forked from ShannonAI/service-streamer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
service_streamer.py
503 lines (411 loc) · 18.7 KB
/
service_streamer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# coding=utf-8
# Created by Meteorix at 2019/7/13
import logging
import multiprocessing
import os
import threading
import time
import uuid
import weakref
import pickle
from queue import Queue, Empty
from typing import List
from redis import Redis
from .managed_model import ManagedModel
TIMEOUT = 1
TIME_SLEEP = 0.001
WORKER_TIMEOUT = 20
logger = logging.getLogger(__name__)
logger.setLevel("INFO")
class Future(object):
def __init__(self, task_id, task_size, future_cache_ref):
self._id = task_id
self._size = task_size
self._future_cache_ref = future_cache_ref
self._outputs = []
self._finish_event = threading.Event()
def result(self, timeout=None):
if self._size == 0:
self._finish_event.set()
return []
finished = self._finish_event.wait(timeout)
if not finished:
raise TimeoutError("Task: %d Timeout" % self._id)
# remove from future_cache
future_cache = self._future_cache_ref()
if future_cache is not None:
del future_cache[self._id]
# [(request_id, output), ...] sorted by request_id
self._outputs.sort(key=lambda i: i[0])
# restore batch result from outputs
batch_result = [i[1] for i in self._outputs]
return batch_result
def done(self):
if self._finish_event.is_set():
return True
def _append_result(self, it_id, it_output):
self._outputs.append((it_id, it_output))
if len(self._outputs) >= self._size:
self._finish_event.set()
class _FutureCache(dict):
"Dict for weakref only"
pass
class _BaseStreamer(object):
def __init__(self, *args, **kwargs):
super().__init__()
self._client_id = str(uuid.uuid4())
self._task_id = 0
self._future_cache = _FutureCache() # {task_id: future}
self._worker_timeout = kwargs.get("worker_timeout", WORKER_TIMEOUT)
self.back_thread = threading.Thread(target=self._loop_collect_result, name="thread_collect_result")
self.back_thread.daemon = True
self.lock = threading.Lock()
def _delay_setup(self):
self.back_thread.start()
def _send_request(self, task_id, request_id, model_input):
raise NotImplementedError
def _recv_response(self, timeout=TIMEOUT):
raise NotImplementedError
def _input(self, batch: List) -> int:
"""
input a batch, distribute each item to mq, return task_id
"""
# task id in one client
self.lock.acquire()
task_id = self._task_id
self._task_id += 1
self.lock.release()
# request id in one task
request_id = 0
future = Future(task_id, len(batch), weakref.ref(self._future_cache))
self._future_cache[task_id] = future
for model_input in batch:
self._send_request(task_id, request_id, model_input)
request_id += 1
return task_id
def _loop_collect_result(self):
logger.info("start _loop_collect_result")
while True:
message = self._recv_response(timeout=TIMEOUT)
if message:
(task_id, request_id, item) = message
future = self._future_cache[task_id]
future._append_result(request_id, item)
else:
# todo
time.sleep(TIME_SLEEP)
def _output(self, task_id: int) -> List:
future = self._future_cache[task_id]
batch_result = future.result(self._worker_timeout)
return batch_result
def submit(self, batch):
task_id = self._input(batch)
future = self._future_cache[task_id]
return future
def predict(self, batch):
task_id = self._input(batch)
ret = self._output(task_id)
assert len(batch) == len(ret), "input batch size {} and output batch size {} must be equal.".format(len(batch), len(ret))
return ret
def destroy_workers(self):
raise NotImplementedError
class _BaseStreamWorker(object):
def __init__(self, predict_function, batch_size, max_latency, *args, **kwargs):
super().__init__()
assert callable(predict_function)
self._pid = os.getpid()
self._predict = predict_function
self._batch_size = batch_size
self._max_latency = max_latency
self._destroy_event = kwargs.get("destroy_event", None)
def run_forever(self, *args, **kwargs):
self._pid = os.getpid() # overwrite the pid
