-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathgen_weight_roberta_like.py
30 lines (25 loc) · 1.21 KB
/
gen_weight_roberta_like.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
import os, json
import argparse
from transformers import AutoConfig, AutoModel
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--lilt', type=str, required=True, help='Path to LiLT model.')
parser.add_argument('--text', type=str, required=True, help='Path to text model.')
parser.add_argument('--config', type=str, required=True, help='Path to text config.')
parser.add_argument('--out', type=str, required=True, help='Path to output.')
opt = parser.parse_args()
with open(opt.config, 'r') as jf:
config = json.load(jf)
config['channel_shrink_ratio'] = 4
config['max_2d_position_embeddings'] = 1024
config['model_type'] = 'liltrobertalike'
if not os.path.isdir(opt.out):
os.makedirs(opt.out)
with open(os.path.join(opt.out, 'config.json'), 'w') as jf:
json.dump(config, jf, sort_keys=True, indent=2, separators=(',', ': '),)
text_model = torch.load(opt.text)
text_model = {k.replace('roberta.', 'lilt.'): v for (k, v) in text_model.items()}
lilt_model = torch.load(opt.lilt)
total_model = {**text_model, **lilt_model}
torch.save(total_model, os.path.join(opt.out, 'pytorch_model.bin'))