-
Notifications
You must be signed in to change notification settings - Fork 0
/
calibrate_camera.py
46 lines (35 loc) · 1.33 KB
/
calibrate_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import cv2
import glob
import yaml
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
a = 9
b = 6
objp = np.zeros((b*a,3), np.float32)
objp[:,:2] = np.mgrid[0:a,0:b].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('chessboard*.jpg')
corners_found = False
for fname in images:
print(fname)
img = cv2.imread(fname)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (a,b),None)
print('found corners')
# If found, add object points, image points (after refining them)
if ret == True:
corners_found = True
objpoints.append(objp)
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
print('found subs')
imgpoints.append(corners2)
if corners_found :
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1],None,None)
data = {'camera_matrix': np.asarray(mtx).tolist(), 'dist_coeff': np.asarray(dist).tolist()}
with open("calibration.yaml", "w") as f:
yaml.dump(data, f)