-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfigures.py
58 lines (43 loc) · 1.46 KB
/
figures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from pdb import set_trace as T
import numpy as np
from matplotlib import pyplot as plt
import torch
from visualize import visualize, visGANGAN
from gan import SimpleGAN
gandir = 'data/gan/0/'
gangandir = 'data/gangan/'
fig = plt.figure(frameon=False)
#fig.set_size_inches(16, 4)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
#GAN Figure
img = []
buf = 1+np.zeros((28*8, 2))
noise = torch.randn(64, 64).cuda()
for i in (0, 1, 10, 25, 27, 30, 32, 35, 40, 49):
params = torch.load(gandir+'model_'+str(i)+'.pt')
gan = SimpleGAN(28*28, zdim=64, hd=64, hg=64, lr=2e-4)
gan.load_state_dict(params)
gan = gan.cuda()
ary = visualize(gan, noise, show=False)
img.append(ary)
img1 = [img[0], buf, img[1], buf, img[2], buf, img[3], buf, img[4]]
hbuf = 1+np.zeros((2, 28*8*5+8))
img2 = [img[5], buf, img[6], buf, img[7], buf, img[8], buf, img[9]]
img = np.vstack([np.hstack(img1), hbuf, np.hstack(img2)])
ax.imshow(img)
#plt.show()
fig.savefig('gan_training.png', dpi=200, bbox_inches='tight')
#GAN-GAN Figure
gannoise = torch.randn(40, 64).cuda()
gangannoise = torch.Tensor(np.linspace(-2, 2, 32)).cuda().view(-1, 1)
params = torch.load(gangandir+'model_249.pt')
gangan = SimpleGAN(113745, zdim=1, hd=8, hg=64, lr=2e-4).cuda()
gangan.load_state_dict(params)
gangan = gangan.cuda()
gan = gangan.sample(gangannoise)
img = visGANGAN(gan, gannoise, show=False)
ax.imshow(img)
#plt.show()
fig.savefig('gangan_sample', dpi=200, bbox_inches='tight')