forked from danaberman/non-local-dehazing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimate_airlight.m
152 lines (133 loc) · 6.8 KB
/
estimate_airlight.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
function [ Aout ] = estimate_airlight( img, Amin, Amax, N, spacing, K, thres )
%Estimate airlight of an image, using a 3*2D Hough transform, where each
%point votes for a given location using a fixed set of angles.
%
% This is an implementation of our paper:
% Dana Berman, Tali Treibitz, Shai Avidan,
% "Air-light Estimation using Haze-Lines", ICCP 2017
%
% Input arguments:
% img - input image (mandatory)
% Amin (Amax) - minimal (maximal) value if the air-light. Optional
% Can be used to reduce the search space and save time
% Either a scalar (identical for all color channels) or a 3
% value vector (different range for each color channel)
% N - number of colors clusters to use (the image is converted to an
% indexed image of at most N different cluster). Optional
% spacing - air-light candidates' resolution, 1/M in the paper. Optional
% K - angular resolution. Optional
% thres - cone resolution, optional, default recommended
%% Verify input params, set defaults when necessary (same as published results)
if ~exist('thres','var') || isempty(thres), thres = 0.01 ; end;
if ~exist('spacing','var') || isempty(spacing), spacing = 0.02 ; end; %1/M in the paper
if ~exist('n_colors','var') || isempty(N), N = 1000 ; end; %number of colors clusters
if ~exist('K','var') || isempty(K), K = 40 ; end; %number of angles
% Define search range for the air-light. The search range is different for each
% color channel. These values were used in all of our experiments.
if ~exist('Amin','var') || isempty(Amin), Amin = [0,0.05,0.1]; end;
if ~exist('Amax','var') || isempty(Amax), Amax = 1; end;
% Air-light search range, accept a scalar if identical for all color channels
if isscalar(Amin), Amin = repmat(Amin,1,3); end
if isscalar(Amax), Amax = repmat(Amax,1,3); end
%% Convert input image to an indexed image
[img_ind, points] = rgb2ind(img, N);
[h,w,~] = size(img);
% Remove empty clusters
idx_in_use = unique(img_ind(:));
idx_to_remove = setdiff(0:(size(points,1)-1),idx_in_use);
points(idx_to_remove+1,:) = [];
img_ind_sequential = zeros(h,w);
for kk = 1:length(idx_in_use)
img_ind_sequential(img_ind==idx_in_use(kk)) = kk;
end
% Now the min value of img_ind_sequential is 1 rather then 0, and the indices
% correspond to points
% Count the occurences if each index - this is the clusters' weight
[points_weight,~] = histcounts(img_ind_sequential(:),size(points,1));
points_weight = points_weight./(h*w);
if ~ismatrix(points), points = reshape(points,[],3); end % verify dim
%% Define arrays of candidate air-light values and angles
angle_list = reshape(linspace(0, pi, K),[],1);
% Use angle_list(1:end-1) since angle_list(end)==pi, which is the same line
% in 2D as since angle_list(1)==0
directions_all = [sin(angle_list(1:end-1)) , cos(angle_list(1:end-1)) ];
% Air-light candidates in each color channel
ArangeR = Amin(1):spacing:Amax(1);
ArangeG = Amin(2):spacing:Amax(2);
ArangeB = Amin(3):spacing:Amax(3);
%% Estimate air-light in each pair of color channels
% Estimate RG
Aall = generate_Avals(ArangeR, ArangeG);
[~, AvoteRG] = vote_2D(points(:,1:2), points_weight, directions_all, Aall, thres );
% Estimate GB
Aall = generate_Avals(ArangeG, ArangeB);
[~, AvoteGB] = vote_2D(points(:,2:3), points_weight, directions_all, Aall, thres );
