forked from spatialmodel/inmap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
preproc.go
1232 lines (1159 loc) · 41.3 KB
/
preproc.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright © 2017 the InMAP authors.
This file is part of InMAP.
InMAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
InMAP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with InMAP. If not, see <http://www.gnu.org/licenses/>.
*/
package inmap
import (
"fmt"
"io"
"log"
"math"
"os"
"strings"
"time"
"github.com/ctessum/atmos/acm2"
"github.com/ctessum/atmos/emep"
"github.com/ctessum/atmos/seinfeld"
"github.com/ctessum/atmos/wesely1989"
"github.com/ctessum/cdf"
"github.com/ctessum/sparse"
)
// physical constants
const (
g = 9.80665 // m/s2
κ = 0.41 // Von Kármán constant
atmPerPa = 9.86923267e-6
rr = 287.058 // (J /kg K), specific gas constant for dry air
avNum = 6.02214e23 // molecules per mole
// Molar masses [grams per mole]
mwNOx = 46.0055
mwN = 14.0067 // g/mol, molar mass of nitrogen
mwNO3 = 62.00501
mwNH3 = 17.03056
mwNH4 = 18.03851
mwS = 32.0655 // g/mol, molar mass of sulfur
mwSO2 = 64.0644
mwSO4 = 96.0632
MWa = 28.97 // g/mol, molar mass of air
// Chemical mass conversions [ratios]
NOxToN = mwN / mwNOx
NtoNO3 = mwNO3 / mwN
SOxToS = mwSO2 / mwS
StoSO4 = mwS / mwSO4
NH3ToN = mwN / mwNH3
NtoNH4 = mwNH4 / mwN
)
const (
// inDateFormat specifies the format to use
// when inputting dates.
inDateFormat = "20060102"
)
// NextData is a type of function that returns data for the next time step.
// If there are no more time steps, it should return the io.EOF error.
type NextData func() (*sparse.DenseArray, error)
// Preprocessor specifies the methods that are necessary for a
// variable to act as a preprocessor for InMAP inputs.
type Preprocessor interface {
// Nx is the number of grid cells in the West-East direction.
Nx() (int, error)
// Ny is the number of grid cells in the South-North direction.
Ny() (int, error)
// Nz is the number of grid cells in the below-above direction.
Nz() (int, error)
// PBLH is planetary boundary layer height [m].
PBLH() NextData
// Height is vertical layer height above ground [m].
Height() NextData
// ALT is inverse air density [m3/kg].
ALT() NextData
// T temperature [K].
T() NextData
// P is pressure [Pa].
P() NextData
// UStar is friction velocity [m/s].
UStar() NextData
// SeinfeldLandUse is land use categories as
// specified in github.com/ctessum/atmos/seinfeld.
SeinfeldLandUse() NextData
// WeselyLandUse is land use categories as
// specified in github.com/ctessum/atmos/wesely1989.
WeselyLandUse() NextData
// Z0 is surface roughness length [m].
Z0() NextData
// QRain is the mass fraction of rain [mass/mass].
QRain() NextData
// QCloud is the mass fraction of cloud water in each grid cell [mass/mass].
QCloud() NextData
// CloudFrac is the fraction of each grid cell filled with clouds [volume/volume].
CloudFrac() NextData
// SurfaceHeatFlux is heat flux at the surface [W/m2].
SurfaceHeatFlux() NextData
// RadiationDown is total downwelling radiation [W m-2].
RadiationDown() NextData
// U is West-East wind speed [m/s].
U() NextData
// V is South-North wind speed [m/s].
V() NextData
// W is below-above wind speed [m/s].
W() NextData
// AVOC is total concentration of anthropogenic
// secondary organic aerosol precursors (VOCs) [μg/m3].
AVOC() NextData
// AVOC is total concentration of biogenic
// secondary organic aerosol precursors (VOCs) [μg/m3].
BVOC() NextData
// ASOA is total concentration of anthropogenic
// secondary organic aerosol [μg/m3].
ASOA() NextData
// BSOA is total concentration of biogenic
// secondary organic aerosol [μg/m3].
BSOA() NextData
// NOx is concentration of oxides of Nitrogen [μg/m3].
NOx() NextData
// PNO is concentration of particulate nitrate [μg/m3].
PNO() NextData
// SOx is concentration of Sulfur oxides [μg/m3].
SOx() NextData
// PS is concentration of particulate sulfate [μg/m3].
PS() NextData
// NH3 is concentration of ammonia [μg/m3].
NH3() NextData
// PNH is concentration of particulate ammonium [μg/m3].
PNH() NextData
// TotalPM25 is total concentration of fine particulate matter (PM2.5) [μg/m3].
TotalPM25() NextData
// HO is hydroxyl radical concentration [ppmv].
HO() NextData
// H2O2 is hydrogen peroxide concentration [ppmv].
