-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathfind-median-from-data-stream.js
110 lines (101 loc) · 2.46 KB
/
find-median-from-data-stream.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/**
* Find Median from Data Stream
*
* Median is the middle value in an ordered integer list.
* If the size of the list is even, there is no middle value.
* So the median is the mean of the two middle value.
*
* For example,
* [2,3,4], the median is 3
*
* [2,3], the median is (2 + 3) / 2 = 2.5
*
* Design a data structure that supports the following two operations:
*
* void addNum(int num) - Add a integer number from the data stream to the data structure.
* double findMedian() - Return the median of all elements so far.
*
* Example:
*
* addNum(1)
* addNum(2)
* findMedian() -> 1.5
* addNum(3)
* findMedian() -> 2
*/
/**
* Your MedianFinder object will be instantiated and called as such:
* var obj = Object.create(MedianFinder).createNew()
* obj.addNum(num)
* var param_2 = obj.findMedian()
*/
import PriorityQueue from 'common/priority-queue';
class MedianFinder {
/**
* initialize your data structure here.
*/
constructor() {
// Max heap
this.left = new PriorityQueue({ comparator: (a, b) => b - a });
// Min heap
this.right = new PriorityQueue({ comparator: (a, b) => a - b });
}
/**
* @param {number} num
* @return {void}
*/
addNum(num) {
const m = this.findMedian();
const diff = this.left.size() - this.right.size();
// left and right are balanced
if (diff === 0) {
if (num < m) {
this.left.offer(num);
} else {
this.right.offer(num);
}
}
// left has more elements than right
else if (diff > 0) {
if (num < m) {
if (this.left.size() > 0) {
this.right.offer(this.left.poll());
}
this.left.offer(num);
} else {
this.right.offer(num);
}
}
// right has more elements than left
else {
if (num < m) {
this.left.offer(num);
} else {
if (this.right.size() > 0) {
this.left.offer(this.right.poll());
}
this.right.offer(num);
}
}
}
/**
* @return {number}
*/
findMedian() {
if (this.left.size() === 0 && this.right.size() === 0) {
return 0;
}
const diff = this.left.size() - this.right.size();
// left and right are balanced
if (diff === 0) {
return (this.left.peek() + this.right.peek()) / 2.0;
}
// left has more elements than right
if (diff > 0) {
return this.left.peek();
}
// right has more elements than left
return this.right.peek();
}
}
export { MedianFinder };