-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluate_klue_sts.py
63 lines (48 loc) · 2.26 KB
/
evaluate_klue_sts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_text as text
import tfds_korean.klue_sts # noqa
from absl import app, flags, logging
from scipy import stats
from model import BertConfig, BertModel, CosineSimilarity
from train_unsupervised import get_single_bert_input
FLAGS = flags.FLAGS
def def_flags():
flags.DEFINE_string("config", "./configs/char_bert_base.json", help="bert config")
flags.DEFINE_string("weight", "", help="bert weight")
flags.DEFINE_string("vocab_path", "vocabs/vocab_char_16424.txt", help="Vocab path")
flags.DEFINE_integer("batch_size", 64, help="batch size")
flags.DEFINE_integer("max_sequence_length", 128, help="max sequence length")
def main(argv):
tokenizer = text.BertTokenizer(FLAGS.vocab_path, unknown_token="[UNK]")
pad_id = tokenizer._wordpiece_tokenizer._vocab_lookup_table.lookup(tf.constant("[PAD]"))
cls_id = tokenizer._wordpiece_tokenizer._vocab_lookup_table.lookup(tf.constant("[CLS]"))
sep_id = tokenizer._wordpiece_tokenizer._vocab_lookup_table.lookup(tf.constant("[SEP]"))
bert_config = BertConfig.from_json(FLAGS.config)
bert_model = BertModel(bert_config, name="bert_model")
logging.info(f"Load weights from {FLAGS.weight}")
bert_model.load_weights(FLAGS.weight)
dataset = tfds.load("klue_sts", split="dev").batch(FLAGS.batch_size)
bert_input_fn = get_single_bert_input(
tokenizer=tokenizer,
pad_id=pad_id,
cls_id=cls_id,
sep_id=sep_id,
max_sequence_length=FLAGS.max_sequence_length,
)
@tf.function
def calculate_similarity(sentence1, sentence2):
representation1 = bert_model(bert_input_fn(sentence1))["sequence_output"][:, 0]
representation2 = bert_model(bert_input_fn(sentence2))["sequence_output"][:, 0]
return CosineSimilarity()([representation1, representation2])
label_score = []
pred_score = []
for item in dataset:
label_score.append(item["label"])
pred_score.append(calculate_similarity(item["sentence1"], item["sentence2"]))
label_score = tf.concat(label_score, axis=0)
pred_score = tf.concat(pred_score, axis=0)
print("PearsonR", stats.pearsonr(label_score, pred_score)[0])
if __name__ == "__main__":
def_flags()
app.run(main)