H2O2() NextData
}
// Preprocess returns preprocessed InMAP input data
// based on the information available from the given
// preprocessor. x0 and y0 are the left and y coordinates of the
// lower-left corner of the domain, and dx and dy are the x and y edge
// lengths of the grid cells, respectively.
func Preprocess(p Preprocessor, xo, yo, dx, dy float64) (*CTMData, error) {
var pblh, layerHeights, windSpeed, windSpeedInverse, windSpeedMinusThird, windSpeedMinusOnePointFour, uAvg, vAvg, wAvg *sparse.DenseArray
errChan := make(chan error)
go func() {
var err error
pblh, err = average(p.PBLH())
errChan <- err
}()
go func() {
var err error
layerHeights, err = average(p.Height())
errChan <- err
}()
go func() {
var err error
windSpeed, windSpeedInverse, windSpeedMinusThird, windSpeedMinusOnePointFour, uAvg, vAvg, wAvg, err = calcWindSpeed(p.U(), p.V(), p.W())
errChan <- err
}()
for i := 0; i < 3; i++ {
err := <-errChan
if err != nil {
return nil, err
}
}
Dz := layerThickness(layerHeights)
var uDeviation, vDeviation, aOrgPartitioning, aVOC, aSOA, bOrgPartitioning, bVOC, bSOA,
NOPartitioning, gNO, pNO, SPartitioning, gS, pS, NHPartitioning, gNH, pNH, totalpm25,
alt, particleWetDep, SO2WetDep, otherGasWetDep, temperature, Sclass, S1, Kzz, M2u, M2d, SO2oxidation, particleDryDep, SO2DryDep,
NOxDryDep, NH3DryDep, VOCDryDep, Kxxyy *sparse.DenseArray
go func() {
var err error
// calculate deviation from average wind speed.
// Only calculate horizontal deviations.
uDeviation, err = windDeviation(uAvg, p.U())
errChan <- err
}()
go func() {
var err error
vDeviation, err = windDeviation(vAvg, p.V())
errChan <- err
}()
go func() {
var err error
// calculate gas/particle partitioning
aOrgPartitioning, aVOC, aSOA, err = marginalPartitioning(p.AVOC(), p.ASOA())
errChan <- err
}()
go func() {
var err error
bOrgPartitioning, bVOC, bSOA, err = marginalPartitioning(p.BVOC(), p.BSOA())
errChan <- err
}()
go func() {
var err error
NOPartitioning, gNO, pNO, err = marginalPartitioning(p.NOx(), p.PNO())
errChan <- err
}()
go func() {
var err error
SPartitioning, gS, pS, err = marginalPartitioning(p.SOx(), p.PS())
errChan <- err
}()
go func() {
var err error
NHPartitioning, gNH, pNH, err = marginalPartitioning(p.NH3(), p.PNH())
errChan <- err
}()
go func() {
var err error
// Get total PM2.5 averages for performance eval.
totalpm25, err = average(p.TotalPM25())
errChan <- err
}()
go func() {
var err error
// average inverse density
alt, err = average(p.ALT())
errChan <- err
}()
go func() {
var err error
// Calculate wet deposition.
particleWetDep, SO2WetDep, otherGasWetDep, err = wetDeposition(Dz, p.QRain(), p.CloudFrac(), p.ALT())
errChan <- err
}()
go func() {
var err error
temperature, err = average(p.T())
errChan <- err
}()
go func() {
var err error
// Calculate stability for plume rise, vertical mixing,
// and chemical reaction rates.
Sclass, S1, Kzz, M2u, M2d, SO2oxidation, particleDryDep, SO2DryDep,
NOxDryDep, NH3DryDep, VOCDryDep, Kxxyy, err = stabilityMixingChemistry(layerHeights, p.PBLH(),
p.UStar(), p.ALT(), p.T(), p.P(), p.SurfaceHeatFlux(), p.HO(), p.H2O2(),
p.Z0(), p.SeinfeldLandUse(), p.WeselyLandUse(), p.QCloud(), p.RadiationDown(), p.QRain())
errChan <- err
}()
for i := 0; i < 12; i++ {
err := <-errChan
if err != nil {
return nil, err
}
}
data := new(CTMData)
data.xo = xo
data.yo = yo
data.dx = dx
data.dy = dy
data.ny = Dz.Shape[1]
data.nx = Dz.Shape[2]
data.AddVariable("UAvg", []string{"z", "y", "xStagger"},
"Annual average x velocity", "m/s", uAvg)
data.AddVariable("VAvg", []string{"z", "yStagger", "x"},
"Annual average y velocity", "m/s", vAvg)
data.AddVariable("WAvg", []string{"zStagger", "y", "x"},
"Annual average z velocity", "m/s", wAvg)
data.AddVariable("UDeviation", []string{"z", "y", "xStagger"},
"Average deviation from average x velocity", "m/s", uDeviation)
data.AddVariable("VDeviation", []string{"z", "yStagger", "x"},
"Average deviation from average y velocity", "m/s", vDeviation)
data.AddVariable("aOrgPartitioning", []string{"z", "y", "x"},
"Mass fraction of anthropogenic organic matter in particle {vs. gas} phase",
"fraction", aOrgPartitioning)
data.AddVariable("aVOC", []string{"z", "y", "x"},
"Average anthropogenic VOC concentration", "ug m-3", aVOC)
data.AddVariable("aSOA", []string{"z", "y", "x"},
"Average anthropogenic secondary organic aerosol concentration", "ug m-3", aSOA)
data.AddVariable("bOrgPartitioning", []string{"z", "y", "x"},
"Mass fraction of biogenic organic matter in particle {vs. gas} phase",
"fraction", bOrgPartitioning)
data.AddVariable("bVOC", []string{"z", "y", "x"},
"Average biogenic VOC concentration", "ug m-3", bVOC)
