-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
1005 lines (580 loc) · 34.3 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en-us">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="theme" content="hugo-academic">
<meta name="generator" content="Hugo 0.47.1" />
<meta name="author" content="joan726">
<meta name="description" content="Analytics Zoo">
<link rel="alternate" hreflang="en-us" href="https://joan726.github.io/">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha512-6MXa8B6uaO18Hid6blRMetEIoPqHf7Ux1tnyIQdpt9qI5OACx7C+O3IVTr98vwGnlcg0LOLa02i9Y1HpVhlfiw==" crossorigin="anonymous">
<link rel="stylesheet" href="/styles.css">
<link rel="alternate" href="https://joan726.github.io/index.xml" type="application/rss+xml" title="joan726">
<link rel="feed" href="https://joan726.github.io/index.xml" type="application/rss+xml" title="joan726">
<link rel="manifest" href="/site.webmanifest">
<link rel="icon" type="image/png" href="/img/icon.png">
<link rel="apple-touch-icon" type="image/png" href="/img/icon-192.png">
<link rel="canonical" href="https://joan726.github.io/">
<meta property="twitter:card" content="summary_large_image">
<meta property="og:site_name" content="joan726">
<meta property="og:url" content="https://joan726.github.io/">
<meta property="og:title" content="joan726">
<meta property="og:description" content="GitHub">
<meta property="og:locale" content="en-us">
<meta property="og:updated_time" content="2017-10-15T00:00:00+11:00">
<title>Coming soon!</title>
</head>
<body id="top" data-spy="scroll" data-target="#navbar-main" data-offset="71" >
<nav class="navbar navbar-default navbar-fixed-top" id="navbar-main">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse"
data-target=".navbar-collapse" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="/">Data Analytics and AI Innovation Center</a>
</div>
<div class="collapse navbar-collapse">
<ul class="nav navbar-nav navbar-right">
<li class="nav-item">
<a href="/#about" data-target="#about">
<span>Home</span>
</a>
</li>
<li class="nav-item">
<a href="/#projects" data-target="#projects">
<span>Projects</span>
</a>
</li>
<li class="nav-item">
<a href="/#publications" data-target="#publications">
<span>Publications</span>
</a>
</li>
<li class="nav-item">
<a href="/#contact" data-target="#contact">
<span>Contact</span>
</a>
</li>
</ul>
</div>
</div>
</nav>
<span id="homepage" style="display: none"></span>
<section id="about" class="home-section">
<div class="container">
<div class="row" itemprop="author" itemscope itemtype="http://schema.org/Person" itemref="person-email person-telephone person-address">
<div class="col-xs-12 col-md-4">
<div id="profile">
<div>
<img src="https://joan726.github.io/img/portrait.jpg">
</div>
<div class="portrait-title">
<h3 itemprop="jobTitle">A unified analytics + AI platform for distributed TensorFlow, Keras, PyTorch and BigDL on Apache Spark</h3>
<h3 itemprop="worksFor" itemscope itemtype="http://schema.org/Organization">
<a href="https://github.com/intel-analytics/analytics-zoo" target="_blank" itemprop="url" rel="noopener">
<span itemprop="name">GitHub</span>
</a>
</h3>
</div>
<link itemprop="url" href="https://joan726.github.io/">
<ul class="network-icon" aria-hidden="true">
<li>
<a itemprop="sameAs" href="mailto:[email protected]" target="_blank" rel="noopener">
<i class="fa fa-envelope big-icon"></i>
</a>
</li>
<li>
<a itemprop="sameAs" href="https://analytics-zoo.github.io/master/" target="_blank" rel="noopener">
<i class="ai ai-google-scholar big-icon"></i>
</a>
</li>
</ul>
</div>
</div>
<div class="col-xs-12 col-md-8" itemprop="description">
<h1 id="biography">What is Analytics Zoo?</h1>
<p>Analytics Zoo provides a unified analytics + AI platform that seamlessly unites Spark, TensorFlow, Keras, PyTorch and BigDL programs into an integrated pipeline; the entire pipeline can then transparently scale out to a large Hadoop/Spark cluster for distributed training or inference.</p>
