-
Notifications
You must be signed in to change notification settings - Fork 2
/
custom_hyperparameters.py
18 lines (18 loc) · 1.25 KB
/
custom_hyperparameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
hyperparams = {
'seed': 101, # random seed
'buffer_size': 100000, # size of the experience replay buffer
'batch_size': 64, # number of experiences to sample at each learning step
'start_since': 8000, # number of experiences to store before it begins learning (must be >= 'batch_size')
'gamma': 0.995, # discount factor
'target_update_every': 1, # how often to update the target network
'tau': 1e-3, # how much to update the target network at every update
'lr': 1e-3, # learning rate
'update_every': 1, # how often to update the online network
'priority_eps': 1e-3, # small values added to priorities in order to have nonzero priorities
'a': 0.5, # priority exponent parameter
'n_multisteps': 5, # number of steps to consider for multistep learning
'initial_sigma': 0.50, # initial noise parameter value for noisy net
'linear_type': 'noisy', # which linear layers to use ('linear' or 'noisy')
'factorized': True, # whether to use factorized gaussian noise or not
'clip': None # gradient clipping
}