-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathdelaunay2D_stepByStep.py
executable file
·56 lines (47 loc) · 1.88 KB
/
delaunay2D_stepByStep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!/usr/bin/env python3
# -*- coding: ascii -*-
"""
Simple delaunay2D demo with mathplotlib
Written by Jose M. Espadero < http://github.com/jmespadero/pyDelaunay2D >
"""
import numpy as np
from delaunay2D import Delaunay2D
import matplotlib.pyplot as plt
import matplotlib.tri
import matplotlib.collections
if __name__ == '__main__':
###########################################################
# Generate 'numSeeds' random seeds in a square of size 'radius'
numSeeds = 24
radius = 100
seeds = radius * np.random.random((numSeeds, 2))
print("seeds:\n", seeds)
print("BBox Min:", np.amin(seeds, axis=0),
"Bbox Max: ", np.amax(seeds, axis=0))
"""
Compute our Delaunay triangulation of seeds.
"""
# Compute center and radius of input points
center = np.mean(seeds, axis=0)
radius = np.max(np.linalg.norm((seeds - center), axis=1))
# Sort seeds by X-coordinate
#perm = sorted(range(len(seeds)), key=lambda x: seeds[x][0])
#seeds=[seeds[i] for i in perm]
# Starts from a new Delaunay2D frame
dt2 = Delaunay2D(center, 50 * radius)
for i,s in enumerate(seeds):
print("Inserting seed", i, s)
dt2.addPoint(s)
if i > 1:
fig, ax = plt.subplots()
ax.margins(0.1)
ax.set_aspect('equal')
plt.axis([center[0]-radius, center[0]+radius,center[1]-radius, center[1]+radius])
for ii, v in enumerate(seeds[0:i+1]):
plt.annotate(ii, xy=v) # Plot all seeds
for t in dt2.exportTriangles():
polygon = [seeds[ii] for ii in t] # Build polygon for each region
plt.fill(*zip(*polygon), fill=False, color="b") # Plot filled polygon
print("Press q to show next step")
plt.show()
#plt.savefig(f'output-{i:02d}.png', dpi=150, bbox_inches='tight')