forked from mukulpatnaik/researchgpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
247 lines (213 loc) · 8.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from flask import Flask, request, render_template
from io import BytesIO
from PyPDF2 import PdfReader
import pandas as pd
from openai.embeddings_utils import get_embedding, cosine_similarity
import openai
import os
import requests
from flask_cors import CORS
from _md5 import md5
from google.cloud import storage
app = Flask(__name__)
# db=redis.from_url(os.environ['REDISCLOUD_URL'])
# db = redis.StrictRedis(host='localhost', port=6379, db=0)
# os.environ['CLOUD_STORAGE_BUCKET'] = 'researchgpt.appspot.com'
CLOUD_STORAGE_BUCKET = os.environ['CLOUD_STORAGE_BUCKET']
CORS(app)
class Chatbot():
def extract_text(self, pdf):
print("Parsing paper")
number_of_pages = len(pdf.pages)
print(f"Total number of pages: {number_of_pages}")
paper_text = []
for i in range(number_of_pages):
page = pdf.pages[i]
page_text = []
def visitor_body(text, cm, tm, fontDict, fontSize):
x = tm[4]
y = tm[5]
# ignore header/footer
if (y > 50 and y < 720) and (len(text.strip()) > 1):
page_text.append({
'fontsize': fontSize,
'text': text.strip().replace('\x03', ''),
'x': x,
'y': y
})
_ = page.extract_text(visitor_text=visitor_body)
blob_font_size = None
blob_text = ''
processed_text = []
for t in page_text:
if t['fontsize'] == blob_font_size:
blob_text += f" {t['text']}"
if len(blob_text) >= 2000:
processed_text.append({
'fontsize': blob_font_size,
'text': blob_text,
'page': i
})
blob_font_size = None
blob_text = ''
else:
if blob_font_size is not None and len(blob_text) >= 1:
processed_text.append({
'fontsize': blob_font_size,
'text': blob_text,
'page': i
})
blob_font_size = t['fontsize']
blob_text = t['text']
paper_text += processed_text
print("Done parsing paper")
# print(paper_text)
return paper_text
def create_df(self, pdf):
print('Creating dataframe')
filtered_pdf= []
for row in pdf:
if len(row['text']) < 30:
continue
filtered_pdf.append(row)
df = pd.DataFrame(filtered_pdf)
# print(df.shape)
# remove elements with identical df[text] and df[page] values
df = df.drop_duplicates(subset=['text', 'page'], keep='first')
df['length'] = df['text'].apply(lambda x: len(x))
print('Done creating dataframe')
return df
def embeddings(self, df):
print('Calculating embeddings')
openai.api_key = os.getenv('OPENAI_API_KEY')
embedding_model = "text-embedding-ada-002"
embeddings = df.text.apply([lambda x: get_embedding(x, engine=embedding_model)])
df["embeddings"] = embeddings
print('Done calculating embeddings')
return df
def search(self, df, query, n=3, pprint=True):
query_embedding = get_embedding(
query,
engine="text-embedding-ada-002"
)
df["similarity"] = df.embeddings.apply(lambda x: cosine_similarity(x, query_embedding))
results = df.sort_values("similarity", ascending=False, ignore_index=True)
# make a dictionary of the the first three results with the page number as the key and the text as the value. The page number is a column in the dataframe.
results = results.head(n)
global sources
sources = []
for i in range(n):
# append the page number and the text as a dict to the sources list
sources.append({'Page '+str(results.iloc[i]['page']): results.iloc[i]['text'][:150]+'...'})
print(sources)
return results.head(n)
def create_prompt(self, df, user_input):
result = self.search(df, user_input, n=3)
print(result)
system_role = """whose expertise is reading and summarizing scientific papers. You are given a query,
a series of text embeddings and the title from a paper in order of their cosine similarity to the query.
You must take the given embeddings and return a very detailed summary of the paper in the languange of the query:
Here is the question: """+ user_input + """
and here are the embeddings:
1.""" + str(result.iloc[0]['text']) + """
2.""" + str(result.iloc[1]['text']) + """
3.""" + str(result.iloc[2]['text']) + """
"""
user_content = f"""Given the question: "{str(user_input)}". Return a detailed answer based on the paper:"""
messages = [
{"role": "system", "content": system_role},
{"role": "user", "content": user_content},]
print('Done creating prompt')
return messages
def gpt(self, messages):
print('Sending request to GPT-3')
openai.api_key = os.getenv('OPENAI_API_KEY')
r = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages, temperature=0.7, max_tokens=1500)
answer = r.choices[0]["message"]["content"]
print('Done sending request to GPT-3')
response = {'answer': answer, 'sources': sources}
return response
@app.route("/", methods=["GET", "POST"])
def index():
return render_template("index.html")
@app.route("/process_pdf", methods=['POST'])
def process_pdf():
print("Processing pdf")
print(request)
# print('the data')
# print(request.data)
file = request.data
key = md5(file).hexdigest()
print(key)
# Create a Cloud Storage client.
gcs = storage.Client()
name = key+'.json'
# Get the bucket that the file will be uploaded to.
bucket = gcs.get_bucket(CLOUD_STORAGE_BUCKET)
# Check if the file already exists
if bucket.blob(name).exists():
print("File already exists")
print("Done processing pdf")
return {"key": key}
pdf = PdfReader(BytesIO(file))
chatbot = Chatbot()
paper_text = chatbot.extract_text(pdf)
df = chatbot.create_df(paper_text)
df = chatbot.embeddings(df)
# Create a new blob and upload the file's content.
blob = bucket.blob(name)
blob.upload_from_string(df.to_json(), content_type='application/json')
# if db.get(key) is None:
# db.set(key, df.to_json())
print("Done processing pdf")
return {"key": key}
@app.route("/download_pdf", methods=['POST'])
def download_pdf():
print("Downloading pdf")
print(request)
print(request.json['url'])
chatbot = Chatbot()
url = request.json['url']
r = requests.get(str(url))
print("Downloading pdf")
print(r.status_code)
# print(r.content)
key = md5(r.content).hexdigest()
# Create a Cloud Storage client.
gcs = storage.Client()
name = key+'.json'
# Get the bucket that the file will be uploaded to.
bucket = gcs.get_bucket(CLOUD_STORAGE_BUCKET)
# Check if the file already exists
if bucket.blob(name).exists():
print("File already exists")
print("Done processing pdf")
return {"key": key}
pdf = PdfReader(BytesIO(r.content))
paper_text = chatbot.extract_text(pdf)
df = chatbot.create_df(paper_text)
df = chatbot.embeddings(df)
# Create a new blob and upload the file's content.
blob = bucket.blob(name)
blob.upload_from_string(df.to_json(), content_type='application/json')
print("Done processing pdf")
return {"key": key}
@app.route("/reply", methods=['POST'])
def reply():
chatbot = Chatbot()
key = request.json['key']
query = request.json['query']
query = str(query)
print(query)
# df = pd.read_json(BytesIO(db.get(key)))
gcs = storage.Client()
bucket = gcs.get_bucket(CLOUD_STORAGE_BUCKET)
blob = bucket.blob(key+'.json')
df = pd.read_json(BytesIO(blob.download_as_string()))
print(df.head(5))
prompt = chatbot.create_prompt(df, query)
response = chatbot.gpt(prompt)
print(response)
return response, 200
if __name__ == '__main__':
app.run(host='127.0.0.1', port=8080, debug=True)