-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
180 lines (141 loc) · 5.15 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import random
import abc
import numpy as np
from itemizer.element import Itemset, TextElement
from itemizer.alphabet import Alphabet
class Dataset(abc.ABC):
''' abstract dataset class '''
def __init__(self, filename=None):
self._elements = []
# iteration
if filename is not None:
self.from_file(filename)
def __getitem__(self, idx):
return self._elements[idx]
def __setitem__(self, idx, elem):
self._elements[idx] = elem
def __iter__(self):
self.current = -1
return self
def __len__(self):
return len(self._elements)
def __next__(self):
if self.current >= len(self._elements) - 1:
raise StopIteration
else:
self.current += 1
return self._elements[self.current]
def append(self, elem):
self._elements.append(elem)
def force_label(self, label):
for elem in self._elements:
elem.label = label
def cv_split(self, folds):
pass
def shuffle(self, rndm):
rndm.shuffle(self._elements)
@abc.abstractmethod
def to_file(self, filename):
pass
@abc.abstractmethod
def from_file(self, filename):
pass
class ItemsetDataset(Dataset):
''' Itemset dataset. Every item is a set of items from an alphabet. '''
def __init__(self, filename=None, separator=' '):
self.separator = separator
super().__init__(filename)
self.alphabet = None
if filename is not None:
self.compute_alphabet()
def compute_alphabet(self):
self.alphabet = Alphabet()
for itemset in self:
for item in itemset:
self.alphabet[item] += 1
def translate(self):
translated_dataset = Dataset(separator=self.separator)
translated_dataset.itemsets = []
for itemset in self:
translated_itemset = Itemset(
items=None, cls=itemset.cls, separator=self.separator)
for item in itemset:
translated_itemset.append(self.alphabet.translate_item(item))
translated_dataset.itemsets.append(translated_itemset)
return translated_dataset
def from_file(self, filename):
with open(filename) as fin:
for line in fin:
self._elements.append(Itemset().from_string(
line, separator=self.separator))
def to_file(self, filename, append=False):
write_mode = 'w'
if append:
write_mode = 'a'
with open(filename, write_mode) as fout:
for itemset in self._elements:
fout.write(str(itemset) + "\n")
def to_raw(self, filename, alphabet=None, append=False):
if alphabet:
ab = alphabet
else:
ab = self.alphabet
with open(filename, 'w') as fout:
for itemset in self:
counts = [0 for i in range(0, len(ab))]
for item in itemset:
if item in ab:
if counts[ab.translate_item(item)] < 255:
counts[ab.translate_item(item)] += 1
fout.write(bytes(counts))
if itemset.label is not None:
fout.write(bytes([itemset.label]))
def get_nparray(self, alphabet=None):
print('HERe')
print(len(self))
if alphabet:
ab = alphabet
else:
if not self.alphabet:
raise ValueError(
'Attempting to get np array without an alphabet.')
ab = self.alphabet
arr = np.zeros(shape=(len(self), len(ab)), dtype=np.uint8)
print('begin')
for i, itemset in enumerate(self):
for item in itemset:
if item in ab:
if arr[i, ab.translate_item(item)] < 255:
arr[i, ab.translate_item(item)] += 1
return arr
class TextDataset(Dataset):
''' Dataset where every element is simply a line of text. '''
def __init__(self, filename=None):
super().__init__(filename)
self.alphabet = None
def from_file(self, filename):
with open(filename) as fin:
for line in fin:
self._elements.append(TextElement().from_string(line))
def to_file(self, filename, append=False):
write_mode = 'w'
if append:
write_mode = 'a'
with open(filename, write_mode) as fout:
for element in self._elements:
fout.write(str(element) + "\n")
def process(self, processor):
return processor.process_dataset(self)
def join_lines(self, separator=' '):
new_element = TextElement()
element_strings = []
for element in self._elements:
element_strings.append(element.string)
new_element.string = separator.join(element_strings)
if self._elements[0].label is not None:
new_element.label = self._elements[0].label
self._elements = [new_element]
return self
class FeatureDataset(Dataset):
''' Dataset of features, where each column represents a particular feature.'''
pass