-
Notifications
You must be signed in to change notification settings - Fork 0
/
Policy database analysis for NOURISHING.Rmd
579 lines (362 loc) · 20.1 KB
/
Policy database analysis for NOURISHING.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
---
title: "Implementation of healthy eating policies: an 11 country pilot study using the NOURISHING framework"
author: "Jonas Rekdal Mathisen"
date: "30/06/2022"
output:
html_document:
toc: true
toc_depth: 3
toc_float: true
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# Introduction
## Aim
In this paper, we use the NOURISHING framework and policy database to assess the implementation of healthy eating policies for 11 countries in Europe.
There is limited knowledge of implemented nutrition policies in Europe. The aim of this report is to showcase index construction by providing an overview of implemented policies in different European countries, and identify any similarities or clusters of policies between European countries. A simple regression displaying the index against obesity rates in European countries is included.
## Limitations
* The WCRF data is not complete at this time.
* The current analysis does not assess quality or count of policies, only if a policy -AT ALL- is implemented in the given dimension at all. No judgement to the policy's success is evaluated.
## Findings
The findings indicate an overall low implementation of nutrition policies across European countries using the NOURISHING framework. A country may have multiple policies but an holistic approach to the policy landscape is missing.
For future index construction, the low policy coverage may pose a problem for an index using the benchmarks. This can affect aggregation, hence a scoreboard may be a better approach than an overall index. More investigation is necessary: correlation between aggregation levels, principal components analyses and sensitivity analyses.
# Data
The data is manipulated in R prior to analyses. The following packages are utilised:
```{r Packages, include=FALSE}
#libraries:
pacman::p_load(COINr, countrycode, reactable, tidyverse, read_xls, Pheatmap, RColorBrew, readxl)
```
* Tidyverse is used to manipulate the data.
* COINr from the JRC is used to assemble and aggregate the data.
* Pheatmap is used for the cluster analyses.
* Reactable for making tables more user-friendly.
* RColorBrew for colourful tables.
* Countrycode for transforming country names into codes, and vice-versa.
## WCRF policy database
Data is retrieved from the backend of the NOURISHING policy framework. The data was provided by the WCRF 27.06.2022.
```{r}
BenchmarkMeta <- read_xlsx("C:\\Users\\JRMA\\OneDrive - Folkehelseinstituttet\\Dokumenter\\CO-CREATE\\DATABASE MANAGEMENT\\NOURISHING full fixed.xlsx", sheet = "Benchmarks")
BenchmarkMeta
colnames(BenchmarkMeta) <- c("PolicyAreaID", "PolicyArea", "BenchmarkID", "SubPArea", "UniqueID", "Indicator name")
BenchmarkMeta <- BenchmarkMeta %>% mutate(PolicyAreaID = replace(PolicyAreaID, PolicyAreaID=="N", "N(1)"))
BenchmarkMeta <- BenchmarkMeta %>% mutate(PolicyAreaID = replace(PolicyAreaID, PolicyAreaID=="I", "I(1)"))
AggHiearchy <- BenchmarkMeta %>% distinct(SubPArea, BenchmarkID, PolicyArea, PolicyAreaID)
BenchmarkMeta %>% reactable()
```
```{r loadGPI}
policydb <- read_xlsx("C:\\Users\\JRMA\\OneDrive - Folkehelseinstituttet\\Dokumenter\\CO-CREATE\\DATABASE MANAGEMENT\\NOURISHING full fixed.xlsx", sheet = "Full NOURISHING")
policies <- policydb %>% select(1:5, BENCHMARK, POLICYIDENTIFIER_R, "ASSOCIATED BENCHMARKS", "IMPLEMENTATION YEAR", "PolicyLevel", "POLICY DESCRIPTION", `Policy expired (year)`)
#Select finalised countries
policies <- policies %>% filter(!is.na(BENCHMARK), is.na(`Policy expired (year)`), `ACTION OR EVALUATION` == "Policy Action", PolicyLevel == "National" || "International")
#Make a text list of constituent countries for (UK) loop
ConstituentsUK <- policies %>% filter(COUNTRY == "UK") %>% select(`CONSTITUENT COUNTRY`) %>% distinct() %>% drop_na() %>% as.list()
#The list of UK level policies that should exist for each constituent country. Each row here should be x*constituent countries existing.