<p>
<ul>
<li>Data wrangling and analysis using PySpark</li>
<li>Deep learning model development using TensorFlow, Keras or PyTorch</li>
<li>Distributed training/inference on Spark and BigDL</li>
<li>All within a single unified pipeline and in a user-transparent fashion!</li>
</ul>
</p>
<p>In addition, Analytics Zoo also provides a rich set of analytics and AI support for the end-to-end pipeline, including:</p>
<p>
<ul>
<li>Easy-to-use abstractions and APIs (e.g., transfer learning support, autograd operations, Spark DataFrame and ML pipeline support, online model serving API, etc.)</li>
<li>Common feature engineering operations (for image, text, 3D image, etc.)</li>
<li>Built-in deep learning models (e.g., object detection, image classification, text classification, recommendation, anomaly detection, text matching, sequence to sequence etc.)</li>
<li>Reference use cases (e.g., anomaly detection, sentiment analysis, fraud detection, image similarity, etc.)</li>
</ul>
</p>
</div>
</div>
</section>
<section id="projects" class="home-section">
<div class="container">
<div class="row">
<div class="col-xs-12 col-md-4 section-heading">
<h1>Projects</h1>
</div>
<div class="col-xs-12 col-md-8">
<p>Analytics Zoo provides a collection of reference user applications and demos, which can be modified or even used off-the-shelf in real world applications. Some are listed below.</p>
</p>
<span class="hidden default-project-filter">*</span>
<div class="project-toolbar">
<div class="project-filters">
<div class="btn-toolbar">
<div class="btn-group flex-wrap">
<a href="#" data-filter="*" class="btn btn-primary btn-large active">All</a>
<a href="#" data-filter=".Framework" class="btn btn-primary btn-large">DL Framework</a>
<a href="#" data-filter=".Platform" class="btn btn-primary btn-large">AI Platform</a>
<a href="#" data-filter=".AutoML" class="btn btn-primary btn-large">AutoML</a>
<a href="#" data-filter=".Application" class="btn btn-primary btn-large">AI Application</a>
</div>
</div>
</div>
</div>
<div class="isotope projects-container row js-layout-row project-showcase mt-5">
<div class="col-lg-12 project-item isotope-item js-id-urban-change js-id-urban-patterns Framework" itemscope itemtype="http://schema.org/CreativeWork">
<div class="row align-items-center">
<div class="col-12 col-md-6 order-first ">
<a href="https://arxiv.org/abs/1804.05839" target="_blank">
<img src="/img/bigdl.jpg" itemprop="image" alt="">
</a>
</div>
<div class="col-12 col-md-6">
<h3 class="article-title mb-0 mt-0" itemprop="name"><a href="https://arxiv.org/abs/1804.05839" target="_blank" itemprop="url">BigDL: A Distributed Deep Learning Framework for Apache Spark</a></h3>
<div class="article-style" itemprop="articleBody">
BigDL allows users to write deep learning applications as standard Spark programs, which can directly run on top of existing Spark or Hadoop clusters to process Big Data.
</div>
</div>
</div>
</div>
<div class="col-lg-12 project-item isotope-item js-id-machine-learning Platform js-id-equity js-id-urban-change" itemscope itemtype="http://schema.org/CreativeWork">
<div class="row align-items-center">
<div class="col-12 col-md-6 order-first ">
<a href="https://github.com/intel-analytics/analytics-zoo" target="_blank" >
<img src="/img/analytics.jpg" itemprop="image" alt="">
</a>
</div>
<div class="col-12 col-md-6">
<h3 class="article-title mb-0 mt-0" itemprop="name"><a href="https://github.com/intel-analytics/analytics-zoo" target="_blank" itemprop="url">Analytics Zoo: A Unified Data Analytics and AI Platform</a></h3>
<div class="article-style" itemprop="articleBody">
Analytics Zoo seamlessly unites TensorFlow, Keras, PyTorch, Spark, Flink and Ray programs into an integrated pipeline, which can transparently scale from laptops to large clusters to process production big data.