logger.info("[gpu worker %d] %s start working" % (self._pid, self))
while True:
handled = self._run_once()
if self._destroy_event and self._destroy_event.is_set():
break
if not handled:
# sleep if no data handled last time
time.sleep(TIME_SLEEP)
logger.info("[gpu worker %d] %s shutdown" % (self._pid, self))
def model_predict(self, batch_input):
batch_result = self._predict(batch_input)
assert len(batch_input) == len(batch_result), "input batch size {} and output batch size {} must be equal.".format(len(batch_input), len(batch_result))
return batch_result
def _run_once(self):
batch = []
start_time = time.time()
for i in range(self._batch_size):
try:
item = self._recv_request(timeout=self._max_latency)
except TimeoutError:
# each item timeout exceed the max latency
break
else:
batch.append(item)
if (time.time() - start_time) > self._max_latency:
# total batch time exceeds the max latency
break
if not batch:
return 0
model_inputs = [i[3] for i in batch]
model_outputs = self.model_predict(model_inputs)
# publish results to redis
for i, item in enumerate(batch):
client_id, task_id, request_id, _ = item
self._send_response(client_id, task_id, request_id, model_outputs[i])
batch_size = len(batch)
logger.info("[gpu worker %d] run_once batch_size: %d start_at: %s spend: %s" % (
self._pid, batch_size, start_time, time.time() - start_time))
return batch_size
def _recv_request(self, timeout=TIMEOUT):
raise NotImplementedError
def _send_response(self, client_id, task_id, request_id, model_input):
raise NotImplementedError
class ThreadedStreamer(_BaseStreamer):
def __init__(self, predict_function, batch_size, max_latency=0.1, worker_timeout=WORKER_TIMEOUT):
super().__init__(worker_timeout=worker_timeout)
self._input_queue = Queue()
self._output_queue = Queue()
self._worker_destroy_event=threading.Event()
self._worker = ThreadedWorker(predict_function, batch_size, max_latency,
self._input_queue, self._output_queue,
destroy_event=self._worker_destroy_event)
self._worker_thread = threading.Thread(target=self._worker.run_forever, name="thread_worker")
self._worker_thread.daemon = True
self._worker_thread.start()
self._delay_setup()
def _send_request(self, task_id, request_id, model_input):
self._input_queue.put((0, task_id, request_id, model_input))
def _recv_response(self, timeout=TIMEOUT):
try:
message = self._output_queue.get(timeout=timeout)
except Empty:
message = None
return message
def destroy_workers(self):
self._worker_destroy_event.set()
self._worker_thread.join(timeout=self._worker_timeout)
if self._worker_thread.is_alive():
raise TimeoutError("worker_thread destroy timeout")
logger.info("workers destroyed")
class ThreadedWorker(_BaseStreamWorker):
def __init__(self, predict_function, batch_size, max_latency, request_queue, response_queue, *args, **kwargs):
super().__init__(predict_function, batch_size, max_latency, *args, **kwargs)
self._request_queue = request_queue
self._response_queue = response_queue
def _recv_request(self, timeout=TIMEOUT):
try:
item = self._request_queue.get(timeout=timeout)
except Empty:
raise TimeoutError
else:
return item
def _send_response(self, client_id, task_id, request_id, model_output):
self._response_queue.put((task_id, request_id, model_output))
class Streamer(_BaseStreamer):
def __init__(self, predict_function_or_model, batch_size, max_latency=0.1, worker_num=1,
cuda_devices=None, model_init_args=None, model_init_kwargs=None, wait_for_worker_ready=False,
mp_start_method='spawn', worker_timeout=WORKER_TIMEOUT):
super().__init__(worker_timeout=worker_timeout)
self.worker_num = worker_num
self.cuda_devices = cuda_devices
self.mp = multiprocessing.get_context(mp_start_method)
self._input_queue = self.mp.Queue()
self._output_queue = self.mp.Queue()
self._worker = StreamWorker(predict_function_or_model, batch_size, max_latency,
self._input_queue, self._output_queue,
model_init_args, model_init_kwargs)
self._worker_ps = []
self._worker_ready_events = []