% Estimate RB
Aall = generate_Avals(ArangeR, ArangeB);
[~, AvoteRB] = vote_2D(points(:,[1,3]), points_weight, directions_all, Aall, thres);
%% Find most probable airlight from marginal probabilities (2D arrays)
% Normalize (otherwise the numbers are quite large)
max_val = max( [max(AvoteRB(:)) , max(AvoteRG(:)) , max(AvoteGB(:)) ]);
AvoteRG2 = AvoteRG./max_val;
AvoteGB2 = AvoteGB./max_val;
AvoteRB2 = AvoteRB./max_val;
% Generate 3D volumes from 3 different 2D arrays
A11 = repmat( reshape(AvoteRG2, length(ArangeG),length(ArangeR))', 1,1,length(ArangeB));
tmp = reshape(AvoteRB2, length(ArangeB),length(ArangeR))';
A22 = repmat(reshape(tmp, length(ArangeR),1,length(ArangeB)) , 1,length(ArangeG),1);
tmp2 = reshape(AvoteGB2, length(ArangeB),length(ArangeG))';
A33 = repmat(reshape(tmp2, 1, length(ArangeG),length(ArangeB)) , length(ArangeR),1,1);
AvoteAll = A11.*A22.*A33;
[~, idx] = max(AvoteAll(:));
[idx_r,idx_g,idx_b] = ind2sub([length(ArangeR),length(ArangeG),length(ArangeB)],idx);
Aout = [ArangeR(idx_r), ArangeG(idx_g), ArangeB(idx_b)];
end % function estimate_airlight_2D
%% Sub functions
function Aall = generate_Avals(Avals1, Avals2)
%Generate a list of air-light candidates of 2-channels, using two lists of
%values in a single channel each
%Aall's length is length(Avals1)*length(Avals2)
Avals1 = reshape(Avals1,[],1);
Avals2 = reshape(Avals2,[],1);
A1 = kron(Avals1, ones(length(Avals2),1));
A2 = kron(ones(length(Avals1),1), Avals2);
Aall = [A1, A2];
end % function generate_Avals
function [Aout, Avote2] = vote_2D(points, points_weight, directions_all, Aall, thres)
n_directions = size(directions_all,1);
accumulator_votes_idx = false(size(Aall,1), size(points,1), n_directions);
for i_point = 1:size(points,1)
for i_direction = 1:n_directions
% save time and ignore irelevant points from the get-go
idx_to_use = find( (Aall(:, 1) > points(i_point, 1)) & (Aall(:, 2) > points(i_point, 2)));
if isempty(idx_to_use), continue; end
% calculate distance between all A options and the line defined by
% i_point and i_direction. If the distance is smaller than a thres,
% increase the cell in accumulator
dist1 = sqrt(sum([Aall(idx_to_use, 1)-points(i_point, 1), Aall(idx_to_use, 2)-points(i_point, 2)].^2,2));
%dist1 = dist1 - min(dist1);
dist1 = dist1./sqrt(2) + 1;
dist = -points(i_point, 1)*directions_all(i_direction,2) + ...
points(i_point, 2)*directions_all(i_direction,1) + ...
Aall(idx_to_use, 1)*directions_all(i_direction,2) - ...
Aall(idx_to_use, 2)*directions_all(i_direction,1);
idx = abs(dist)<2*thres.*dist1;
if ~any(idx), continue; end
idx_full = idx_to_use(idx);
accumulator_votes_idx(idx_full, i_point,i_direction) = true;
end
end
% use only haze-lined that are supported by 2 points or more
accumulator_votes_idx2 = (sum(uint8(accumulator_votes_idx),2))>=2;
accumulator_votes_idx = bsxfun(@and, accumulator_votes_idx ,accumulator_votes_idx2);
accumulator_unique = zeros(size(Aall,1),1);
for iA = 1:size(Aall,1)
idx_to_use = find(Aall(iA, 1) > points(:, 1) & (Aall(iA, 2) > points(:, 2)));
points_dist = sqrt((Aall(iA,1) - points(idx_to_use,1)).^2+(Aall(iA,2) - points(idx_to_use,2)).^2);
points_weight_dist = points_weight(idx_to_use).*(5.*exp(-reshape(points_dist,1,[]))+1);
accumulator_unique(iA) = sum(points_weight_dist(any(accumulator_votes_idx(iA,idx_to_use,:),3)));
end
[~, Aestimate_idx] = max(accumulator_unique);
Aout = Aall(Aestimate_idx,:);
Avote2 = accumulator_unique;
end % function vote_2D