</div>
</div>
</div>
</div>
<div class="col-lg-12 project-item isotope-item AutoML js-id-China js-id-American-Indian-tribes js-id-equity" itemscope itemtype="http://schema.org/CreativeWork">
<div class="row align-items-center">
<div class="col-12 col-md-6 order-first ">
<a href="https://medium.com/riselab/scalable-automl-for-time-series-prediction-using-ray-and-analytics-zoo-b79a6fd08139" target="_blank" >
<img src="/img/automl.jpg" itemprop="image" alt="">
</a>
</div>
<div class="col-12 col-md-6">
<h3 class="article-title mb-0 mt-0" itemprop="name"><a href="https://medium.com/riselab/scalable-automl-for-time-series-prediction-using-ray-and-analytics-zoo-b79a6fd08139" target="_blank" itemprop="url">Scalable AutoML for Time Series Prediction Using Ray</a></h3>
<div class="article-style" itemprop="articleBody">
It leverages emerging AI technologies (e.g., Ray, hyperparameter optimization, sequence generation models, etc.) to automatically generate feature, select models and tune hyperparameters for time series prediction in a distributed fashion.
</div>
</div>
</div>
</div>
<div class="col-lg-12 project-item isotope-item js-id-theory js-id-plans js-id-property-rights js-id-public-good Application" itemscope itemtype="http://schema.org/CreativeWork">
<div class="row align-items-center">
<div class="col-12 col-md-6 order-first ">
<a href="https://www.infoq.com/articles/analytics-zoo-qa-module/" target="_blank">
<img src="/img/azure.jpg" itemprop="image" alt="">
</a>
</div>
<div class="col-12 col-md-6">
<h3 class="article-title mb-0 mt-0" itemprop="name"><a href="https://www.infoq.com/articles/analytics-zoo-qa-module/" target="_blank" itemprop="url">NLP Based Customer Service Chatbot for Azure</a></h3>
<div class="article-style" itemprop="articleBody">
Building a customer service chatbot using NLP technologies (e.g., text classification and text matching models) in Analytics Zoo with the Microsoft Azure China team.
</div>
</div>
</div>
</div>
<div class="col-lg-12 project-item isotope-item Application js-id-landscape-metrics js-id-economy js-id-urban-morphology" itemscope itemtype="http://schema.org/CreativeWork">
<div class="row align-items-center">
<div class="col-12 col-md-6 order-first ">
<a href="https://software.intel.com/en-us/articles/real-time-product-recommendations-for-office-depot-using-apache-spark-and-analytics-zoo-on" target="_blank">
<img src="/img/depot.jpg" itemprop="image" alt="">
</a>
</div>
<div class="col-12 col-md-6">
<h3 class="article-title mb-0 mt-0" itemprop="name"><a href="https://software.intel.com/en-us/articles/real-time-product-recommendations-for-office-depot-using-apache-spark-and-analytics-zoo-on" target="_blank" itemprop="url">Session-Based Product Recommendation for Office Depot</a></h3>
<div class="article-style" itemprop="articleBody">
Building the end-to-end product recommendation pipeline (using session-based recommendation models, Analytics Zoo, MLeap, Play Framework, etc.) on AWS with the Office Depot team.
</div>
</div>
</div>
</div>
<div class="col-lg-12 project-item isotope-item js-id-machine-learning Application js-id-water" itemscope itemtype="http://schema.org/CreativeWork">
<div class="row align-items-center">
<div class="col-12 col-md-6 order-first ">
<a href="https://www.slideshare.net/jason-dai/building-ai-to-play-the-fifa-video-game-using-distributed-tensorflow-on-analytics-zoo" target="_blank" >
<img src="/img/fifa.jpg" itemprop="image" alt="">
</a>
</div>
<div class="col-12 col-md-6">
<h3 class="article-title mb-0 mt-0" itemprop="name"><a href="https://www.slideshare.net/jason-dai/building-ai-to-play-the-fifa-video-game-using-distributed-tensorflow-on-analytics-zoo" target="_blank" itemprop="url">Building AI to play the FIFA video game using distributed TensorFlow</a></h3>
<div class="article-style" itemprop="articleBody">
Building an experiment platform using both DRL algorithms (e.g., imitation learning, DQN, policy gradient, etc.) as well as computer vision models (e.g., object detection, object tracking, OCR, etc.) to play FIFA18.