data.AddVariable("bSOA", []string{"z", "y", "x"},
"Average biogenic secondary organic aerosol concentration", "ug m-3", bSOA)
data.AddVariable("NOPartitioning", []string{"z", "y", "x"},
"Mass fraction of N from NOx in particle {vs. gas} phase", "fraction",
NOPartitioning)
data.AddVariable("gNO", []string{"z", "y", "x"},
"Average concentration of nitrogen fraction of gaseous NOx", "ug m-3",
gNO)
data.AddVariable("pNO", []string{"z", "y", "x"},
"Average concentration of nitrogen fraction of particulate NO3",
"ug m-3", pNO)
data.AddVariable("SPartitioning", []string{"z", "y", "x"},
"Mass fraction of S from SOx in particle {vs. gas} phase", "fraction",
SPartitioning)
data.AddVariable("gS", []string{"z", "y", "x"},
"Average concentration of sulfur fraction of gaseous SOx", "ug m-3",
gS)
data.AddVariable("pS", []string{"z", "y", "x"},
"Average concentration of sulfur fraction of particulate sulfate",
"ug m-3", pS)
data.AddVariable("NHPartitioning", []string{"z", "y", "x"},
"Mass fraction of N from NH3 in particle {vs. gas} phase", "fraction",
NHPartitioning)
data.AddVariable("gNH", []string{"z", "y", "x"},
"Average concentration of nitrogen fraction of gaseous ammonia",
"ug m-3", gNH)
data.AddVariable("pNH", []string{"z", "y", "x"},
"Average concentration of nitrogen fraction of particulate ammonium",
"ug m-3", pNH)
data.AddVariable("SO2oxidation", []string{"z", "y", "x"},
"Rate of SO2 oxidation to SO4 by hydroxyl radical and H2O2",
"s-1", SO2oxidation)
data.AddVariable("ParticleDryDep", []string{"z", "y", "x"},
"Dry deposition velocity for particles", "m s-1", particleDryDep)
data.AddVariable("SO2DryDep", []string{"z", "y", "x"},
"Dry deposition velocity for SO2", "m s-1", SO2DryDep)
data.AddVariable("NOxDryDep", []string{"z", "y", "x"},
"Dry deposition velocity for NOx", "m s-1", NOxDryDep)
data.AddVariable("NH3DryDep", []string{"z", "y", "x"},
"Dry deposition velocity for NH3", "m s-1", NH3DryDep)
data.AddVariable("VOCDryDep", []string{"z", "y", "x"},
"Dry deposition velocity for VOCs", "m s-1", VOCDryDep)
data.AddVariable("Kxxyy", []string{"z", "y", "x"},
"Horizontal eddy diffusion coefficient", "m2 s-1", Kxxyy)
data.AddVariable("LayerHeights", []string{"zStagger", "y", "x"},
"Height at edge of layer", "m", layerHeights)
data.AddVariable("Dz", []string{"z", "y", "x"},
"Vertical grid size", "m", Dz)
data.AddVariable("ParticleWetDep", []string{"z", "y", "x"},
"Wet deposition rate constant for fine particles",
"s-1", particleWetDep)
data.AddVariable("SO2WetDep", []string{"z", "y", "x"},
"Wet deposition rate constant for SO2 gas", "s-1", SO2WetDep)
data.AddVariable("OtherGasWetDep", []string{"z", "y", "x"},
"Wet deposition rate constant for other gases", "s-1", otherGasWetDep)
data.AddVariable("Kzz", []string{"z", "y", "x"},
"Vertical turbulent diffusivity", "m2 s-1", Kzz)
data.AddVariable("M2u", []string{"z", "y", "x"},
"ACM2 nonlocal upward mixing {Pleim 2007}", "s-1", M2u)
data.AddVariable("M2d", []string{"z", "y", "x"},
"ACM2 nonlocal downward mixing {Pleim 2007}", "s-1", M2d)
data.AddVariable("Pblh", []string{"y", "x"},
"Planetary boundary layer height", "m", pblh)
data.AddVariable("WindSpeed", []string{"z", "y", "x"},
"RMS wind speed", "m s-1", windSpeed)
data.AddVariable("WindSpeedInverse", []string{"z", "y", "x"},
"RMS wind speed^(-1)", "(m s-1)^(-1)", windSpeedInverse)
data.AddVariable("WindSpeedMinusThird", []string{"z", "y", "x"},
"RMS wind speed^(-1/3)", "(m s-1)^(-1/3)", windSpeedMinusThird)
data.AddVariable("WindSpeedMinusOnePointFour", []string{"z", "y", "x"},
"RMS wind speed^(-1.4)", "(m s-1)^(-1.4)", windSpeedMinusOnePointFour)
data.AddVariable("Temperature", []string{"z", "y", "x"},
"Average Temperature", "K", temperature)
data.AddVariable("S1", []string{"z", "y", "x"},
"Stability parameter", "?", S1)
data.AddVariable("Sclass", []string{"z", "y", "x"},
"Stability parameter", "0=Unstable; 1=Stable", Sclass)
data.AddVariable("alt", []string{"z", "y", "x"},
"Inverse density", "m3 kg-1", alt)
data.AddVariable("TotalPM25", []string{"z", "y", "x"},
"Total PM2.5 concentration", "ug m-3", totalpm25)
return data, nil
}
// marginalPartitioning calculates marginal partitioning over a period
// of time between gas and particle
// phase of a chemical compound or group of compounds as defined by the
// equation f = Δp / (Δp + Δg), where f is the fraction in particle phase,
// Δp is the change in particle phase concentration between one time step
// and the next, and Δg is the change in gas phase concentration from
// one time step to the next. The fraction is forced to be
// between zero and one. Both gas phase and particle phase concentration
// should be in units of [mass/volume].