self._worker_destroy_events = []
self._setup_gpu_worker()
if wait_for_worker_ready:
self._wait_for_worker_ready()
self._delay_setup()
def _setup_gpu_worker(self):
for i in range(self.worker_num):
ready_event = self.mp.Event()
destroy_event = self.mp.Event()
if self.cuda_devices is not None:
gpu_id = self.cuda_devices[i % len(self.cuda_devices)]
args = (gpu_id, ready_event, destroy_event)
else:
args = (None, ready_event, destroy_event)
p = self.mp.Process(target=self._worker.run_forever, args=args, name="stream_worker", daemon=True)
p.start()
self._worker_ps.append(p)
self._worker_ready_events.append(ready_event)
self._worker_destroy_events.append(destroy_event)
def _wait_for_worker_ready(self, timeout=None):
if timeout is None:
timeout = self._worker_timeout
# wait for all workers finishing init
for (i, e) in enumerate(self._worker_ready_events):
# todo: select all events with timeout
is_ready = e.wait(timeout)
logger.info("gpu worker:%d ready state: %s" % (i, is_ready))
def _send_request(self, task_id, request_id, model_input):
self._input_queue.put((0, task_id, request_id, model_input))
def _recv_response(self, timeout=TIMEOUT):
try:
message = self._output_queue.get(timeout=timeout)
except Empty:
message = None
return message
def destroy_workers(self):
for e in self._worker_destroy_events:
e.set()
for p in self._worker_ps:
p.join(timeout=self._worker_timeout)
if p.is_alive():
raise TimeoutError("worker_process destroy timeout")
logger.info("workers destroyed")
class StreamWorker(_BaseStreamWorker):
def __init__(self, predict_function_or_model, batch_size, max_latency, request_queue, response_queue,
model_init_args, model_init_kwargs, *args, **kwargs):
super().__init__(predict_function_or_model, batch_size, max_latency, *args, **kwargs)
self._request_queue = request_queue
self._response_queue = response_queue
self._model_init_args = model_init_args or []
self._model_init_kwargs = model_init_kwargs or {}
def run_forever(self, gpu_id=None, ready_event=None, destroy_event=None):
# if it is a managed model, lazy init model after forked & set CUDA_VISIBLE_DEVICES
if isinstance(self._predict, type) and issubclass(self._predict, ManagedModel):
model_class = self._predict
logger.info("[gpu worker %d] init model on gpu:%s" % (os.getpid(), gpu_id))
self._model = model_class(gpu_id)
self._model.init_model(*self._model_init_args, **self._model_init_kwargs)
logger.info("[gpu worker %d] init model on gpu:%s" % (os.getpid(), gpu_id))
self._predict = self._model.predict
if ready_event:
ready_event.set() # tell father process that init is finished
if destroy_event:
self._destroy_event = destroy_event
super().run_forever()
def _recv_request(self, timeout=TIMEOUT):
try:
item = self._request_queue.get(timeout=timeout)
except Empty:
raise TimeoutError
else:
return item
def _send_response(self, client_id, task_id, request_id, model_output):
self._response_queue.put((task_id, request_id, model_output))
class RedisStreamer(_BaseStreamer):
"""
1. input batch as a task
2. distribute every single item in batch to redis
3. backend loop collecting results
3. output batch result for a task when every single item is returned
"""
def __init__(self, redis_broker="localhost:6379", prefix=''):
super().__init__()
self.prefix = prefix
self._redis_broker = redis_broker
self._redis = _RedisClient(self._client_id, self._redis_broker, self.prefix)
self._delay_setup()
def _send_request(self, task_id, request_id, model_input):
self._redis.send_request(task_id, request_id, model_input)
def _recv_response(self, timeout=TIMEOUT):
return self._redis.recv_response(timeout)
class RedisWorker(_BaseStreamWorker):
def __init__(self, model_class, batch_size, max_latency=0.1,
redis_broker="localhost:6379", prefix='',
model_init_args=None, model_init_kwargs=None, *args, **kwargs):
# assert issubclass(model_class, ManagedModel)
super().__init__(model_class, batch_size, max_latency, *args, **kwargs)
self.prefix = prefix
self._model_init_args = model_init_args or []
