forked from wsjeon/maddpg-rllib
-
Notifications
You must be signed in to change notification settings - Fork 8
/
run_maddpg.py
184 lines (155 loc) · 6.83 KB
/
run_maddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import ray
from ray.tune import run_experiments
from ray.tune.registry import register_trainable, register_env
from env import MultiAgentParticleEnv
import ray.rllib.contrib.maddpg.maddpg as maddpg
import argparse
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
class CustomStdOut(object):
def _log_result(self, result):
if result["training_iteration"] % 50 == 0:
try:
print("steps: {}, episodes: {}, mean episode reward: {}, agent episode reward: {}, time: {}".format(
result["timesteps_total"],
result["episodes_total"],
result["episode_reward_mean"],
result["policy_reward_mean"],
round(result["time_total_s"] - self.cur_time, 3)
))
except:
pass
self.cur_time = result["time_total_s"]
def parse_args():
parser = argparse.ArgumentParser("MADDPG with OpenAI MPE")
# Environment
parser.add_argument("--scenario", type=str, default="simple",
choices=['simple', 'simple_speaker_listener',
'simple_crypto', 'simple_push',
'simple_tag', 'simple_spread', 'simple_adversary'],
help="name of the scenario script")
parser.add_argument("--max-episode-len", type=int, default=25,
help="maximum episode length")
parser.add_argument("--num-episodes", type=int, default=60000,
help="number of episodes")
parser.add_argument("--num-adversaries", type=int, default=0,
help="number of adversaries")
parser.add_argument("--good-policy", type=str, default="maddpg",
help="policy for good agents")
parser.add_argument("--adv-policy", type=str, default="maddpg",
help="policy of adversaries")
# Core training parameters
parser.add_argument("--lr", type=float, default=1e-2,
help="learning rate for Adam optimizer")
parser.add_argument("--gamma", type=float, default=0.95,
help="discount factor")
# NOTE: 1 iteration = sample_batch_size * num_workers timesteps * num_envs_per_worker
parser.add_argument("--sample-batch-size", type=int, default=25,
help="number of data points sampled /update /worker")
parser.add_argument("--train-batch-size", type=int, default=1024,
help="number of data points /update")
parser.add_argument("--n-step", type=int, default=1,
help="length of multistep value backup")
parser.add_argument("--num-units", type=int, default=64,
help="number of units in the mlp")
parser.add_argument("--replay-buffer", type=int, default=1000000,
help="size of replay buffer in training")
# Checkpoint
parser.add_argument("--checkpoint-freq", type=int, default=7500,
help="save model once every time this many iterations are completed")
parser.add_argument("--local-dir", type=str, default="./ray_results",
help="path to save checkpoints")
parser.add_argument("--restore", type=str, default=None,
help="directory in which training state and model are loaded")
# Parallelism
parser.add_argument("--num-workers", type=int, default=1)
parser.add_argument("--num-envs-per-worker", type=int, default=4)
parser.add_argument("--num-gpus", type=int, default=0)
return parser.parse_args()
def main(args):
ray.init(redis_max_memory=int(1e10), object_store_memory=int(3e9))
MADDPGAgent = maddpg.MADDPGTrainer.with_updates(
mixins=[CustomStdOut]
)
register_trainable("MADDPG", MADDPGAgent)
def env_creater(mpe_args):
return MultiAgentParticleEnv(**mpe_args)
register_env("mpe", env_creater)
env = env_creater({
"scenario_name": args.scenario,
})
def gen_policy(i):
use_local_critic = [
args.adv_policy == "ddpg" if i < args.num_adversaries else
args.good_policy == "ddpg" for i in range(env.num_agents)
]
return (
None,
env.observation_space_dict[i],
env.action_space_dict[i],
{
"agent_id": i,
"use_local_critic": use_local_critic[i],
"obs_space_dict": env.observation_space_dict,
"act_space_dict": env.action_space_dict,
}
)
policies = {"policy_%d" %i: gen_policy(i) for i in range(len(env.observation_space_dict))}
policy_ids = list(policies.keys())
run_experiments({
"MADDPG_RLLib": {
"run": "contrib/MADDPG",
"env": "mpe",
"stop": {
"episodes_total": args.num_episodes,
},
"checkpoint_freq": args.checkpoint_freq,
"local_dir": args.local_dir,
"restore": args.restore,
"config": {
# === Log ===
"log_level": "ERROR",
# === Environment ===
"env_config": {
"scenario_name": args.scenario,
},
"num_envs_per_worker": args.num_envs_per_worker,
"horizon": args.max_episode_len,
# === Policy Config ===
# --- Model ---
"good_policy": args.good_policy,
"adv_policy": args.adv_policy,
"actor_hiddens": [args.num_units] * 2,
"actor_hidden_activation": "relu",
"critic_hiddens": [args.num_units] * 2,
"critic_hidden_activation": "relu",
"n_step": args.n_step,
"gamma": args.gamma,
# --- Exploration ---
"tau": 0.01,
# --- Replay buffer ---
"buffer_size": args.replay_buffer,
# --- Optimization ---
"actor_lr": args.lr,
"critic_lr": args.lr,
"learning_starts": args.train_batch_size * args.max_episode_len,
"sample_batch_size": args.sample_batch_size,
"train_batch_size": args.train_batch_size,
"batch_mode": "truncate_episodes",
# --- Parallelism ---
"num_workers": args.num_workers,
"num_gpus": args.num_gpus,
"num_gpus_per_worker": 0,
# === Multi-agent setting ===
"multiagent": {
"policies": policies,
"policy_mapping_fn": ray.tune.function(
lambda i: policy_ids[i]
)
},
},
},
}, verbose=0)
if __name__ == '__main__':
args = parse_args()
main(args)