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section id="publications" class="home-section wg-featured" >
<div class="container">
<div class="row">
<div class="col-12 col-lg-4 section-heading">
<h1>Featured Publications</h1>
</div>
<div class="col-12 col-lg-8">
<div class="card-simple" itemscope itemtype="http://schema.org/ScholarlyArticle">
<div class="article-metadata">
<div>
</div>
</div>
<h3 class="article-title mb-1 mt-3" itemprop="name">
<a href="https://arxiv.org/abs/1804.05839" target="_blank" itemprop="url">BigDL: A Distributed Deep Learning Framework for Big Data</a>
</h3>
<div class="article-style" itemprop="articleBody" align="justify">
This paper presents BigDL (a distributed deep learning framework for Apache Spark), which has been used by a variety of users in the industry for building deep learning applications on production big data platforms. It allows deep learning applications to run on the Apache Hadoop/Spark cluster so as to directly process the production data, and as a part of the end-to-end data analysis pipeline for deployment and management. Unlike existing deep learning frameworks, BigDL implements distributed, data parallel training directly on top of the functional compute model (with copy-on-write and coarse-grained operations) of Spark. We also share real-world experience and "war stories" of users that have adopted BigDL to address their challenges(i.e., how to easily build end-to-end data analysis and deep learning pipelines for their production data).
</div>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name" align="justify">Jason Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, Yanzhang Wang, Xianyan Jia, Cherry Zhang, Yan Wan, Zhichao Li, Jiao Wang, Shengsheng Huang, Zhongyuan Wu, Yang Wang, Yuhao Yang, Bowen She, Dongjie Shi, Qi Lu, Kai Huang, Guoqiong Song</span></span>
</div>
<div class="pub-publication">
In ACM Symposium of Cloud Computing conference, SoCC 2019
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://arxiv.org/pdf/1804.05839.pdf" target="_blank" rel="noopener">
PDF
</a>
</div>
</div>
<div class="card-simple" itemscope itemtype="http://schema.org/ScholarlyArticle">
<div class="article-metadata">
<div>
</div>
</div>
<h3 class="article-title mb-1 mt-3" itemprop="name">
<a href="http://aaai.org/Conferences/AAAI-19/aaai19tutorials/#sp2" target="_blank" itemprop="url">Build Deep Learning Applications for Big Data Platforms</a>
</h3>
<div class="article-style" itemprop="articleBody" align="justify">
Recent breakthroughs in artificial intelligence applications have brought deep learning to the forefront of new generations of data analytics. In this tutorial, we will present the practice and design tradeoffs on building large-scale deep learning applications (such as computer vision and NLP), for production data and workflow on Big Data platforms. We will provide an overview of emerging deep learning frameworks for Big Data (e.g., BigDL, TensorFlowOnSpark, Deep Learning Pipelines for Apache Spark, etc.), and present the underlying distributed systems and algorithms. More importantly, we will show how to build and productionize end-to-end deep learning application pipelines for Big Data (on top of Analytics Zoo, a unified analytics + AI platform for distributed TensorFlow, Keras and BigDL on Apache Spark), using real-world use cases (such as Azure, JD.com, World Bank, Midea/KUKA, etc.)