onlyUK <- policies %>% filter(COUNTRY == "UK" & is.na(`CONSTITUENT COUNTRY`))
#Constituencies <- policies %>% filter(!is.na(`CONSTITUENT COUNTRY`))
#Constituencies <- Constituencies %>% select(-COUNTRY) %>% rename("COUNTRY" = "CONSTITUENT COUNTRY")
#Replace UK wide policies with constituent names. These are added to the full policy db.
for (i in ConstituentsUK){
UKpoliciesASconstituents <- onlyUK %>%
slice(rep(1:n(), 4)) %>%
arrange(`POLICYIDENTIFIER_R`)
i <- UKpoliciesASconstituents$COUNTRY[UKpoliciesASconstituents$COUNTRY == "UK"] <- i
}
#Make constituent countries (UK) independent from country
onlyConstituents <- policies %>% filter(COUNTRY == "UK" & !is.na(`CONSTITUENT COUNTRY`)) %>% select(-COUNTRY) %>% rename(COUNTRY = `CONSTITUENT COUNTRY`)
#Drop the rows with host country + constituent
policies <- policies %>% filter(is.na(`CONSTITUENT COUNTRY`))
#Combine the data again with constituent countries as separate entities
all_policies <- bind_rows(policies, UKpoliciesASconstituents, onlyConstituents)
#Remove UK subcountries
isConstituent <- c("England", "Scotland", "Wales" ,"Northern Ireland")
all_policies <- all_policies %>% filter(!COUNTRY %in% isConstituent)
all_policies
```
# Descriptive stats
Note, the constituent countries of UK is calculated as UK policies + constituent country policies. We currently have data for `r all_policies %>% distinct(COUNTRY) %>% count()` countries (`r all_policies %>% distinct(COUNTRY) %>% as.list()`). EU policies are listed within the country.
```{r}
all_policies %>% count(COUNTRY) %>%
reactable(filterable = TRUE,
columns = list(
n = colDef(filterable = FALSE, defaultSortOrder = "desc")
),
defaultSorted = c("n", "COUNTRY")
)
```
# The NOURISHING framework
The framework has 10 policy areas and 43 benchmarks.
```{r}
BenchmarkMeta %>% select(-UniqueID) %>% reactable()
```
```{r}
#Get unique identifier
onlySPA_ID <- BenchmarkMeta %>% select(`BenchmarkID`)
onlySPA_ID <- `colnames<-`(onlySPA_ID, c("BENCHMARK"))
#Find distinct countries
countries <- all_policies$COUNTRY %>% as.data.frame() %>% distinct()
names(countries) <- "COUNTRY"
#Create an empty table for analysis
qwe <- transpose(onlySPA_ID) %>% as.data.frame()
names(qwe) <- qwe[1,]
framework <- cbind(qwe, countries) %>% as.data.frame()
framework <- framework %>% mutate(across(!COUNTRY, ~as.double(na_if(., .))))