func marginalPartitioning(gasFunc, particleFunc NextData) (partitioning, gasConc, particleConc *sparse.DenseArray, err error) {
var gas, particle, oldgas, oldparticle *sparse.DenseArray
firstData := true
var n int
for {
gasdata, err := gasFunc()
if err != nil {
if err == io.EOF {
// Divide the arrays by the total number of timesteps and return.
return arrayAverage(partitioning, n), arrayAverage(gas, n), arrayAverage(particle, n), nil
}
return nil, nil, nil, err
}
particledata, err := particleFunc()
if err != nil {
return nil, nil, nil, err
}
if firstData {
partitioning = sparse.ZerosDense(gasdata.Shape...)
gas = sparse.ZerosDense(gasdata.Shape...)
particle = sparse.ZerosDense(gasdata.Shape...)
oldgas = sparse.ZerosDense(gasdata.Shape...)
oldparticle = sparse.ZerosDense(gasdata.Shape...)
firstData = false
}
gas.AddDense(gasdata)
particle.AddDense(particledata)
for i, particleval := range particledata.Elements {
particlechange := particleval - oldparticle.Elements[i]
totalchange := particlechange + (gasdata.Elements[i] - oldgas.Elements[i])
// Calculate the marginal partitioning coefficient, which is the
// change in particle concentration divided by the change in overall
// concentration. Force the coefficient to be between zero and
// one.
part := math.Min(math.Max(particlechange/totalchange, 0), 1)
if !math.IsNaN(part) {
partitioning.Elements[i] += part
}
}
oldgas = gasdata.Copy()
oldparticle = particledata.Copy()
n++
}
}
// average calculates the arithmatic mean of a
// set of arrays.
func average(dataFunc NextData) (*sparse.DenseArray, error) {
var avgdata *sparse.DenseArray
firstData := true
var n int
for {
data, err := dataFunc()
if err != nil {
if err == io.EOF {
return arrayAverage(avgdata, n), nil
}
return nil, err
}
if firstData {
avgdata = sparse.ZerosDense(data.Shape...)
firstData = false
}
avgdata.AddDense(data)
n++
}
}
// layerThckness calculates layer thickness. The given heights are
// assumed to be on a vertically staggered grid; the returned
// thicknesses are on an unstaggered grid.
func layerThickness(heights *sparse.DenseArray) *sparse.DenseArray {
dz := sparse.ZerosDense(heights.Shape[0]-1, heights.Shape[1], heights.Shape[2])
for k := 1; k < heights.Shape[0]; k++ {
for j := 0; j < heights.Shape[1]; j++ {
for i := 0; i < heights.Shape[2]; i++ {
dz.Set(heights.Get(k, j, i)-heights.Get(k-1, j, i), k-1, j, i)
}
}
}
return dz
}
// wetDeposition calculates wet deposition based on layer heights,
// mass fraction of rain in the grid cells, fraction of the grid cells
// filled with clouds, and inverse density.