</div>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Jason Dai</span></span>
</div>
<div class="pub-publication">
Tutorial in the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-2019)
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://jason-dai.github.io/aaai2019/" target="_blank" rel="noopener">
TUTORIAL
</a>
</div>
</div>
<div class="card-simple" itemscope itemtype="http://schema.org/ScholarlyArticle">
<div class="article-metadata">
<div>
</div>
</div>
<h3 class="article-title mb-1 mt-3" itemprop="name">
<a href="https://ieeexplore.ieee.org/document/5452747" target="_blank" itemprop="url">The HiBench benchmark suite: Characterization of the MapReduce-based data analysis </a>
</h3>
<div class="article-style" itemprop="articleBody" align="justify">
MapReduce and its popular open source implementation, Hadoop, are moving toward ubiquitous for Big Data storage and processing. Therefore, it is essential to quantitatively evaluate and characterize the Hadoop deployment through extensive benchmarking. We present HiBench, a representative and comprehensive benchmark suite forHadoop, which consists of a set of Hadoop programs including both synthetic micro-benchmarks and real-world applications.
</div>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Jason Dai, Shengsheng Huang, Jie Huang, Yan Liu</span></span>
</div>
<div class="pub-publication">
In Proceedings of the 26th International Conference on Data Engineering Whokshops, ICDEW 2010
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://pdfs.semanticscholar.org/0a4f/74e5b8cfc168a36e3cb8aceb9c70315dde99.pdf" target="_blank" rel="noopener">
PDF
</a>
</div>
</div>
<div class="card-simple" itemscope itemtype="http://schema.org/ScholarlyArticle">
<div class="article-metadata">
<div>
</div>
</div>
<h3 class="article-title mb-1 mt-3" itemprop="name">
<a href="https://dblp.org/db/conf/pldi/pldi2005" target="_blank" itemprop="url">Automatically partitioning packet processing applications for pipelined architectures</a>
</h3>
<div class="article-style" itemprop="articleBody" align="justify">
Modern network processors employs parallel processing engines(PEs) to keep up with explosive internet packet processing demands. Most network processors further allow processing engines to be organized in a pipelined fashion to enable higher processing throughput and flexibility. In this paper, we present a novel program transformation technique to exploit parallel and pipelined computing power of modern network processors. Our proposed method automatically partitions a sequential packet processing application into coordinated pipelined parallel subtasks which can be naturally mapped to contemporary highperformance network processors. Our transformation technique ensures that packet processing tasks are balanced among pipeline stages and that data transmission between pipeline stages is minimized. We have implemented the proposed transformation method in an auto-partitioning C compiler product for Intel Network Processors. Experimental results show that our method provides impressive speed up for the commonly used NPF IPv4 forwarding and IP forwarding benchmarks. For a 9-stage pipeline, our auto-partitioning C compiler obtained more than 4X speedup for the IPv4 forwarding PPS and the IP forwarding PPS (for both the IPv4 traffic and IPv6 traffic).
</div>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Jinquan Dai, Bo Huang, Long Li, Luddy Harrison</span></span>
</div>
<div class="pub-publication">
In ACM Sigplan 2005 Conference on Programming Language Design and Implementation(PLDI)