```
## iData prep - base
```{r}
#Count the number of policies per country and policy area
Number_Policies <- all_policies %>% count(COUNTRY, BENCHMARK)
#Make TRUE or FALSE for each policy existing
truef_spa <- Number_Policies %>% mutate(
PolicyActionImplemented = if_else(n > 0, TRUE, FALSE, missing=FALSE)
)
#Transform data to numeric value from 0, 100
SPA_level_TF <- truef_spa %>%
select("COUNTRY", "BENCHMARK","PolicyActionImplemented") %>%
select(c("COUNTRY", "BENCHMARK")) %>% distinct() %>%
pivot_wider(names_from = "BENCHMARK", values_from = "BENCHMARK") %>%
ungroup() %>%
mutate(
across(.cols = -COUNTRY,
~if_else(!is.na(.), 100, 0)
)
)
#Join the empty frame with the transformed data to ensure all benchmarks are included in the final table
Presence_100 <- right_join(framework, SPA_level_TF, by.x=COUNTRY, by.y=COUNTRY)
#Make NA values into 0 for non-identified policy
Presence_100 <- Presence_100 %>% mutate(across(where(is_double), ~replace_na(., 0)))
Presence_100 %>% reactable()
```
## iData - OK
```{r COINbase}
COINr_SPA <- Presence_100
names(Presence_100)[names(Presence_100) == "COUNTRY"] <- "uName"
#Remove constituents
Presence_100 <- Presence_100 %>% filter(!uName %in% isConstituent)
COINr_SPA <- Presence_100 %>% mutate(uCode = countrycode(sourcevar = uName, origin="country.name", destination="iso3c"))
#Some values are missing: Gulf Cooperation Council, Micronesia, Romania, Wallis and Futuna
Missing <- COINr_SPA %>% subset(is.na(uCode)) %>% select(uName, uCode)
COINr_SPA <- na.omit(COINr_SPA)
COINr_SPA <- COINr_SPA %>% mutate(
Group_Continent = countrycode(sourcevar = uName, origin="country.name", destination="continent"),
#Group_EU = countrycode(sourcevar = uName, origin="country.name", destination="eu28"),
Group_Region = countrycode(sourcevar = uName, origin="country.name", destination="un.regionsub.name"),
Group_COCREATE = case_when(uCode %in% unlist(isCoCREATE) ~ TRUE, TRUE ~ FALSE))
isCoCREATE <- c("NOR", "NLD", "PRT", "POL", "GBR")
#Continue adding groups for countries
#COINr_SPA <- COINr_SPA %>% mutate(uCode = case_when(
# uName == "Scotland" ~ "SCT",
# uName == "Northern Ireland" ~ "NIR",
#uName == "England" ~ "ENG",
#uName == "Wales" ~ "WAL",
#uName == "Norway" ~ "NOR"))
COINr_SPA <- na.omit(COINr_SPA)
#Consider adding certain variables etc for further analysis (eurostat stuff)
iData <- COINr_SPA
iData <- iData %>% mutate_if(is_double,as.integer)
check_iData(iData)
iData
```
## Include statistical groups
You can add anything to this. I just did this as an example for further analyses.
```{r}
hlth_ehis_bm1e <- eurostat::get_eurostat("hlth_ehis_bm1e")
BMI_cat <- hlth_ehis_bm1e %>% select(bmi) %>% distinct()
hlth_ehis_bm1e$year <- str_sub(hlth_ehis_bm1e$time,1,4)
BMI_euro <- hlth_ehis_bm1e %>% filter(sex=="T" & age=="TOTAL" & isced11=="TOTAL" & bmi=="BMI_GE30" & year=="2019") %>% select(geo, values)
BMI_euro <- BMI_euro %>% mutate(geo2= countrycode(sourcevar = geo, origin="eurostat", destination="iso3c")) %>% select(geo2, values)
BMI_euro <- BMI_euro %>% drop_na()
colnames(BMI_euro) <- c("uCode", "Group_BMI_rate")
GBR_obese <- c("GBR", 28) #GBR is excluded from Eurostat. Manual imputated from UK National Stats service.
