Skip to content

Latest commit

 

History

History
40 lines (35 loc) · 1.69 KB

File metadata and controls

40 lines (35 loc) · 1.69 KB

Unsupervised Domain Adaption

To adapt to a new domain, just train a new DAM on the target corpus in an unsupervised manner. Here, we take CPR-Ecommerce as an example.

output_dir="./data/adapt-mlm/chinese-dureader/adapt_domain/cpr-ecom"

python -m torch.distributed.launch --nproc_per_node 4 \
    -m disentangled_retriever.adapt.run_adapt_with_mlm \
    --corpus_path ./data/datasets/cpr-ecom/corpus.tsv \
    --output_dir $output_dir \
    --model_name_or_path jingtao/DAM-bert_base-mlm-dureader \
    --logging_first_step \
    --logging_steps 50 \
    --max_seq_length 100 \
    --per_device_train_batch_size 256 \
    --gradient_accumulation_steps 1 \
    --warmup_steps 1000 \
    --fp16 \
    --learning_rate 2e-5 \
    --max_steps 20000 \
    --dataloader_drop_last \
    --overwrite_output_dir \
    --dataloader_num_workers 8 \
    --weight_decay 0.01 \
    --lr_scheduler_type "constant_with_warmup" \
    --save_strategy "steps" \
    --save_steps 5000 \
    --optim adamw_torch 

Note that we use the source DAM jingtao/DAM-bert_base-mlm-dureader for initialization (see our paper for explanation) and train for 20,000 steps. After this, you can use the trained DAM and combine it with any REM. The combination will be a very effective ranking model on Lotte-Technology.

How to combine? Use the new DAM as the `backbone_name_or_path' argument. See the following instructions about different ranking methods: