-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathresources.py
81 lines (55 loc) · 2.29 KB
/
resources.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from collections import defaultdict
import numpy as np
import pandas as pd
import scipy.sparse as sp
class IncrementerDict(defaultdict):
def __init__(self, base_value=0):
self.__incrementer__ = base_value
super(IncrementerDict, self).__init__(self.__incrementer_factory__)
def __incrementer_factory__(self):
result = self.__incrementer__
self.__incrementer__ += 1
return result
def build_dict(input_list):
output_dict = IncrementerDict()
for element in input_list:
output_dict[element]
return output_dict
def build_users_dataframe(data, features_dict):
df = pd.DataFrame(columns=['user', 'feature', 'value'])
for i in range(len(data)):
row = data.iloc[i]
gender_key = 'female'
if row['gender'] == 'M':
gender_key = 'male'
df.loc[i * 3] = [row['user'], features_dict['age'], row['age']]
df.loc[i * 3 + 1] = [row['user'], features_dict[gender_key], 1]
df.loc[i * 3 + 2] = [row['user'], features_dict[row['occupation']], 1]
return df
def build_items_dataframe(data, features_dict):
df = data.copy()
df['release'] = data['release'].str[-4:].astype(int)
df = df.ix[:, features_dict.keys()]
return df
# Function from: https://github.com/lyst/lightfm/blob/
# 4c658e6be477fc4be39aada2e2001642d1c80489/lightfm/datasets/movielens/__init__.py#L57
def build_interaction_matrix(num_rows, num_cols=None, data=None, function=None, function_args=None):
if num_cols is None:
return sp.coo_matrix(num_rows.values, dtype=np.float32).tocoo()
mat = sp.lil_matrix((num_rows, num_cols), dtype=np.float32)
for _, row in data.iterrows():
x, y, value = function(row, **function_args)
if x is not None:
mat[x, y] = value
return mat.tocoo()
def collaborative_filter(row, min_rating=3):
if row['rating'] >= min_rating:
return row['user'], row['item'], row['rating']
else:
return None, None, None
def content_filter(row, kind):
return row[kind], row['feature'], row['value']
def normalize_output(output, max_rating, min_rating, max_output, min_output):
range_ouput = max_output - min_output
range_rating = max_rating - min_rating
return max_rating - ((range_rating * (max_output - output)) / range_ouput)