-
Notifications
You must be signed in to change notification settings - Fork 154
/
Copy pathconvert-sorted-list-to-binary-search-tree.js
78 lines (66 loc) · 1.49 KB
/
convert-sorted-list-to-binary-search-tree.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/**
* Convert Sorted List to Binary Search Tree
*
* Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
*
* For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two
* subtrees of *every node never differ by more than 1.
*
* Example:
*
* Given the sorted linked list: [-10,-3,0,5,9],
*
* One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:
*
* 0
* / \
* -3 9
* / /
* -10 5
*/
/**
* Definition for singly-linked list.
* function ListNode(val) {
* this.val = val;
* this.next = null;
* }
*/
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {ListNode} head
* @return {TreeNode}
*/
const sortedListToBST = head => {
if (!head) {
return null;
}
if (!head.next) {
return new TreeNode(head.val);
}
// Find the previous node of middle node
const node = findMiddle(head);
const middle = node.next;
node.next = null;
const root = new TreeNode(middle.val);
root.left = sortedListToBST(head);
root.right = sortedListToBST(middle.next);
return root;
};
const findMiddle = head => {
let prev = null;
let slow = head;
let fast = head;
while (fast && fast.next) {
prev = slow;
slow = slow.next;
fast = fast.next.next;
}
return prev;
};
export { sortedListToBST };