DataSource
and Pipeline
are two important components in Dataset
. We have introduced DataSource
in add_new_dataset. And the Pipeline
is responsible for applying a series of data augmentations to images, such as random flip.
Here is a config example of Pipeline
for SimCLR
training:
train_pipeline = [
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
dict(
type='RandomAppliedTrans',
transforms=[
dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
],
p=0.8),
dict(type='RandomGrayscale', p=0.2),
dict(type='GaussianBlur', sigma_min=0.1, sigma_max=2.0, p=0.5)
]
Every augmentation in the Pipeline
receives an image as input and outputs an augmented image.
1.Write a new transformation function in transforms.py and overwrite the __call__
function, which takes a Pillow
image as input:
@PIPELINES.register_module()
class MyTransform(object):
def __call__(self, img):
# apply transforms on img
return img
2.Use it in config files. We reuse the config file shown above and add MyTransform
to it.
train_pipeline = [
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
dict(type='MyTransform'),
dict(
type='RandomAppliedTrans',
transforms=[
dict(
type='ColorJitter',
brightness=0.8,
contrast=0.8,
saturation=0.8,
hue=0.2)
],
p=0.8),
dict(type='RandomGrayscale', p=0.2),
dict(type='GaussianBlur', sigma_min=0.1, sigma_max=2.0, p=0.5)
]