BMI_euro <- rbind(BMI_euro, GBR_obese)
BMI_euro <- BMI_euro %>% mutate(across(Group_BMI_rate, as.integer))
#Join obesity rate by uCode to Groups iData
iData <- left_join(iData, BMI_euro, by="uCode", keep=F)
```
## New iMeta combined with AggMeta
```{r}
##Groups
Groups <- iData %>% select(starts_with(c("Group_"))) %>% colnames() %>% as.data.frame()
colnames(Groups) <- c("iCode")
Groups$iName <- "Group info"
Groups$Parent <- NA
Groups$Level <- NA
Groups$Type <- "Group"
###Level 1
iMeta_Indicators <- BenchmarkMeta %>% select(BenchmarkID, SubPArea, PolicyAreaID)
colnames(iMeta_Indicators) <- c("iCode", "iName", "Parent")
iMeta_Indicators$Level <- 1
iMeta_Indicators$Type <- "Indicator"
###Level 2: policy area
iMeta_PolicyArea <- BenchmarkMeta %>% select(PolicyAreaID, PolicyArea) %>% distinct()
colnames(iMeta_PolicyArea) <- c("iCode", "iName")
iMeta_PolicyArea$Parent <- "Index"
iMeta_PolicyArea$Level <- 2
iMeta_PolicyArea$Type <- "Aggregate"
iMeta_PolicyArea
###Level 3: index
iMeta_full <- data.frame()
iMeta_full[1, ] <- c("")
iMeta_full$iCode <- "Index"
iMeta_full$iName <- "NOURISHING"
iMeta_full$Parent <- NA
iMeta_full$Level <- 3
iMeta_full$Type <- "Aggregate"
list_iMeta <- list(Groups, iMeta_Indicators, iMeta_PolicyArea, iMeta_full)
iMeta <- do.call("rbind", list_iMeta)
##For everything
iMeta$Direction <- 1 #All indicators got positive direction
iMeta$Weight <- 1 #All indicators carry the same weight
iMeta <- iMeta %>% as.data.frame()
iMeta
check_iMeta(iMeta)
```
## Build COIN
```{r}
PresenceIndex <- new_coin(iData = iData,
iMeta = iMeta,
level_names = c("Sub-policy areas", "Policy areas", "NOURISHING index"))
PresenceIndex
```
```{r}
plot_framework(PresenceIndex, type = "stack", colour_level = 2)
```
## Aggregation
A central step to create an index is the aggregation method. We do not want total compensability because being good in one area should not compensate for implementing less in another area.
In the first aggregation step, from indicator to policy area (e.g: from R1 to R) we use the arithmetic mean (simple averages).
The aggregation can be read left to right. The last column, NOURISHING, displays the total score for the index. Results are presented on the next page.
```{r Aggregation}
PresenceIndex <- Aggregate(PresenceIndex, dset = "Raw")
dset_aggregated <- get_dset(PresenceIndex, dset = "Aggregated")
dset_aggregated %>% round_df(0) %>% reactable()
```
## Visualisation of results
```{r}
plot_bar(PresenceIndex, dset = "Aggregated", iCode = "Index", by_group = "Group_Region")
```
## Test of scatter: final index score versus BMI rate in given country.
```{r}
plot_scatter(PresenceIndex, dsets = c("Aggregated", "uMeta"), iCodes = c("Index", "Group_BMI_rate"), point_label = "uCode")
```
# Cluster analyses
The vast number of indicators and dimensions may make it hard to see patterns. The following analyses, we try to make two clusters: one for benchmarks and one for policy areas (as columns), with countries as the row.
## Policy area analysis
```{r}
#Prepare data
Aggregates <- getResults(NPI, tab_type = "Aggregates")
Aggregates <- Aggregates %>% mutate(
Group_Continent = countrycode(sourcevar = uName, origin="country.name", destination="continent"),
Group_EU = countrycode(sourcevar = uName, origin="country.name", destination="eu28"),
Group_Region = countrycode(sourcevar = uName, origin="country.name", destination="un.regionsub.name"),
Group_COCREATE = case_when(uCode %in% unlist(isCoCREATE) ~ TRUE, TRUE ~ FALSE))
Aggregates <- Aggregates %>% mutate(Group_EU = case_when(
uName == "NOR" ~ "EU",
uName == "ISL" ~ "EU",
uName == "LIE" ~ "EU",
uName == "CHE" ~ "EU",
TRUE ~ Group_EU)
)
#Data without text
NumericalsOnly <- Aggregates
rownames(NumericalsOnly) <- sapply(Aggregates$uName,function(x) strsplit(as.character(x),split = "\\\\")[[1]][1])
NumericalsOnly <- NumericalsOnly %>% select(-Rank, -NOURISHING, -uName, -uCode, -Group_EU, -Group_COCREATE, -Group_Region, -Group_Continent)
#Make unique group for visualisation
Regions <- Aggregates %>% select(Group_Region)
rownames(Regions) = rownames(NumericalsOnly)
```
The results for each policy area is set to divide into five categories of countries and three categories of policy areas.
