-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathpartition-to-k-equal-sum-subsets.js
67 lines (59 loc) · 1.62 KB
/
partition-to-k-equal-sum-subsets.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/**
* Partition to K Equal Sum Subsets
*
* Given an array of integers nums and a positive integer k, find whether it's possible to divide
* this array into k non-empty subsets whose sums are all equal.
*
* Example 1:
*
* Input: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
* Output: True
* Explanation: It's possible to divide it into 4 subsets (5), (1, 4), (2,3), (2,3) with equal sums.
*
* Note:
*
* 1 <= k <= len(nums) <= 16.
* 0 < nums[i] < 10000.
*/
/**
* @param {number[]} nums
* @param {number} k
* @return {boolean}
*/
const canPartitionKSubsets = (nums, k) => {
// Step 1. If total sum cannot be divided by k or one of the number
// is greater than sum/k, return false
const sum = nums.reduce((total, num) => total + num);
if (sum % k !== 0 || nums.some(num => num > sum / k)) {
return false;
}
// Step 2. Use a hashset to track used numbers
const used = new Set();
// Step 3. Start the search
return (function search(start, target) {
// If all the numbers are used, we are done
if (used.size === nums.length) {
return true;
}
// The subset sum is too large, stop searching
if (target < 0) {
return false;
}
// If we have found one subset, continue the search till we use all the numbers
if (target === 0) {
return search(0, sum / k);
}
// Try every unused number
for (let i = start; i < nums.length; i++) {
if (!used.has(i)) {
used.add(i);
if (search(i + 1, target - nums[i])) {
return true;
}
used.delete(i);
}
}
return false;
})(0, sum / k);
};
export { canPartitionKSubsets };