-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathsubsets.js
70 lines (63 loc) · 1.25 KB
/
subsets.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/**
* Subsets
*
* Given a set of distinct integers, nums, return all possible subsets (the power set).
*
* Note: The solution set must not contain duplicate subsets.
*
* For example,
* If nums = [1,2,3], a solution is:
*
* [
* [3],
* [1],
* [2],
* [1,2,3],
* [1,3],
* [2,3],
* [1,2],
* []
* ]
*/
/**
* Backtracking solution
*
* @param {number[]} nums
* @return {number[][]}
*/
const subsets_backtracking = nums => {
const results = [];
backtracking(nums, 0, [], results);
return results;
};
/**
* @param {number[]} nums
* @param {number} start
* @param {number[]} solution
* @param {number[][]} results
*/
const backtracking = (nums, start, solution, results) => {
results.push(solution.slice());
for (let i = start; i < nums.length; i++) {
solution.push(nums[i]);
backtracking(nums, i + 1, solution, results);
solution.pop();
}
};
/**
* Iterative Solution
*
* @param {number[]} nums
* @return {number[][]}
*/
const subsets_iterative = nums => {
let results = [[]];
nums.forEach(num => {
const newSubsets = results.map(subset => {
return subset.concat([num]);
});
results = results.concat(newSubsets);
});
return results;
};
export { subsets_backtracking, subsets_iterative };