-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathcount-of-smaller-numbers-after-self.js
52 lines (46 loc) · 1.4 KB
/
count-of-smaller-numbers-after-self.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
* Count of Smaller Numbers After Self
*
* You are given an integer array nums and you have to return a new counts array.
* The counts array has the property where counts[i] is the number of smaller
* elements to the right of nums[i].
*
* Example:
*
* Input: [5,2,6,1]
* Output: [2,1,1,0]
*
* Explanation:
*
* To the right of 5 there are 2 smaller elements (2 and 1).
* To the right of 2 there is only 1 smaller element (1).
* To the right of 6 there is 1 smaller element (1).
* To the right of 1 there is 0 smaller element.
*/
import BinaryIndexedTree from 'common/binary-indexed-tree';
/**
* @param {number[]} nums
* @return {number[]}
*/
const countSmaller = nums => {
// Step 1. Re-think this problem by counting the occurrence of smaller nums
// in a sorted array. We only need to know the index in the sorted nums
const indexMap = {};
nums
.slice(0)
.sort((a, b) => a - b)
.map((num, index) => {
indexMap[num] = index;
});
const tree = new BinaryIndexedTree(nums.length);
const result = [];
// Step 2. Update the count by 1 per occurrence when we see the number
// so that for number appears after it, we can count the smaller numbers correctly
// Pay attention to the index
for (let i = nums.length - 1; i >= 0; i--) {
result[i] = tree.getSum(indexMap[nums[i]] - 1);
tree.update(indexMap[nums[i]], 1);
}
return result;
};
export { countSmaller };