self._model_init_kwargs = model_init_kwargs or {}
self._redis_broker = redis_broker
self._redis = _RedisServer(0, self._redis_broker, self.prefix)
self._requests_queue = Queue()
self.back_thread = threading.Thread(target=self._loop_recv_request, name="thread_recv_request")
self.back_thread.daemon = True
self.back_thread.start()
def run_forever(self, gpu_id=None):
logger.info("[gpu worker %d] init model on gpu:%s" % (os.getpid(), gpu_id))
model_class = self._predict
self._model = model_class(gpu_id)
self._model.init_model(*self._model_init_args, **self._model_init_kwargs)
self._predict = self._model.predict
super().run_forever()
def _loop_recv_request(self):
logger.info("[gpu worker %d] start loop_recv_request" % (os.getpid()))
while True:
message = self._redis.recv_request(timeout=TIMEOUT)
if message:
(client_id, task_id, request_id, request_item) = pickle.loads(message)
self._requests_queue.put((client_id, task_id, request_id, request_item))
else:
# sleep if recv timeout
time.sleep(TIME_SLEEP)
def _recv_request(self, timeout=TIMEOUT):
try:
item = self._requests_queue.get(timeout=timeout)
except Empty:
raise TimeoutError
else:
return item
def _send_response(self, client_id, task_id, request_id, model_output):
self._redis.send_response(client_id, task_id, request_id, model_output)
def _setup_redis_worker_and_runforever(model_class, batch_size, max_latency, gpu_id,
redis_broker, prefix='', model_init_args=None, model_init_kwargs=None):
redis_worker = RedisWorker(model_class, batch_size, max_latency, redis_broker=redis_broker, prefix=prefix,
model_init_args=model_init_args, model_init_kwargs=model_init_kwargs)
redis_worker.run_forever(gpu_id)
def run_redis_workers_forever(model_class, batch_size, max_latency=0.1,
worker_num=1, cuda_devices=None, redis_broker="localhost:6379",
prefix='', mp_start_method='spawn', model_init_args=None, model_init_kwargs=None):
procs = []
mp = multiprocessing.get_context(mp_start_method)
for i in range(worker_num):
if cuda_devices is not None:
gpu_id = cuda_devices[i % len(cuda_devices)]
else:
gpu_id = None
args = [model_class, batch_size, max_latency, gpu_id, redis_broker, prefix, model_init_args, model_init_kwargs]
p = mp.Process(target=_setup_redis_worker_and_runforever, args=args, name="stream_worker", daemon=True)
p.start()
procs.append(p)
for p in procs:
p.join()
class _RedisAgent(object):
def __init__(self, redis_id, redis_broker='localhost:6379', prefix=''):
self._redis_id = redis_id
self._redis_host = redis_broker.split(":")[0]
self._redis_port = int(redis_broker.split(":")[1])
self._redis_request_queue_name = "request_queue" + prefix
self._redis_response_pb_prefix = "response_pb_" + prefix
self._redis = Redis(host=self._redis_host, port=self._redis_port)
self._response_pb = self._redis.pubsub(ignore_subscribe_messages=True)
self._setup()
def _setup(self):
raise NotImplementedError
def _response_pb_name(self, redis_id):
return self._redis_response_pb_prefix + redis_id
class _RedisClient(_RedisAgent):
def _setup(self):
self._response_pb.subscribe(self._response_pb_name(self._redis_id))
def send_request(self, task_id, request_id, model_input):
message = (self._redis_id, task_id, request_id, model_input)
self._redis.lpush(self._redis_request_queue_name, pickle.dumps(message))
def recv_response(self, timeout):
message = self._response_pb.get_message(timeout=timeout)
if message:
return pickle.loads(message["data"])
class _RedisServer(_RedisAgent):
def _setup(self):
# server subscribe all pubsub
self._response_pb.psubscribe(self._redis_response_pb_prefix + "*")
def recv_request(self, timeout):
message = self._redis.blpop(self._redis_request_queue_name, timeout=timeout)
# (queue_name, data)
if message:
return message[1]
def send_response(self, client_id, task_id, request_id, model_output):
message = (task_id, request_id, model_output)
channel_name = self._response_pb_name(client_id)
self._redis.publish(channel_name, pickle.dumps(message))