func wetDeposition(Δz *sparse.DenseArray, qrainFunc, cloudFracFunc, altFunc NextData) (wdParticle, wdSO2, wdOtherGas *sparse.DenseArray, err error) {
firstData := true
var n int
for {
qrain, err := qrainFunc() // mass frac
if err != nil {
if err == io.EOF {
return arrayAverage(wdParticle, n), arrayAverage(wdSO2, n), arrayAverage(wdOtherGas, n), nil
}
return nil, nil, nil, err
}
cloudFrac, err := cloudFracFunc() // frac
if err != nil {
return nil, nil, nil, err
}
alt, err := altFunc() // m3/kg
if err != nil {
return nil, nil, nil, err
}
if firstData {
wdParticle = sparse.ZerosDense(qrain.Shape...) // units = 1/s
wdSO2 = sparse.ZerosDense(qrain.Shape...) // units = 1/s
wdOtherGas = sparse.ZerosDense(qrain.Shape...) // units = 1/s
firstData = false
}
for i := 0; i < len(qrain.Elements); i++ {
wdp, wds, wdo := emep.WetDeposition(cloudFrac.Elements[i],
qrain.Elements[i], 1/alt.Elements[i], Δz.Elements[i])
wdParticle.Elements[i] += wdp
wdSO2.Elements[i] += wds
wdOtherGas.Elements[i] += wdo
}
n++
}
}
// windDeviation calculates the average absolute deviation of the wind velocity.
// Output is based on a staggered grid.
func windDeviation(uAvg *sparse.DenseArray, uFunc NextData) (*sparse.DenseArray, error) {
var uDeviation *sparse.DenseArray
var n int
firstData := true
for {
u, err := uFunc()
if err != nil {
if err == io.EOF {
return arrayAverage(uDeviation, n), nil
}
return nil, err
}
if firstData {
uDeviation = sparse.ZerosDense(u.Shape...)
firstData = false
}
for i, uV := range u.Elements {
avgV := uAvg.Elements[i]
uDeviation.Elements[i] += math.Abs(uV - avgV)
}
n++
}
}
// calcWindSpeed calculates RMS wind speed as well as average speeds in each
// direction.
func calcWindSpeed(uFunc, vFunc, wFunc NextData) (speed, speedInverse, speedMinusThird, speedMinusOnePointFour, uAvg, vAvg, wAvg *sparse.DenseArray, err error) {
var n int
firstData := true
var dims []int
for {
u, err := uFunc()
if err != nil {
if err == io.EOF {
return arrayAverage(speed, n), arrayAverage(speedInverse, n), arrayAverage(speedMinusThird, n),
arrayAverage(speedMinusOnePointFour, n), arrayAverage(uAvg, n), arrayAverage(vAvg, n), arrayAverage(wAvg, n), nil
}
return nil, nil, nil, nil, nil, nil, nil, err
}
v, err := vFunc()
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, err
}
w, err := wFunc()
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, err
}
if firstData {
uAvg = sparse.ZerosDense(u.Shape...)
vAvg = sparse.ZerosDense(v.Shape...)
wAvg = sparse.ZerosDense(w.Shape...)
// get unstaggered grid sizes
dims = make([]int, len(u.Shape))
for i, ulen := range u.Shape {
vlen := v.Shape[i]
wlen := w.Shape[i]
dims[i] = minInt(ulen, vlen, wlen)
}
speed = sparse.ZerosDense(dims...)
speedInverse = sparse.ZerosDense(dims...)
speedMinusThird = sparse.ZerosDense(dims...)
speedMinusOnePointFour = sparse.ZerosDense(dims...)
firstData = false
}
uAvg.AddDense(u)
vAvg.AddDense(v)
wAvg.AddDense(w)
for k := 0; k < dims[0]; k++ {
for j := 0; j < dims[1]; j++ {
for i := 0; i < dims[2]; i++ {
ucenter := (math.Abs(u.Get(k, j, i)) +
math.Abs(u.Get(k, j, i+1))) / 2.
vcenter := (math.Abs(v.Get(k, j, i)) +
math.Abs(v.Get(k, j+1, i))) / 2.
wcenter := (math.Abs(w.Get(k, j, i)) +
math.Abs(w.Get(k+1, j, i))) / 2.
s := math.Pow(math.Pow(ucenter, 2.)+
math.Pow(vcenter, 2.)+math.Pow(wcenter, 2.), 0.5)
speed.AddVal(s, k, j, i)
speedInverse.AddVal(1./s, k, j, i)
speedMinusThird.AddVal(math.Pow(s, -1./3.), k, j, i)
speedMinusOnePointFour.AddVal(math.Pow(s, -1.4), k, j, i)
}
}
}
n++
}
}
func minInt(vals ...int) int {
minval := vals[0]
for _, val := range vals {
if val < minval {
minval = val
}
}
return minval
}
// stabilityMixingChemistry calculates:
// 1) Stability parameters for use in plume rise calculation (ASME, 1973,
// as described in Seinfeld and Pandis, 2006).
// 2) Vertical turbulent diffusivity using a middling value (1 m2/s)
// from Wilson (2004) for grid cells above the planetary boundary layer
// and Pleim (2007) for grid cells within the planetary
// boundary layer.
// 3) SO2 oxidation to SO4 by HO (Stockwell 1997).
// 4) Dry deposition velocity (gocart and Seinfed and Pandis (2006)).
// 5) Horizontal eddy diffusion coefficient (Kyy, [m2/s]) assumed to be the
// same as vertical eddy diffusivity.
