forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
66 lines (60 loc) · 2.94 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from transformers import FuyuProcessor
import torch
import argparse
import time
from PIL import Image
from ipex_llm.transformers import AutoModelForCausalLM
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Fuyu model')
parser.add_argument('--repo-id-or-model-path', type=str, default="adept/fuyu-8b",
help='The huggingface repo id for the Fuyu model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="Generate a coco-style caption.",
help='Prompt to infer')
parser.add_argument('--image-path', type=str, required=True,
help='Image path for the input image that the chat will focus on')
parser.add_argument('--n-predict', type=int, default=512, help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
prompt = args.prompt
image = Image.open(args.image_path)
# Load model
# For successful IPEX-LLM optimization on Fuyu, skip the 'vision_embed_tokens' module during optimization
model = AutoModelForCausalLM.from_pretrained(model_path, device_map='cpu',
load_in_4bit = True,
trust_remote_code=True,
modules_to_not_convert=['vision_embed_tokens'])
# Load processor
processor = FuyuProcessor.from_pretrained(model_path)
# Generate predicted tokens
with torch.inference_mode():
inputs = processor(text=prompt, images=image, return_tensors="pt")
st = time.time()
generation_outputs = model.generate(**inputs,
max_new_tokens=args.n_predict)
end = time.time()
outputs = processor.batch_decode(generation_outputs[:, -args.n_predict:], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
for output in outputs:
# '\x04' is the "beginning of answer" token
# See https://huggingface.co/adept/fuyu-8b#how-to-use
answer = output.split('\x04 ', 1)[1] if '\x04' in output else ''
print(answer)