-
Notifications
You must be signed in to change notification settings - Fork 46
/
index.html
311 lines (236 loc) · 11.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>DAGitty - drawing and analyzing causal diagrams (DAGs)</title>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" crossorigin="anonymous">
<link rel="stylesheet" type="text/css" href="content.css"/>
</head>
<body>
<div class="container">
<h1>DAGitty — draw and analyze causal diagrams</h1>
<div class="row">
<div class="col-lg-8">
<p class="lead">
DAGitty is a browser-based environment for creating, editing, and analyzing
causal diagrams (also known as directed acyclic graphs or causal Bayesian networks).
The focus is on the use of causal diagrams for minimizing bias in empirical
studies in epidemiology and other disciplines. For background information, see
the "<a href="learn/index.html">learn</a>" page.
</p>
<div class="card-group">
<div class="card">
<div class="card-header">
<h4 class="card-title">Launch</h4>
</div>
<div class="card-body">
<p class="card-text">
<a href="dags.html"><img src="images/launch.png" alt="" /><br/>
Launch DAGitty online in your browser</a>.
</p>
</div>
</div>
<div class="card">
<div class="card-header">
<h4 class="card-title">Download</h4>
</div>
<div class="card-body">
<p class="card-text">
<a href="dagitty.zip"><img src="images/down.png" alt="" /><br/>
Download DAGitty's source for offline use</a>.
</p>
</div>
</div>
<div class="card">
<div class="card-header">
<h4 class="card-title">Learn</h4>
</div>
<div class="card-body">
<p class="card-text">
<a href="learn/index.html"><img src="images/doc.png" alt="" /><br/>
Learn more about DAGs and DAGitty</a>.
</p>
</div>
</div>
<div class="card">
<div class="card-header">
<h4 class="card-title">Code</h4>
</div>
<div class="card-body">
<p class="card-text">
<a href="https://github.com/jtextor/dagitty">
<img src="images/Rlogo.png" alt="" style="height:70px" /></a><br/>
The R package "dagitty" is available on
<a href="https://cran.r-project.org/web/packages/dagitty/index.html">CRAN</a> or
<a href="https://github.com/jtextor/dagitty">github</a>.
</p>
</div>
</div>
</div>
<p>
<a name="feedback">DAGitty</a> is developed and maintained by
<a href="http://johannes-textor.name">Johannes Textor</a>
(<a href="https://ru.nl/icis">Institute for Computing and
Information Sciences</a>,
<a href="https://www.ru.nl">Radboud University</a>, and
Medical BioSciences department, <a href="https://www.radboudumc.nl/">Radboudumc</a>,
Nijmegen, The Netherlands).
</p>
<p>
Many algorithms
implemented in DAGitty were developed in close collaboration with
<a href="https://www.tcs.uni-luebeck.de/en/mitarbeiter/liskiewi/">Maciej Liśkiewicz</a>
and <a href="https://www.tcs.uni-luebeck.de/en/mitarbeiter/vanderzander/">Benito van der Zander</a>, University of Lübeck, Germany (see literature references below).
</p>
<p>
DAGitty development happens
on <a href="https://github.com/jtextor/dagitty">github</a>. You can
download all source code from there and also get involved.
</p>
<h2>How can I get help?</h2>
<p>
<p>
If you encounter any problems using DAGitty, or would like to have a certain
feature implemented, write to me on <a href="https://mastodon.social/@johannes_textor">Mastodon</a>,
post on <a href="https://github.com/jtextor/dagitty">github</a>
or write to <em>"johannes {dot} textor {at} gmx {dot}
de".</em> Your feedback and bug reports are very welcome and contribute to
making DAGitty a better experience for everyone.
Past contributors are acknowledged in the <a href="manual-3.x.pdf">manual</a>.
</p>
<h2>Is it free?</h2>
<p>
Because the main purpose of DAGitty is facilitating the use of causal models
in empirical studies, it is and will always be Free software (both
"free as in beer" and "free as in speech"). You can copy, redistribute, and
modify it under the terms of the
<a href="http://www.gnu.org/licenses/gpl.html">GNU general public license</a>.
Enjoy!
</p>
<p>
DAGitty development has been sponsored by the Leeds Institute for
Data Analytics and by the Deutsche Forschungsgemeinschaft (DFG),
grant <a href="http://gepris.dfg.de/gepris/projekt/273587939">273587939</a>.<br/>
</p>
<p>
<img style="width:20em" src="images/Dfg_logo_schriftzug_blau.jpg"/>
</p>
<h2>How can I cite DAGitty?</h2>
<p>
If you use DAGitty in your scientific work, please consider citing us:
</p>
<p>
Johannes Textor, Benito van der Zander, Mark K. Gilthorpe, Maciej Liskiewicz,
George T.H. Ellison. <br/>
<a href="http://dx.doi.org/10.1093/ije/dyw341">Robust causal inference using directed acyclic graphs: the R package 'dagitty'.</a><br />
<i>International Journal of Epidemiology</i> 45(6):1887-1894, 2016.<br/>
<a href="http://johannes-textor.name/papers/2017-ije.pdf">PDF postprint</a>
</p>
<h2>How can I learn more about how DAGitty works?</h2>
<p>The algorithms used in DAGitty are described in more depth the following
papers:</p>
<p>
Johannes Textor, Maciej Liśkiewicz.<br />
<a href="http://www.tcs.uni-luebeck.de/downloads/papers/2011/Textor_Liskiewicz_Adjustment_Criteria_in_Causal_Diagrams_An_Algorithmic_Perspective.pdf">Adjustment Criteria in Causal Diagrams: An Algorithmic Perspective.</a><br />
In <i>Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011)</i>, pp. 681-688. AUAI press, 2011.