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://www.researchgate.net/profile/Bo_Huang7/publication/220751888_Automatically_partitioning_packet_processing_applications_for_pipelined_architectures/links/00b7d51b876c7772ef000000/Automatically-partitioning-packet-processing-applications-for-pipelined-architectures.pdf?_sg%5B0%5D=GMl5ys3AJdX_WPQVF6dLj1BqOUK4coCnSegHN01NrsXZtfwM7YpGg_6oiJv9YlXQHHLHQnyK2W9dTxD30n-rfg.bFAzh2nIeeqGlH8a6NVzRaKpfPD6MnsW1ZWQuDw5UzFr7JHRmrxUwFEpl5HnfWx_4Yrx79wTUco_GIDafSJ1ZA&_sg%5B1%5D=3hgk0lGKITs8Oi-yCFfINfoGl18pYNEU6r229yD4RDZiQELZnzA7We8sHOR9uB28h0yOshtDAEiqYvsZemxmmiy_5knbtNw-FBjyw2Qf7qoT.bFAzh2nIeeqGlH8a6NVzRaKpfPD6MnsW1ZWQuDw5UzFr7JHRmrxUwFEpl5HnfWx_4Yrx79wTUco_GIDafSJ1ZA&_iepl=" target="_blank" rel="noopener">
PDF
</a>
</div>
</div>
</div>
</div>
</div>
</section>
<section id="AllPublications" class="home-section wg-pages " >
<div class="container">
<div class="row">
<div class="col-12 col-lg-4 section-heading">
<h1>Recent Publications</h1>
</div>
<div class="col-12 col-lg-8">
<div class="view-list-item" itemscope itemtype="http://schema.org/ScholarlyArticle">
<i class="fa fa-list-alt" aria-hidden="true"></i>
<h4 class="recent-title mb-1 mt-3" itemprop="name"><span itemprop="name">BigDL: A Distributed Deep Learning Framework for Big Data</span></h4>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Jason Dai, Yiheng Wang, Xin Qiu, Ding Ding, Yao Zhang, Yanzhang Wang, Xianyan Jia, Cherry Zhang, Yan Wan, Zhichao Li, Jiao Wang, Shengsheng Huang, Zhongyuan Wu, Yang Wang, Yuhao Yang, Bowen She, Dongjie Shi, Qi Lu, Kai Huang, Guoqiong Song</span></span>
</div>
<div class="pub-publication">
In ACM Symposium of Cloud Computing conference, SoCC 2019
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://arxiv.org/pdf/1804.05839.pdf" target="_blank" rel="noopener">
PDF
</a>
</div>
</div>
<div class="view-list-item" itemscope itemtype="http://schema.org/ScholarlyArticle">
<i class="fas fa-file-alt" aria-hidden="true"></i>
<h4 class="recent-title mb-1 mt-3" itemprop="name"><span itemprop="name">Build Deep Learning Applications for Big Data Platforms</span></h4>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Jason Dai</span></span>
</div>
<div class="pub-publication">
Tutorial in the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-2019)
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://jason-dai.github.io/aaai2019/" target="_blank" rel="noopener">
TUTORIAL
</a>
</div>
</div>
<div class="view-list-item" itemscope itemtype="http://schema.org/ScholarlyArticle">
<i class="fas fa-file-alt" aria-hidden="true"></i>
<h4 class="recent-title mb-1 mt-3" itemprop="name"><span itemprop="name">Building Deep Learning Applications on Big Data Platforms</span></h4>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Jason Dai</span></span>
</div>
<div class="pub-publication">
Tutorial In the Conference on Computer Vision and Pattern Recognition, CVPR 2018
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://jason-dai.github.io/cvpr2018/" target="_blank" rel="noopener">
TUTORIAL
</a>
</div>
</div>
<div class="view-list-item" itemscope itemtype="http://schema.org/ScholarlyArticle">
<i class="fas fa-file-alt" aria-hidden="true"></i>
<h4 class="recent-title mb-1 mt-3" itemprop="name"><span itemprop="name">Experience from Hadoop Benchmarking with HiBench: From Micro-Benchmarks Toward End-to-End Pipelines</span></h4>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Lan Yi, Jinquan Dai</span></span>
</div>
<div class="pub-publication">
In Proceedings of the 2013 Workshop Series on Big Data Benchmarking
