-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathburst-balloons.js
81 lines (71 loc) · 2.08 KB
/
burst-balloons.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/**
* Burst Balloons
*
* Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums.
* You are asked to burst all the balloons.
* If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins.
* Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.
*
* Find the maximum coins you can collect by bursting the balloons wisely.
*
* Note:
*
* You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
* 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100
* Example:
*
* Input: [3,1,5,8]
* Output: 167
* Explanation: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> []
* coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
*/
/**
* Recursion
*
* @param {number[]} nums
* @return {number}
*/
const maxCoinsR = nums => {
return helper([1, ...nums, 1], 1, nums.length);
};
const helper = (nums, start, end) => {
if (start > end) {
return 0;
}
let max = 0;
for (let i = start; i <= end; i++) {
const val = helper(nums, start, i - 1) + nums[i] * nums[start - 1] * nums[end + 1] + helper(nums, i + 1, end);
max = Math.max(val, max);
}
return max;
};
/**
* Dynamic Programming
*
* @param {number[]} nums
* @return {number}
*/
const maxCoins = nums => {
if (!nums || nums.length === 0) {
return 0;
}
const n = nums.length;
// Initialize dp[n + 2][n + 2] and fill with 0
const dp = Array(n + 2)
.fill()
.map(() => Array(n + 2).fill(0));
// Add 1 to both front and end to help calculation
nums = [1, ...nums, 1];
for (let len = 1; len <= n; len++) {
for (let start = 1; start + len - 1 <= n; start++) {
const end = start + len - 1;
// From here it's the same as our recursive solution
for (let i = start; i <= end; i++) {
const val = dp[start][i - 1] + nums[i] * nums[start - 1] * nums[end + 1] + dp[i + 1][end];
dp[start][end] = Math.max(val, dp[start][end]);
}
}
}
return dp[1][n];
};
export { maxCoinsR, maxCoins };