Skip to content

Latest commit

 

History

History
267 lines (176 loc) · 11.8 KB

changelog.md

File metadata and controls

267 lines (176 loc) · 11.8 KB

Changelog

MMSelfSup

v0.9.2 (28/07/2022)

New Features

  • Support MAE Reconstructed Image Visualization (#376)

Bug Fixes

  • Fix args/cfg bug in extract.py, use cfg.work_dir to save files (#357)
  • Fix SimMIM mask generator config bug (#360)

Improvements

  • Update mdformat settings (#323)
  • Add circleci (#374)

Docs

  • Fix the link of switch language (#327)
  • Update lr_updater.py links in tutorials/4_schedule.md (#354)

v0.9.1 (31/05/2022)

Highlight

  • Update BYOL model and results (#319)
  • Refine some documentation

New Features

  • Update BYOL models and results (#319)

Bug Fixes

  • Set qkv bias to False for cae and True for mae (#303)
  • Fix spelling errors in MAE config (#307)

Improvements

  • Change the file name of cosine annealing hook (#304)
  • Replace markdownlint with mdformat (#311)

Docs

  • Fix typo in tutotial (#308)
  • Configure Myst-parser to parse anchor tag (#309)
  • Update readthedocs algorithm README (#310)
  • Rewrite install.md (#317)
  • refine README.md file (#318)

v0.9.0 (29/04/2022)

Highlight

  • Support CAE (#284)
  • Support Barlow Twins (#207)

New Features

  • Support CAE (#284)
  • Support Barlow twins (#207)
  • Add SimMIM 192 pretrain and 224 fine-tuning results (#280)
  • Add MAE pretrain with fp16 (#271)

Bug Fixes

  • Fix args error (#290)
  • Change imgs_per_gpu to samples_per_gpu in MAE config (#278)
  • Avoid GPU memory leak with prefetch dataloader (#277)
  • Fix key error bug when registering custom hooks (#273)

Improvements

  • Update SimCLR models and results (#295)
  • Reduce memory usage while running unit test (#291)
  • Remove pytorch1.5 test (#288)
  • Rename linear probing config file names (#281)
  • add unit test for apis (#276)

Docs

  • Fix SimMIM config link, and add SimMIM to model_zoo (#272)

v0.8.0 (31/03/2022)

Highlight

  • Support SimMIM (#239)
  • Add KNN benchmark, support KNN test with checkpoint and extracted backbone weights (#243)
  • Support ImageNet-21k dataset (#225)

New Features

  • Support SimMIM (#239)
  • Add KNN benchmark, support KNN test with checkpoint and extracted backbone weights (#243)
  • Support ImageNet-21k dataset (#225)
  • Resume latest checkpoint automatically (#245)

Bug Fixes

  • Add seed to distributed sampler (#250)
  • Fix positional parameter error in dist_test_svm_epoch.sh (#260)
  • Fix 'mkdir' error in prepare_voc07_cls.sh (#261)

Improvements

  • Update args format from command line (#253)

Docs

  • Fix command errors in 6_benchmarks.md (#263)
  • Translate 6_benchmarks.md to Chinese (#262)

v0.7.0 (03/03/2022)

Highlight

  • Support MAE (#221)
  • Add Places205 benchmarks (#210)
  • Add test Windows in workflows (#215)

New Features

  • Support MAE (#221)
  • Add Places205 benchmarks (#210)

Bug Fixes

  • Fix config typos for rotation prediction and deepcluster (#200)
  • Fix image channel bgr/rgb bug and update benchmarks (#210)
  • Fix the bug when using prefetch under multi-view methods (#218)
  • Fix tsne 'no init_cfg' error (#222)

Improvements

  • Deprecate imgs_per_gpu and use samples_per_gpu (#204)
  • Update the installation of MMCV (#208)
  • Add pre-commit hook for algo-readme and copyright (#213)
  • Add test Windows in workflows (#215)

Docs

  • Translate 0_config.md into Chinese (#216)
  • Reorganizing OpenMMLab projects and update algorithms in readme (#219)

v0.6.0 (02/02/2022)

Highlight

  • Support vision transformer based MoCo v3 (#194)
  • Speed up training and start time (#181)
  • Support cpu training (#188)

New Features

  • Support vision transformer based MoCo v3 (#194)
  • Support cpu training (#188)

Bug Fixes

  • Fix issue (#159, #160) related bugs (#161)
  • Fix missing prob assignment in RandomAppliedTrans (#173)
  • Fix bug of showing k-means losses (#182)
  • Fix bug in non-distributed multi-gpu training/testing (#189)
  • Fix bug when loading cifar dataset (#191)
  • Fix dataset.evaluate args bug (#192)

Improvements

  • Cancel previous runs that are not completed in CI (#145)
  • Enhance MIM function (#152)
  • Skip CI when some specific files were changed (#154)
  • Add drop_last when building eval optimizer (#158)
  • Deprecate the support for "python setup.py test" (#174)
  • Speed up training and start time (#181)
  • Upgrade isort to 5.10.1 (#184)

Docs

v0.5.0 (16/12/2021)

Highlight

  • Released with code refactor.
  • Add 3 new self-supervised learning algorithms.
  • Support benchmarks with MMDet and MMSeg.
  • Add comprehensive documents.

Refactor

  • Merge redundant dataset files.
  • Adapt to new version of MMCV and remove old version related codes.
  • Inherit MMCV BaseModule.
  • Optimize directory.
  • Rename all config files.

New Features

  • Add SwAV, SimSiam, DenseCL algorithms.
  • Add t-SNE visualization tools.
  • Support MMCV version fp16.

Benchmarks

  • More benchmarking results, including classification, detection and segmentation.
  • Support some new datasets in downstream tasks.
  • Launch MMDet and MMSeg training with MIM.

Docs

  • Refactor README, getting_started, install, model_zoo files.
  • Add data_prepare file.
  • Add comprehensive tutorials.

OpenSelfSup (History)

v0.3.0 (14/10/2020)

Highlight

  • Support Mixed Precision Training
  • Improvement of GaussianBlur doubles the training speed
  • More benchmarking results

Bug Fixes

  • Fix bugs in moco v2, now the results are reproducible.
  • Fix bugs in byol.

New Features

  • Mixed Precision Training
  • Improvement of GaussianBlur doubles the training speed of MoCo V2, SimCLR, BYOL
  • More benchmarking results, including Places, VOC, COCO

v0.2.0 (26/6/2020)

Highlights

  • Support BYOL
  • Support semi-supervised benchmarks

Bug Fixes

  • Fix hash id in publish_model.py

New Features

  • Support BYOL.
  • Separate train and test scripts in linear/semi evaluation.
  • Support semi-supevised benchmarks: benchmarks/dist_train_semi.sh.
  • Move benchmarks related configs into configs/benchmarks/.
  • Provide benchmarking results and model download links.
  • Support updating network every several iterations.
  • Support LARS optimizer with nesterov.
  • Support excluding specific parameters from LARS adaptation and weight decay required in SimCLR and BYOL.