-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathmin-stack.js
166 lines (154 loc) · 4.69 KB
/
min-stack.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/**
* Min Stack
*
* Design a stack that supports push, pop, top, and retrieving the minimum element in constant time.
*
* push(x) -- Push element x onto stack.
* pop() -- Removes the element on top of the stack.
* top() -- Get the top element.
* getMin() -- Retrieve the minimum element in the stack.
*
* Example:
*
* MinStack minStack = new MinStack();
* minStack.push(-2);
* minStack.push(0);
* minStack.push(-3);
* minStack.getMin(); --> Returns -3.
* minStack.pop();
* minStack.top(); --> Returns 0.
* minStack.getMin(); --> Returns -2.
*
* Following is O(1) time complexity and space complexity
*
* We define a variable minEle that stores the current minimum element in the stack.
* Now the interesting part is, how to handle the case when minimum element is removed.
* To handle this, we push “2x – minEle” into the stack instead of x so that previous
* minimum element can be retrieved using current minEle and its value stored in stack.
* Below are detailed steps and explanation of working.
*
* Push(x) : Inserts x at the top of stack.
*
* If stack is empty, insert x into the stack and make minEle equal to x.
* If stack is not empty, compare x with minEle. Two cases arise:
* If x is greater than or equal to minEle, simply insert x.
* If x is less than minEle, insert (2*x – minEle) into the stack and make minEle equal to x.
* For example, let previous minEle was 3. Now we want to insert 2.
* We update minEle as 2 and insert 2*2 – 3 = 1 into the stack.
*
* Pop() : Removes an element from top of stack.
*
* Remove element from top. Let the removed element be y. Two cases arise:
* If y is greater than or equal to minEle, the minimum element in the stack is still minEle.
* If y is less than minEle, the minimum element now becomes (2*minEle – y),
* so update (minEle = 2*minEle – y). This is where we retrieve previous minimum from
* current minimum and its value in stack. For example, let the element to be removed be 1 and minEle be 2.
* We remove 1 and update minEle as 2*2 – 1 = 3.
* Important Points:
*
* Stack doesn’t hold actual value of an element if it is minimum so far.
* Actual minimum element is always stored in minEle
*
* How does this approach work?
* When element to be inserted is less than minEle, we insert “2x – minEle”.
* The important thing to notes is, 2x – minEle will always be less than x (proved below),
* i.e., new minEle and while popping out this element we will see that something unusual has happened as
* the popped element is less than the minEle. So we will be updating minEle.
*
* How 2*x - minEle is less than x in push()?
* x < minEle which means x - minEle < 0
*
* // Adding x on both sides
* x - minEle + x < 0 + x
*
* 2*x - minEle < x
*
* We can conclude 2*x - minEle < new minEle
* While popping out, if we find the element(y) less than the current minEle, we find the new minEle = 2*minEle – y.
*
* How previous minimum element, prevMinEle is, 2*minEle - y
* in pop() is y the popped element?
*
* // We pushed y as 2x - prevMinEle. Here
* // prevMinEle is minEle before y was inserted
* y = 2*x - prevMinEle
*
* // Value of minEle was made equal to x
* minEle = x .
*
* new minEle = 2 * minEle - y
* = 2*x - (2*x - prevMinEle)
* = prevMinEle // This is what we wanted
*
* Exercise:
* Similar approach can be used to find the maximum element as well.
* Implement a stack that supports getMax() in O(1) time and constant extra space.
*/
/**
* initialize your data structure here.
*/
class MinStack {
constructor() {
this.stack = [];
this.min = null;
}
/**
* @param {number} x
* @return {void}
*/
push(x) {
if (this.stack.length === 0) {
this.stack.push(x);
this.min = x;
return;
}
if (x < this.min) {
// x - this.min < 0
// 2x - this.min < x
// so 2x - this.min < new min
this.stack.push(2 * x - this.min);
this.min = x;
} else {
this.stack.push(x);
}
}
/**
* @return {number}
*/
pop() {
const x = this.stack.pop();
if (x < this.min) {
const result = this.min;
this.min = 2 * this.min - x;
return result;
}
if (this.stack.length === 0) {
this.min = null;
}
return x;
}
/**
* @return {number}
*/
top() {
const x = this.stack[this.stack.length - 1];
if (x < this.min) {
return this.min;
}
return x;
}
/**
* @return {number}
*/
getMin() {
return this.min;
}
}
/**
* Your MinStack object will be instantiated and called as such:
* var obj = Object.create(MinStack).createNew()
* obj.push(x)
* obj.pop()
* var param_3 = obj.top()
* var param_4 = obj.getMin()
*/