//
// Inputs include layer heights (m), friction velocity (ustar, m/s),
// planetary boundary layer height (pblh [m]), inverse density (alt, [m3/kg]),
// temperature (T [K]), Pressure (P [Pa]),
// surface heat flux [W/m2], HO mixing ratio [ppmv], and USGS land use index
// (luIndex).
func stabilityMixingChemistry(LayerHeights *sparse.DenseArray, pblhFunc, ustarFunc, altFunc, TFunc, PFunc, surfaceHeatFluxFunc, hoFunc, h2o2Func, z0Func, seinfeldLandUseFunc, weselyLandUseFunc,
qCloudFunc, radiationDownFunc, qrainFunc NextData) (Sclass, S1, KzzUnstaggered, M2u, M2d, SO2oxidation, particleDryDep, SO2DryDep, NOxDryDep, NH3DryDep, VOCDryDep, Kyy *sparse.DenseArray, err error) {
const (
Cp = 1006. // m2/s2-K; specific heat of air
)
var Kzz *sparse.DenseArray
var n int
firstData := true
for {
T, err := TFunc() // ambient temperature [K]
if err != nil {
if err == io.EOF { // done reading data: return results
// Check for mass balance in convection coefficients
for k := 0; k < M2u.Shape[0]-2; k++ {
for j := 0; j < M2u.Shape[1]; j++ {
for i := 0; i < M2u.Shape[2]; i++ {
z := LayerHeights.Get(k, j, i)
zabove := LayerHeights.Get(k+1, j, i)
z2above := LayerHeights.Get(k+2, j, i)
Δzratio := (z2above - zabove) / (zabove - z)
m2u := M2u.Get(k, j, i)
val := m2u - M2d.Get(k, j, i) +
M2d.Get(k+1, j, i)*Δzratio
if math.Abs(val/m2u) > 1.e-8 {
panic(fmt.Errorf("M2u and M2d don't match: "+
"(k,j,i)=(%v,%v,%v); val=%v; m2u=%v; "+
"m2d=%v, m2dAbove=%v",
k, j, i, val, m2u, M2d.Get(k, j, i),
M2d.Get(k+1, j, i)))
}
}
}
}
// convert Kzz to unstaggered grid
KzzUnstaggered := sparse.ZerosDense(Kzz.Shape[0]-1, Kzz.Shape[1], Kzz.Shape[2])
for j := 0; j < KzzUnstaggered.Shape[1]; j++ {
for i := 0; i < KzzUnstaggered.Shape[2]; i++ {
for k := 0; k < KzzUnstaggered.Shape[0]; k++ {
KzzUnstaggered.Set(
(Kzz.Get(k, j, i)+Kzz.Get(k+1, j, i))/2.,
k, j, i)
}
}
}
return arrayAverage(Sclass, n), arrayAverage(S1, n),
arrayAverage(KzzUnstaggered, n), arrayAverage(M2u, n), arrayAverage(M2d, n),
arrayAverage(SO2oxidation, n), arrayAverage(particleDryDep, n),
arrayAverage(SO2DryDep, n), arrayAverage(NOxDryDep, n), arrayAverage(NH3DryDep, n),
arrayAverage(VOCDryDep, n), arrayAverage(Kyy, n), nil
}
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
P, err := PFunc() // pressure [Pa]
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
hfx, err := surfaceHeatFluxFunc() // W/m2
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
ho, err := hoFunc() // ppmv
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
h2o2, err := h2o2Func() // ppmv
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
z0, err := z0Func() // roughness length [m]
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
seinfeldLandUse, err := seinfeldLandUseFunc() // seinfeld land use index
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
weselyLandUse, err := weselyLandUseFunc() // wesely land use index
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
ustar, err := ustarFunc() // friction velocity (m/s)
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
pblh, err := pblhFunc() // current boundary layer height (m)
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
alt, err := altFunc() // inverse density (m3/kg)
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
qCloud, err := qCloudFunc() // cloud water mixing ratio (kg/kg)
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
radiationDown, err := radiationDownFunc() // Downwelling radiation at ground level (W/m2)
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
qrain, err := qrainFunc() // mass fraction rain
if err != nil {
return nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, nil, err
}
if firstData {
S1 = sparse.ZerosDense(T.Shape...)
Sclass = sparse.ZerosDense(T.Shape...)
Kzz = sparse.ZerosDense(LayerHeights.Shape...) // units = m2/s
M2u = sparse.ZerosDense(T.Shape...) // units = 1/s
M2d = sparse.ZerosDense(T.Shape...) // units = 1/s
SO2oxidation = sparse.ZerosDense(T.Shape...) // units = 1/s
particleDryDep = sparse.ZerosDense(T.Shape...) // units = m/s
SO2DryDep = sparse.ZerosDense(T.Shape...) // units = m/s
NOxDryDep = sparse.ZerosDense(T.Shape...) // units = m/s
NH3DryDep = sparse.ZerosDense(T.Shape...) // units = m/s
VOCDryDep = sparse.ZerosDense(T.Shape...) // units = m/s
Kyy = sparse.ZerosDense(T.Shape...) // units = m2/s
firstData = false
}
type empty struct{}
sem := make(chan empty, T.Shape[1]) // semaphore pattern
for j := 0; j < T.Shape[1]; j++ {
go func(j int) { // concurrent processing
for i := 0; i < T.Shape[2]; i++ {
// Get Layer index of PBL top (staggered)
var pblTop int
for k := 0; k < LayerHeights.Shape[0]; k++ {
if LayerHeights.Get(k, j, i) >= pblh.Get(j, i) {
pblTop = k
break
}
}
// Calculate boundary layer average temperature (K)
To := 0.