* UK is the clear 'winner' in all policy areas, but are weakest in the policy areas U and R. They are strongest in N.2, followed-by = and I.2.
* The country with the weakest implementation seems to be Bulgaria.
* CO-CREATE countries perform strongly with the exception of Poland and the Netherlands.
* Country region does not seem to influence implementation at first glance.
* It is evident that letter N is the most implemented of all policy areas (1st column)
* The policy areas G, S, H, U and R are the least implemented areas overall for the European countries.
* N.2. is not covere at all by over half the countries included in the analyses.
```{r Remove0fromDisplay}
NumericalsOnly2 <- NumericalsOnly %>% roundDF(decimals=1)
NumericalsOnly2[NumericalsOnly2 < 0.01] <- NA
NumericalsOnly2[is.na(NumericalsOnly2)] <- ""
```
```{r, fig.height=8, fig.width=15, fig.align='center'}
library("RColorBrewer")
Presence_100
pheatmap::pheatmap(NumericalsOnly, cluster_cols = T, main="Clustering of countries by policy area", cutree_rows=3, cutree_cols=3, annotation_row = Regions, display_numbers = NumericalsOnly2, color=colorRampPalette(c("snow3", "yellowgreen", "forestgreen"))(50))
```
## Sub-policy area analysis
```{r}
#Prepare data
AggregatesSubP <- getResults(NPI, tab_type = "Full")
#Data without text
NumericalsSuBPOnly <- AggregatesSubP
rownames(NumericalsSuBPOnly) <- sapply(NumericalsSuBPOnly$uName,function(x) strsplit(as.character(x),split = "\\\\")[[1]][1])
NumericalsSuBPOnly <- NumericalsSuBPOnly %>% select(-Rank, -NOURISHING, -uName, -uCode, -Group_EU, -Group_COCREATE, -Group_Region, -Group_Continent, -N, -O, -U, -R, -I, -S, -H, -"I.2.", -"N.2.", -G)
##ALTERNATIV
#Due to Pheatmap categories, I need to transpose the table to get the column annotation
trans_NumericalsSuBPOnly <- NumericalsSuBPOnly %>% t() %>% as.data.frame()
Dimensions <- AggHiearchy %>% select(BenchmarkID, PolicyAreaID) %>% as.data.frame()
Dimensions <- Dimensions %>% mutate(across("BenchmarkID", str_replace, "\\(", "."))
Dimensions <- Dimensions %>% mutate(across("BenchmarkID", str_replace, "\\)", "."))
#Add PolicyID and BenchmarkID
trans_NumericalsSuBPOnly <- left_join(trans_NumericalsSuBPOnly %>% mutate(BenchmarkID = rownames(trans_NumericalsSuBPOnly)), Dimensions, by = "BenchmarkID")
trans_NumericalsSuBPOnly <- trans_NumericalsSuBPOnly %>% column_to_rownames("BenchmarkID")
SubPAz <- trans_NumericalsSuBPOnly %>% select(PolicyAreaID)
NumericalsSuBPOnly <- trans_NumericalsSuBPOnly %>% select(-PolicyAreaID) %>% t() %>% as.data.frame()
simplified_index_cc <- NumericalsSuBPOnly %>% filter(rownames(NumericalsSuBPOnly) %in% c("Norway", "Poland", "Netherlands", "Portugal", "UK"))
```
When using the sub-policy areas to explore differences, the country ranking changes.
Important! These variables are "Yes" or "No": hence the colour is either red for Implemented, or blue for Not implemented.