</p>
<p>Benito van der Zander, Maciej Liśkiewicz, Johannes Textor.<br />
<a href="http://auai.org/uai2014/proceedings/individuals/286.pdf">Constructing Separators and Adjustment Sets in Ancestral Graphs.</a><br/>
In <em>Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence (UAI 2014)</em>,
pp. 907-916. AUAI Press, 2014.
</p>
<p>Benito van der Zander, Johannes Textor, Maciej Liśkiewicz.<br />
<a href="http://ijcai.org/papers15/Papers/IJCAI15-457.pdf">Efficiently Finding
Conditional Instruments for Causal Inference.</a><br />
In<em> Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI 2015)</em>, pp. 3243-3249.
AAAI Press, 2015.
</p>
<p>Benito van der Zander, Maciej Liśkiewicz.<br />
<a href="https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12363/12096">Separators and Adjustment Sets in Markov Equivalent DAGs.</a><br />
In<em> Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
(AAAI 2016)</em>, pp. 3315-3321. AAAI Press, 2016.
</p>
<h2>What other related software is out there?</h2>
<p>There is currently quite a lot of activity in causal inference software. A few links:</p>
<ul>
<li><a href="https://cran.r-project.org/web/packages/ggdag/vignettes/intro-to-ggdag.html">ggdag</a>
is a nice R package based on dagitty
but tidyverse-compatible and with much better plotting functionality.</li>
<li><a href="https://www.gerkelab.com/project/shinydag/">shinydag</a> is another GUI
aimed at visualizing DAGs and exporting them in different publication-ready formats.</li>
<li><a href="http://www.phil.cmu.edu/projects/tetrad/">TETRAD</a></li>
<li><a href="http://epi.dife.de/dag/">DAG program</a> </li>
<li><a href="http://journals.lww.com/epidem/Fulltext/2010/07000/dagR__A_Suite_of_R_Functions_for_Directed_Acyclic.26.aspx">dagR</a> </li>
<li><a href="https://cbdrh.shinyapps.io/daggle/">daggle</a> is a shiny app where you can practice the rules of DAG-based covariate selection.</li>
<li><a href="https://github.com/krassowski/jupyterlab-dagitty">A JupyterLab extension to render dagitty models</a></li>
</ul>
<p>Please contact me if you know of other programs that should be added to this list,
or directly submit a pull request on github.</p>
</div>
<div class="col-sm-4" style="background-color: #f5f3f3;">
<!--
<h2>Versions</h2>
<p>The following versions of DAGitty are available:</p>
<ul>
<li><a href="development/dags.html">Development version</a> <br />
Recent development snapshot. May contain new
features, but could also contain new bugs.</li>
<li><a href="experimental">Experimental version</a> <br />
Most recent development snapshot. May not even work.</li>
<li><a href="dags.html">3.0: Released 2019-01-09</a></li>
<li><a href="history/v2.3/dags.html">2.3: Released 2015-08-19</a></li>
<li><a href="history/v2.2/dags.html">2.2: Released 2014-10-30</a></li>
<li><a href="history/v2.1/dags.html">2.1: Released 2014-02-06</a></li>
<li><a href="history/v2.0/dags.html">2.0: Released 2013-02-12</a></li>
<li><a href="history/v1.1/dags.html">1.1: Released 2011-11-29</a></li>
<li><a href="history/v1.0/dags.html">1.0: Released 2011-03-24</a></li>
<li><a href="history/v0.9b/dags.html">0.9b: Released 2010-11-24</a></li>
<li><a href="history/v0.9a/dags.html">0.9a: Released 2010-09-01</a></li>
</ul>
-->
<iframe src="https://mastodon.social/@johannes_textor/111198655416786580/embed" class="mastodon-embed" style="max-width: 100%; border: 0" width="400" allowfullscreen="allowfullscreen"></iframe><script src="https://mastodon.social/embed.js" async="async"></script>
<h2>Changelog</h2>
<p><strong>2023-10-07</strong></p>
<p> Moved to a new webserver after 12 years.
</p>
<p><strong>2023-07-11</strong></p>
<p> Version 3.1 is out, featuring selection variables.
</p>
<p><strong>2020-01-09</strong></p>
<p> Version 3.0 has been released! Complete reimplementation of the interface,
should work with mobile/touch now.</p>
<p><strong>2018-04-04</strong></p>
<p> Updated the development version and preparing for a long overdue release! </p>
<p><strong>2015-08-19</strong></p>
<p>
Version 2.3 has been released! The most notable new feature:
instrumental variables.
</p>
<p><strong>2014-10-30</strong></p>
<p>
Version 2.2 has been released!
</p>
<p><strong>2014-10-05</strong></p>
<p>
Version 2.2 is forthcoming and now available as the
<a href="development/dags.html">Development version</a>. This version features
a new, SEM-like diagram drawing style and the ability to share your DAGs
online.
</p>
<p><strong>2014-04-14</strong></p>
<p>
At "dagitty.net/learn", I am building some interactive tutorials
using the forthcoming version 2.1 of DAGitty. That version will
be embeddable into HTML pages, which will make it easy to include
interactive DAG drawings into just about any webpage. Check it out!
The first examples include an implementation of the "Simpson Machine"
and an interactive version of a tutorial text on d-separation.
</p>
<p><a href="changelog.html">View older entries ...</a></p>
</div>
</div><!--row--></div><!--container-->
</body>
</html>