for k := 0; k < LayerHeights.Shape[0]; k++ {
if k == pblTop {
To /= float64(k)
break
}
To += temperatureToTheta(T.Get(k, j, i), P.Get(k, j, i))
}
// Calculate convective mixing rate
u := ustar.Get(j, i) // friction velocity
h := LayerHeights.Get(pblTop, j, i)
hflux := hfx.Get(j, i) // heat flux [W m-2]
ρ := 1 / alt.Get(0, j, i) // density [kg/m3]
L := acm2.ObukhovLen(hflux, ρ, To, u) // Monin-Obukhov length [m]
fconv := acm2.ConvectiveFraction(L, h)
m2u := acm2.M2u(LayerHeights.Get(1, j, i),
LayerHeights.Get(2, j, i), h, L, u, fconv)
// Calculate dry deposition
p := P.Get(0, j, i) // Pressure [Pa]
//z: [m] surface layer; assumed to be 10% of boundary layer.
z := h / 10.
seinfeldLU := seinfeld.LandUseCategory(f2i(seinfeldLandUse.Get(j, i)))
weselyLU := wesely1989.LandUseCategory(f2i(weselyLandUse.Get(j, i)))
zo := z0.Get(j, i) // roughness length [m]
const dParticle = 0.3e-6 // [m], Seinfeld & Pandis fig 8.11
const ρparticle = 1830. // [kg/m3] Jacobson (2005) Ex. 13.5
const Θsurface = 0. // surface slope [rad]; Assume surface is flat.
// This is not the best way to tell what season it is.
var iSeasonP seinfeld.SeasonalCategory // for particles
var iSeasonG wesely1989.SeasonCategory // for gases
switch {
case To > 273.+20.:
iSeasonP = seinfeld.Midsummer
iSeasonG = wesely1989.Midsummer
case To <= 273.+20 && To > 273.+10.:
iSeasonP = seinfeld.Autumn
iSeasonG = wesely1989.Autumn
case To <= 273.+10 && To > 273.+0.:
iSeasonP = seinfeld.LateAutumn
iSeasonG = wesely1989.LateAutumn
default:
iSeasonP = seinfeld.Winter
iSeasonG = wesely1989.Winter
}
const dew = false // don't know if there's dew.
rain := qrain.Get(0, j, i) > 1.e-6
G := radiationDown.Get(j, i) // irradiation [W/m2]
particleDryDep.AddVal(
//gocart.ParticleDryDep(gocartObk, u, To, h,
// zo, dParticle/2., ρparticle, p), 0, j, i)
seinfeld.DryDepParticle(z, zo, u, L, dParticle,
To, p, ρparticle,
ρ, iSeasonP, seinfeldLU), 0, j, i)
SO2DryDep.AddVal(
seinfeld.DryDepGas(z, zo, u, L, To, ρ,
G, Θsurface,
wesely1989.So2Data, iSeasonG,
weselyLU, rain, dew, true, false), 0, j, i)
NOxDryDep.AddVal(
seinfeld.DryDepGas(z, zo, u, L, To, ρ,
G, Θsurface,
wesely1989.No2Data, iSeasonG,
weselyLU, rain, dew, false, false), 0, j, i)
NH3DryDep.AddVal(
seinfeld.DryDepGas(z, zo, u, L, To, ρ,
G, Θsurface,
wesely1989.Nh3Data, iSeasonG,
weselyLU, rain, dew, false, false), 0, j, i)
VOCDryDep.AddVal(
seinfeld.DryDepGas(z, zo, u, L, To, ρ,
G, Θsurface,
wesely1989.OraData, iSeasonG,
weselyLU, rain, dew, false, false), 0, j, i)
for k := 0; k < T.Shape[0]; k++ {
p := P.Get(k, j, i) // Pa
// Ambient temperature, K
t := T.Get(k, j, i)
// Potential temperature
theta := temperatureToTheta(t, p)
var dthetaDz = 0. // potential temperature gradient
if k < T.Shape[0]-1 {
thetaAbove := temperatureToTheta(T.Get(k+1, j, i), P.Get(k+1, j, i))
dthetaDz = (thetaAbove - theta) /
(LayerHeights.Get(k+1, j, i) - LayerHeights.Get(k, j, i)) // K/m
}
// Stability parameter
s1 := dthetaDz / theta
S1.AddVal(s1, k, j, i)
// Stability class
if dthetaDz < 0.005 {
Sclass.AddVal(0., k, j, i)
} else {
Sclass.AddVal(1., k, j, i)
}
// Mixing
z := LayerHeights.Get(k, j, i)
zabove := LayerHeights.Get(k+1, j, i)
zcenter := (LayerHeights.Get(k, j, i) +
LayerHeights.Get(k+1, j, i)) / 2
Δz := zabove - z
const freeAtmKzz = 3. // [m2 s-1]
if k >= pblTop { // free atmosphere (unstaggered grid)
Kzz.AddVal(freeAtmKzz, k, j, i)
Kyy.AddVal(freeAtmKzz, k, j, i)
if k == T.Shape[0]-1 { // Top Layer
Kzz.AddVal(freeAtmKzz, k+1, j, i)
}
} else { // Boundary layer (unstaggered grid)
Kzz.AddVal(acm2.Kzz(z, h, L, u, fconv), k, j, i)
M2d.AddVal(acm2.M2d(m2u, z, Δz, h), k, j, i)
M2u.AddVal(m2u, k, j, i)
kmyy := acm2.CalculateKm(zcenter, h, L, u)
Kyy.AddVal(kmyy, k, j, i)
}
// Gas phase sulfur chemistry
const Na = 6.02214129e23 // molec./mol (Avogadro's constant)
const cm3perm3 = 100. * 100. * 100.