```{r, fig.align='center', fig.height=8, fig.width=15}
pheatmap::pheatmap(NumericalsSuBPOnly, cluster_cols = T, cluster_rows = T, main="Clustering of countries by benchmarks", cutree_rows=4, cutree_cols=3, annotation_col = SubPAz, legend = F, color = colorRampPalette(c("snow3", "forestgreen"))(50))
```
# Regression
There are multiple approaches to using the final index score. An important prerequisite is a sound construction of the index. This will take some time to ensure and may end up not being feasible.
The regression can be used for a specific policy area (e. g., Nutrition labelling or Restricting marketing), or the full index. Both approaches should be explored. Note, there is less variance in some areas than others that we need to investigate closer.
## Get data on obesity
We can retrieve any data from Eurostat or other sources. Here, I use Obesity statistics for the full population in European countries.
```{r GetEurostat}
library(stringr)
hlth_ehis_bm1e <- eurostat::get_eurostat("hlth_ehis_bm1e")
BMI_cat <- hlth_ehis_bm1e %>% select(bmi) %>% distinct()
hlth_ehis_bm1e$year <- str_sub(hlth_ehis_bm1e$time,1,4)
BMI_euro <- hlth_ehis_bm1e %>% filter(sex=="T" & age=="TOTAL" & isced11=="TOTAL" & bmi=="BMI_GE30" & year=="2019") %>% select(geo, values)
BMI_euro <- BMI_euro %>% mutate(geo2= countrycode(sourcevar = geo, origin="eurostat", destination="iso3c")) %>% select(geo2, values)
colnames(BMI_euro) <- c("uCode", "Obesity rate")
BMI_euro %>% reactable::reactable()
```
## Link index with data
After retriving the data from Eurostat, we combine the data from NOURISHING and the selected data source. Note, LIE has missing data. Data from different sources imported for GBR and CHE. For a final analysis, we should use HSBC or something else.
```{r Indexjoin}
IndexScore_geo <- getResults(NPI, tab_type = "Summ") %>% select(uCode, NOURISHING)
IndexScore_geo <- left_join(IndexScore_geo, BMI_euro, by = c("uCode" ="uCode"))
#Add some missing data for this exercise. This data is not cross-checked!
IndexScore_geo <- IndexScore_geo %>% mutate("Obesity rate" = replace(`Obesity rate`, uCode=="GBR", 28))
IndexScore_geo <- IndexScore_geo %>% mutate("Obesity rate" = replace(`Obesity rate`, uCode=="CHE", 11.3))
IndexScore_geo %>% reactable::reactable(compact=T)
```
## Regression line
Creating a fitted line we find that there is a positive relationship between higher implementation of nutrition policies and obesity rates.
No significant correlation between index and obesity rates identified (p=0.35).
```{r regline}
regline <- IndexScore_geo %>% filter(!is.na(`Obesity rate`)) %>% lm(NOURISHING ~ `Obesity rate`,.) %>% fitted.values()
corell <- cor.test(IndexScore_geo$NOURISHING, IndexScore_geo$`Obesity rate`, method = "pearson")
corell
x <- IndexScore_geo$NOURISHING
y <- IndexScore_geo$`Obesity rate`
```
## Regression plot
Create a scatterplot with NOURISHING score on the vertical axis, and obesity rate on the horizontal axis:
```{r plotit2, warning=F}
meanNourish <- mean(IndexScore_geo$NOURISHING)
plot <- IndexScore_geo %>% filter(!is.na(`Obesity rate`)) %>%
plotly::plot_ly(x=~`Obesity rate`, y= ~NOURISHING, mode="markers", text =~uCode) %>%
plotly::add_markers(y= ~NOURISHING) %>%
plotly::add_trace(x=~`Obesity rate`, y=regline, mode="lines") %>%
plotly::add_lines(y=meanNourish) %>%
plotly::layout(showlegend=F) %>%
plotly::add_text(textposition="top right")
plot
```
# Annex 1: Codes
```{r, echo=F}
IndMeta %>% select(PolicyArea, IndName, IndCode) %>% reactable(compact=T, searchable = T)
```