-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy path3_train_middle_model_dm.py
75 lines (58 loc) · 2.6 KB
/
3_train_middle_model_dm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#!/usr/bin/env python
import argparse
import torch
from torch.utils.data import DataLoader
from rdkit import Chem
from rdkit import rdBase
from tqdm import tqdm
from MCMG_utils.data_structs import MolData, Vocabulary
from models.model_rnn import RNN
from MCMG_utils.utils import decrease_learning_rate
rdBase.DisableLog('rdApp.error')
def train_middle(train_data, save_model='./DM.ckpt'):
"""Trains the Prior RNN"""
# Read vocabulary from a file
voc = Vocabulary(init_from_file="data/Voc_RE1")
# Create a Dataset from a SMILES file
moldata = MolData(train_data, voc)
data = DataLoader(moldata, batch_size=128, shuffle=True, drop_last=True,
collate_fn=MolData.collate_fn)
Prior = RNN(voc)
optimizer = torch.optim.Adam(Prior.rnn.parameters(), lr = 0.001)
for epoch in range(1, 9):
for step, batch in tqdm(enumerate(data), total=len(data)):
# Sample from DataLoader
seqs = batch.long()
# Calculate loss
log_p = Prior.likelihood(seqs)
loss = - log_p.mean()
# Calculate gradients and take a step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Every 500 steps we decrease learning rate and print some information
if step % 500 == 0 and step != 0:
decrease_learning_rate(optimizer, decrease_by=0.03)
tqdm.write("*" * 50)
print(loss.cpu().data)
tqdm.write("Epoch {:3d} step {:3d} loss: {:5.2f}\n".format(epoch, step, loss.cpu().data))
seqs, likelihood, _ = Prior.sample(128)
valid = 0
for i, seq in enumerate(seqs.cpu().numpy()):
smile = voc.decode(seq)
if Chem.MolFromSmiles(smile):
valid += 1
if i < 5:
tqdm.write(smile)
tqdm.write("\n{:>4.1f}% valid SMILES".format(100 * valid / len(seqs)))
tqdm.write("*" * 50 + "\n")
torch.save(Prior.rnn.state_dict(), save_model)
# Save the Prior
torch.save(Prior.rnn.state_dict(), save_model)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Main script for running the model")
parser.add_argument('--train-data', action='store', dest='train_data')
parser.add_argument('--save-middle-path', action='store', dest='save_model_dir',
help='Path and name of middle model.')
arg_dict = vars(parser.parse_args())
train_middle(**arg_dict)