
"""
Callbacks and model internals
"""
metrics=['MAPE','MAE']
#Custom loss as described in the paper
if use_customloss == True:
loss = pore_utils.custom_loss #imports custom loss
metrics = [keras.losses.MAPE_c] #custom MAPE
# concatenates the porosity mask. This way, tf has access to it during training
y_train = np.concatenate( (np.expand_dims(binary_mask,4),
y_train),axis=4)
else:
loss = keras.losses.mean_absolute_error
optimizer = keras.optimizers.Adam() # the default LR does the job
plot_losses = PlotLossesCallback(
fig_path=('savedModels/%s/metrics.png' % model_name) )
nan_terminate = keras.callbacks.TerminateOnNaN()
early_stop = keras.callbacks.EarlyStopping(monitor ='val_loss', min_delta=0,
patience=patience_training,
verbose=2, mode='auto', baseline=None,
restore_best_weights=False)
# TF internals
#config = tf.ConfigProto()
#config.gpu_options.per_process_gpu_memory_fraction = mem_fraction
#config.gpu_options.per_process_gpu_memory_fraction = 1
#config.gpu_options.allow_growth = True
#set_session( tf.Session(config=config) )
csv_logger = keras.callbacks.CSVLogger("savedModels/%s/training_log.csv" % model_name)
#with tf.device('/cpu:0'):
model = build_PF_net( input_shape0 = ( None, None, None, 1 ),
input_shape1 = ( None, None, None, 1 ),
input_shape2 = ( None, None, None, 1 ),
input_shape3 = ( None, None, None, 1 ),
filters_1 = num_filters )
model.summary()
if num_gpus > 1:
model = keras.utils.multi_gpu_model(model,gpus=num_gpus)
model.compile( loss=loss, optimizer=optimizer, metrics=metrics[:] )
checkpoint = ModelCheckpoint('savedModels/%s/%s.h5' % (model_name,model_name),
monitor='val_loss', verbose=1, save_best_only=True,
mode='min',save_weights_only=False)
callbacks_list = [early_stop,checkpoint,plot_losses,csv_logger]
"""
Train the model
"""
start_time = time.time()
if use_generator == True:
data_name = '21-26_minMax2_etrain_tofLR_misZF_eZ'
dir_loc = "D:/SPLBM_output/chunks/" + data_name
training_generator = pore_utils.DataGenerator(dir_loc, train_IDs,
branches=net_branches,
batch_size=batch_size)
validation_generator = pore_utils.DataGenerator(dir_loc, val_IDs,
branches=net_branches,
batch_size=batch_size)
hist_model = model.fit_generator(generator=training_generator,
validation_data=validation_generator,
callbacks=callbacks_list,
epochs = epochs,
use_multiprocessing=False,
#max_queue_size = 1,
workers=8)
else:
x0 = X_train[:,:,:,:,0]; x0 = x0[:,:,:,:,np.newaxis]
X = [x0]
if net_branches > 1:
x1 = X_train[:,:,:,:,1]; x1 = x1[:,:,:,:,np.newaxis]
X.append(x1)
if net_branches > 2:
x2 = X_train[:,:,:,:,2]; x2 = x2[:,:,:,:,np.newaxis]
X.append(x2)
if net_branches > 3:
x3 = X_train[:,:,:,:,3]; x3 = x3[:,:,:,:,np.newaxis]
X.append(x3)
if net_branches > 4:
x4 = X_train[:,:,:,:,4]; x4 = x4[:,:,:,:,np.newaxis]
X.append(x4)
if net_branches > 5:
x5 = X_train[:,:,:,:,5]; x5 = x5[:,:,:,:,np.newaxis]
X.append(x5)
hist_model = model.fit( x=X, y=y_train, epochs=epochs, batch_size=batch_size,
validation_split=validation_split, verbose=2,
callbacks=callbacks_list, shuffle=True )
elapsed_time = time.time() - start_time
print('Training time [hrs]: ', elapsed_time/3600)
np.savetxt(("savedModels/%s/training_time.txt" % model_name),
(np.expand_dims(elapsed_time/3600,0),np.expand_dims(elapsed_time,0)),
delimiter=",", header="t [hrs], t[s]")
"""
Convert to single GPU (does not seem to be necessary)
"""
#best_model = load_model('savedModels/%s/%s.h5' % (model_name,model_name)) #load the best model
#best_model = best_model.layers[-2]
#best_model.save('savedModels/%s/%s_singleGPU.h5' % (model_name,model_name))
#del model
#K.clear_session()
#import gc
#gc.collect()