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://rd.springer.com/content/pdf/10.1007%2F978-3-319-10596-3_4.pdf" target="_blank" rel="noopener">
PDF
</a>
</div>
</div>
<div class="view-list-item" itemscope itemtype="http://schema.org/ScholarlyArticle">
<i class="fas fa-file-alt" aria-hidden="true"></i>
<h4 class="recent-title mb-1 mt-3" itemprop="name"><span itemprop="name">HiTune: Dataflow-Based Performance Analysis for Big Data Cloud</span></h4>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Jason Dai, Shengsheng Huang, Jie Huang, Bo Huang, Yan Liu</span></span>
</div>
<div class="pub-publication">
In USENIX Annual Technical Conference (ATC), 2011
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://www.usenix.org/legacy/event/atc11/tech/final_files/Dai.pdf" target="_blank" rel="noopener">
PDF
</a>
</div>
</div>
<div class="view-list-item" itemscope itemtype="http://schema.org/ScholarlyArticle">
<i class="fas fa-file-alt" aria-hidden="true"></i>
<h4 class="recent-title mb-1 mt-3" itemprop="name"><span itemprop="name">The HiBench benchmark suite: Characterization of the MapReduce-based data analysis</span></h4>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Jason Dai, Shengsheng Huang, Jie Huang, Yan Liu</span></span>
</div>
<div class="pub-publication">
In Proceedings of the 26th International Conference on Data Engineering Whokshops, ICDEW 2010
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://pdfs.semanticscholar.org/0a4f/74e5b8cfc168a36e3cb8aceb9c70315dde99.pdf" target="_blank" rel="noopener">
PDF
</a>
</div>
</div>
<div class="view-list-item" itemscope itemtype="http://schema.org/ScholarlyArticle">
<i class="fas fa-file-alt" aria-hidden="true"></i>
<h4 class="recent-title mb-1 mt-3" itemprop="name"><span itemprop="name">Design Patterns for Internet-Scale Services</span></h4>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Jinquan Dai, Bo Huang</span></span>
</div>
<div class="pub-publication">
In Proceedings of the 25th International Conference on Data Engineering Workshops, ICDEW 2009
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://rd.springer.com/content/pdf/10.1007%2F978-3-642-19294-4.pdf" target="_blank" rel="noopener">
PDF
</a>
</div>
</div>
<div class="view-list-item" itemscope itemtype="http://schema.org/ScholarlyArticle">
<i class="fas fa-file-alt" aria-hidden="true"></i>
<h4 class="recent-title mb-1 mt-3" itemprop="name"><span itemprop="name">Latency Hiding in Multi-Threading and Multi-Processing of Network Applications</span></h4>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Xiaofeng Guo, Jinquan Dai, Long Li, Zhiyuan Lv, Prashant R. Chandra</span></span>
</div>
<div class="pub-publication">
In the 16th International Conference on Parallel Architecture and Compilation Techniques, PACT 2007
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="" target="_blank" rel="noopener">
PDF
</a>
</div>
</div>
<div class="view-list-item" itemscope itemtype="http://schema.org/ScholarlyArticle">
<i class="fas fa-file-alt" aria-hidden="true"></i>
<h4 class="recent-title mb-1 mt-3" itemprop="name"><span itemprop="name">Automatically partitioning packet processing applications for pipelined architectures</span></h4>
<div class="article-metadata" itemprop="author">
<span itemscope itemprop="author">
<span itemprop="name">Jinquan Dai, Bo Huang, Long Li, Luddy Harrison</span></span>
</div>
<div class="pub-publication">
In ACM Sigplan 2005 Conference on Programming Language Design and Implementation(PLDI)
</div>
<div class="pub-links">
