-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcase_adhocSLFL.py
65 lines (48 loc) · 1.87 KB
/
case_adhocSLFL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import adHocSL
import datasets.cifar_data as cifar_data
import torch
import numpy as np
import random
def main():
sys_ = adHocSL.AdHocSL(pointa=3, pointb=5, num_dataowners=2, model_name="ignore for now")
# Load Data NOTE: adapt accordingly
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
trainset, testset = cifar_data.get_dataset()
trainloader, validloader, testloader = cifar_data.get_dataloaders(trainset, testset, batch_size=sys_.training_par.batch_size)
train_iterator = iter(trainloader)
valid_iterator = iter(validloader)
test_iterator = iter(testloader)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
sl_step=5
fedavg_step=10
warmup=5
datasharingM=0.5
share_batch = 1 / datasharingM -1
for epoch in range(sys_.training_par.epoch_num):
train_iterator1 = iter(trainloader)
train_iterator2 = iter(trainloader)
#print(len(train_iterator))
epoch_loss = 0
epoch_acc = 0
for batch1, batch2 in train_iterator:
images1, labels1 = batch1
images2, labels2 = batch2
if (epoch >= warmup and epoch % sl_step !=0):
(loss, acc) = sys_.local_update( 1, images1, labels1)
print(f'{loss} {acc}')
(loss, acc) = sys_.local_update( 2, images2, labels2)
print(f'{loss} {acc}')
else:
(loss, acc) = sys_.adHoc_update( 1, 2, images1, labels1)
print(f'{loss} {acc}')
(loss, acc) = sys_.adHoc_update( 2, 1, images2, labels2)
print(f'{loss} {acc}')
if (epoch >= warmup and epoch % fedavg_step == 0):
sys_.fed_avg()
if __name__ == '__main__':
main()