const molarMassAir = 28.97 / 1000. // kg/mol
const airFactor = molarMassAir / Na * cm3perm3 // kg/molec.* cm3/m3
M := 1. / (alt.Get(k, j, i) * airFactor) // molec. air / cm3
hoConc := ho.Get(k, j, i) * 1.e-6 * M // molec. HO / cm3
// SO2 oxidation rate (Stockwell 1997, Table 2d)
const kinf = 1.5e-12
ko := 3.e-31 * math.Pow(t/300., -3.3)
SO2rate := (ko * M / (1 + ko*M/kinf)) * math.Pow(0.6,
1./(1+math.Pow(math.Log10(ko*M/kinf), 2.))) // cm3/molec/s
kso2 := SO2rate * hoConc
// Aqueous phase sulfur chemistry
qCloudVal := qCloud.Get(k, j, i)
if qCloudVal > 0. {
const pH = 3.5 // doesn't really matter for SO2
qCloudVal /=
alt.Get(k, j, i) * 1000. // convert to volume frac.
kso2 += seinfeld.SulfurH2O2aqueousOxidationRate(
h2o2.Get(k, j, i)*1000., pH, t, p*atmPerPa,
qCloudVal)
}
SO2oxidation.AddVal(kso2, k, j, i) // 1/s
}
// Check for mass balance in convection coefficients
for k := 0; k < M2u.Shape[0]-2; k++ {
z := LayerHeights.Get(k, j, i)
zabove := LayerHeights.Get(k+1, j, i)
z2above := LayerHeights.Get(k+2, j, i)
Δzratio := (z2above - zabove) / (zabove - z)
m2u := M2u.Get(k, j, i)
val := m2u - M2d.Get(k, j, i) +
M2d.Get(k+1, j, i)*Δzratio
if math.Abs(val/m2u) > 1.e-8 {
panic(fmt.Errorf("M2u and M2d don't match: "+
"(k,j,i)=(%v,%v,%v); val=%v; m2u=%v; "+
"m2d=%v, m2dAbove=%v; kpbl=%v",
k, j, i, val, m2u, M2d.Get(k, j, i),
M2d.Get(k+1, j, i), pblTop))
}
}
}
sem <- empty{}
}(j)
}
for j := 0; j < T.Shape[1]; j++ { // wait for routines to finish
<-sem
}
n++
}
}
func temperatureToTheta(T, p float64) float64 {
const (
po = 101300. // Pa, reference pressure
kappa = 0.2854 // related to von karman's constant
)
pressureCorrection := math.Pow(p/po, kappa)
return T / pressureCorrection
}
// f2i converts a float to an int (rounding).
func f2i(f float64) int {
return int(f + 0.5)
}
func arrayAverage(s *sparse.DenseArray, numTsteps int) *sparse.DenseArray {
n := float64(numTsteps)
for i, val := range s.Elements {
s.Elements[i] = val / n
}
return s
}
// nextDataNCF returns a function that sequentially retrieves time series data
// for the specified variable (varName) from a series of NetCDF files
// with the given file name template between the given start and end times.
// recordDelta and fileDelta specify the length of time between each file
// and each record within a file, respectively. dateFormat is the format
// in which dates appear in the filename.
func nextDataNCF(fileTemplate string, dateFormat string, varName string, start, end time.Time, recordDelta, fileDelta time.Duration, readFunc readNCFFunc, msgChan chan string) NextData {
recordsPerFile := int(fileDelta / recordDelta)
var i int
date := start
return func() (*sparse.DenseArray, error) {
if !date.Before(end) {
return nil, io.EOF
}
f, ff, err := ncfFromTemplate(fileTemplate, dateFormat, date)