<a class="btn btn-primary btn-outline btn-xs" href="https://www.researchgate.net/profile/Bo_Huang7/publication/220751888_Automatically_partitioning_packet_processing_applications_for_pipelined_architectures/links/00b7d51b876c7772ef000000/Automatically-partitioning-packet-processing-applications-for-pipelined-architectures.pdf?_sg%5B0%5D=HCsnvprtd5mJasJxBfJNWbefmGyN65lqVe5uEgtxumiNraNi411rLR2HvsFoktFYl50gTGS3VDArKtoO62MX7w.xRATatiQGTHkU1x6ZB-FjHNUCmsBg_WAKpFKkAAyouQlVh76OgQT3pAGuUTDsDmRX8SszwukhzVkf8YyiDEWnQ&_sg%5B1%5D=x3hXL_wpIio0JA8uTZExddE_xcad5wmxwIbSbOanvwnJ247VWDhIcNNQN3sXK0Wp3y75sm528xOAtMF8WGuGUazo3xkxDcryM2rZjOND70Uy.xRATatiQGTHkU1x6ZB-FjHNUCmsBg_WAKpFKkAAyouQlVh76OgQT3pAGuUTDsDmRX8SszwukhzVkf8YyiDEWnQ&_iepl=" target="_blank" rel="noopener">
PDF
</a>
</div>
</div>
</div>
</div>
</div>
</section>
<section id="contact" class="home-section">
<div class="container">
<div class="row">
<div class="col-xs-12 col-md-4 section-heading">
<h1>Contact</h1>
</div>
<div class="col-xs-12 col-md-8">
<ul class="fa-ul" itemscope>
<li>
<i class="fa-li fa fa-envelope fa-2x" aria-hidden="true"></i>
<span id="person-email" itemprop="email"><a href="mailto:[email protected]">[email protected]</a></span>
</li>
<li>
<i class="fa-li fa fa-phone fa-2x" aria-hidden="true"></i>
<span id="person-telephone" itemprop="telephone"><a href="tel:+61%203%205227%202905">+86 18918828792</a></span>
</li>
<li>
<i class="fa-li fa fa-map-marker fa-2x" aria-hidden="true"></i>
<span id="person-address" itemprop="address">No.880 Zixing Road, Minhang Distract, Shanghai</span>
</li>
<li>
<i class="fa-li fa fa-clock-o fa-2x" aria-hidden="true"></i>
<span>Mon-Fri 8:30 to 17:00 or email</span>
</li>
</ul>
</div>
</div>
</div>
</section>
<footer class="site-footer">
<div class="container">
<p class="powered-by">
© 2019 joan ·
Powered by the
<a href="#" target="_blank" rel="noopener">Academic theme</a> for
<a href="#" target="_blank" rel="noopener">Hugo</a>.
<span class="pull-right" aria-hidden="true">
<a href="#" id="back_to_top">
<span class="button_icon">
<i class="fa fa-chevron-up fa-2x"></i>
</span>
</a>
</span>
</p>
</div>
</footer>
<div id="modal" class="modal fade" role="dialog">
<div class="modal-dialog">
<div class="modal-content">
<div class="modal-header">
<button type="button" class="close btn-large" data-dismiss="modal">×</button>
<h4 class="modal-title">Cite</h4>
</div>
<div>
<pre><code class="modal-body tex"></code></pre>
</div>
<div class="modal-footer">
<a class="btn btn-primary btn-outline js-copy-cite" href="#" target="_blank">
<i class="fa fa-copy"></i> Copy
</a>
<a class="btn btn-primary btn-outline js-download-cite" href="#" target="_blank">
<i class="fa fa-download"></i> Download
</a>
<div id="modal-error"></div>
</div>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.2.1/jquery.min.js" integrity="sha512-3P8rXCuGJdNZOnUx/03c1jOTnMn3rP63nBip5gOP2qmUh5YAdVAvFZ1E+QLZZbC1rtMrQb+mah3AfYW11RUrWA==" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.imagesloaded/4.1.3/imagesloaded.pkgd.min.js" integrity="sha512-umsR78NN0D23AzgoZ11K7raBD+R6hqKojyBZs1w8WvYlsI+QuKRGBx3LFCwhatzBunCjDuJpDHwxD13sLMbpRA==" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha512-iztkobsvnjKfAtTNdHkGVjAYTrrtlC7mGp/54c40wowO7LhURYl3gVzzcEqGl/qKXQltJ2HwMrdLcNUdo+N/RQ==" crossorigin="anonymous"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.isotope/3.0.4/isotope.pkgd.min.js" integrity="sha512-VDBOIlDbuC4VWxGJNmuFRQ0Li0SKkDpmGyuhAG5LTDLd/dJ/S0WMVxriR2Y+CyPL5gzjpN4f/6iqWVBJlht0tQ==" crossorigin="anonymous"></script>
<script src="/js/hugo-academic.js"></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js" integrity="sha256-/BfiIkHlHoVihZdc6TFuj7MmJ0TWcWsMXkeDFwhi0zw=" crossorigin="anonymous"></script>
<script>hljs.initHighlightingOnLoad();</script>