diff --git a/install/manual_setup2.ipynb b/install/manual_setup2.ipynb new file mode 100644 index 00000000..0c886fac --- /dev/null +++ b/install/manual_setup2.ipynb @@ -0,0 +1,170 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# T81-558: Applications of Deep Neural Networks\n", + "**Manual Python Setup**\n", + "* Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)\n", + "* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Software Installation\n", + "This class is technically oriented. A successful student needs to be able to compile and execute Python code that makes use of TensorFlow for deep learning. There are two options for you to accomplish this:\n", + "\n", + "* Install Python, TensorFlow and some IDE (Jupyter, TensorFlow, and others)\n", + "* Use Google CoLab in the cloud\n", + "\n", + "## Step 1: NVIDIA Video Driver\n", + "\n", + "You should install the latest version of your GPUs driver. You can download drivers here:\n", + "\n", + "* [NVIDIA GPU Drive Download](https://www.nvidia.com/Download/index.aspx)\n", + "\n", + "## Step 2: Visual Studio, C++\n", + "\n", + "You will need Visual Studio, with C++ installed. By default, C++ is not installed with Visual Studio, so make sure you select all of the C++ options.\n", + "\n", + "* [Visual Studio Community Edition](https://visualstudio.microsoft.com/vs/community/)\n", + "\n", + "\n", + "## Step 3: CUDA\n", + "\n", + "Look at the TensorFlow install guide to see what version of CUDA it calls for. \n", + "\n", + "* [TensorFlow GPU Guide](https://www.tensorflow.org/install/gpu)\n", + "\n", + "Then download that (or a later) version of CUDA from the following site:\n", + "\n", + "* [CUDA Toolkit Download](https://developer.nvidia.com/cuda-downloads)\n", + "\n", + "## Step 4: CuDNN\n", + "\n", + "* [CuDNN](https://developer.nvidia.com/cudnn)\n", + "\n", + "## Step 5: Ana/Miniconda\n", + "\n", + "You can download Anaconda from this\n", + "\n", + "## Step 6: Jupyter\n", + "\n", + "```\n", + "conda install -y jupyter\n", + "```\n", + "\n", + "## Step 7: Environment\n", + "\n", + "```\n", + "conda create -y --name tensorflow python=3.9\n", + "```\n", + "\n", + "To enter this environment, you must use the following command (**for Windows**), this command must be done every time you open a new Anaconda/Miniconda terminal window:\n", + "\n", + "```\n", + "activate tensorflow\n", + "```\n", + "\n", + "## Step 8: Jupyter Kernel\n", + "\n", + "It is easy to install Jupyter notebooks with the following command:\n", + "\n", + "```\n", + "conda install -y jupyter\n", + "```\n", + "\n", + "Once Jupyter is installed, it is started with the following command:\n", + "\n", + "```\n", + "jupyter notebook\n", + "```\n", + "\n", + "## Step 9: Install TensorFlow/Keras\n", + "\n", + "```\n", + "pip install tensorflow\n", + "```\n", + "\n", + "## Step 10: Testing\n", + "\n", + "```\n", + "import tensorflow as tf\n", + "print(tf.__version__)\n", + "print(len(tf.config.list_physical_devices('GPU'))>0)\n", + "```\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tensor Flow Version: 2.0.0-beta1\n", + "Keras Version: 2.2.4-tf\n", + "\n", + "Python 3.6.9 |Anaconda, Inc.| (default, Jul 30 2019, 13:42:17) \n", + "[GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/final)]\n", + "Pandas 0.25.0\n", + "Scikit-Learn 0.21.3\n", + "GPU is NOT AVAILABLE\n" + ] + } + ], + "source": [ + "# What version of Python do you have?\n", + "import sys\n", + "\n", + "import tensorflow.keras\n", + "import pandas as pd\n", + "import sklearn as sk\n", + "import tensorflow as tf\n", + "\n", + "print(f\"Tensor Flow Version: {tf.__version__}\")\n", + "print(f\"Keras Version: {tensorflow.keras.__version__}\")\n", + "print()\n", + "print(f\"Python {sys.version}\")\n", + "print(f\"Pandas {pd.__version__}\")\n", + "print(f\"Scikit-Learn {sk.__version__}\")\n", + "print(\"GPU is\", \"available\" if tf.test.is_gpu_available() else \"NOT AVAILABLE\")" + ] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "Python 3.9 (tensorflow)", + "language": "python", + "name": "tensorflow" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/t81_558_class_06_4_keras_images.ipynb b/t81_558_class_06_4_keras_images.ipynb index 442d77d0..6c5cdb3f 100644 --- a/t81_558_class_06_4_keras_images.ipynb +++ b/t81_558_class_06_4_keras_images.ipynb @@ -162,7 +162,7 @@ "\n", "def visualize_generator(img_file, gen):\n", "\t# Load the requested image\n", - " img = load_img(LOCAL_IMG_FILE)\n", + " img = load_img(img_file)\n", " data = img_to_array(img)\n", " samples = expand_dims(data, 0)\n", "\n",