-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprob.py
682 lines (622 loc) · 25.7 KB
/
prob.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
'''
Module for classes and functions that are representing and processing basic probabilities.
Uses and depends on "Alphabet" that is used to define discrete random variables.
'''
import random
from copy import deepcopy
import math
from alphabet import *
#################################################################################################
# Generic utility functions
#################################################################################################
def _getMeTuple(alphas, str):
""" Handy function that resolves what entries that are being referred to in the case
of written wildcards etc.
Example y = _getMeTuple([DNA_Alphabet, Protein_Alphabet], '*R') gives y = (None, 'R')
alphas: the alphabets
str: the string that specifies entries (may include '*' and '-' signifying any symbol) """
assert len(str) == len(alphas), "Entry invalid"
if not type(str) is tuple:
list = []
for ndx in range(len(alphas)):
if str[ndx] == '*' or str[ndx] == '-':
list.append(None)
else:
list.append(str[ndx])
return tuple(list)
else:
return str
#################################################################################################
# Distrib class
#################################################################################################
class Distrib():
""" A class for a discrete probability distribution, defined over a specified "Alphabet"
TODO: Fix pseudo counts
Exclude from counts, specify in constructor,
include only when computing probabilities by standard formula (n_a + pseudo_a * N^(1/2)) / (N + N^(1/2))
Exclude from filesaves, include with filereads (optional)
"""
def __init__(self, alpha, pseudo = 0.0):
""" Construct a new distribution for a specified alphabet, using an optional pseudo-count.
alpha: alphabet
pseudo: either a single "count" that applies to all symbols, OR a distribution/dictionary with counts.
"""
self.pseudo = pseudo or 0.0
self.alpha = alpha
self.cnt = [0.0 for _ in alpha]
try: # assume pseudo is a dictionary or a Distrib itself
self.tot = 0
symndx = 0
for sym in alpha:
cnt = float(pseudo[sym])
self.cnt[symndx] = cnt
self.tot = self.tot + cnt
symndx += 1
except TypeError: # assume pseudo is a single count for each symbol
self.cnt = [float(self.pseudo) for _ in alpha]
self.tot = float(self.pseudo) * len(alpha) # track total counts (for efficiency)
def observe(self, sym, cntme = 1.0):
""" Make an observation of a symbol
sym: symbol that is being observed
cntme: number/weight of observation (default is 1)
"""
ndx = self.alpha.symbols.index(sym)
self.cnt[ndx] = self.cnt[ndx] + cntme
self.tot = self.tot + cntme
return
def reset(self):
""" Re-set the counts of this distribution. Pseudo-counts are re-applied. """
try:
self.tot = 0
symndx = 0
for sym in self.alpha: # assume it is a Distribution
cnt = float(self.pseudo[sym])
self.cnt[symndx] = cnt
self.tot = self.tot + cnt
symndx += 1
except TypeError: # assume pseudo is a single count for each symbol
self.cnt = [float(self.pseudo) for _ in self.alpha]
self.tot = float(self.pseudo) * len(self.alpha) # track total counts (for efficiency)
def reduce(self, new_alpha):
""" Create new distribution from self, using (smaller) alphabet new_alpha. """
d = Distrib(new_alpha, self.pseudo)
for sym in new_alpha:
d.observe(sym, self.cnt[self.alpha.index(sym)])
return d
def count(self, sym = None):
""" Return the absolute count(s) of the distribution
or the count for a specified symbol. """
if sym != None:
ndx = self.alpha.symbols.index(sym)
return self.cnt[ndx]
else:
d = {}
index = 0
for a in self.alpha:
d[a] = self.cnt[index]
index += 1
return d
def add(self, distrib):
""" Add the counts for the provided distribution to the present. """
for i in range(len(self.cnt)):
cnt = distrib.count(self.alpha[i])
self.cnt[i] += cnt
self.tot += cnt
def subtract(self, distrib):
""" Subtract the counts for the provided distribution from the present. """
for i in range(len(self.cnt)):
cnt = distrib.count(self.alpha[i])
self.cnt[i] -= cnt
self.tot -= cnt
def getSymbols(self):
return self.alpha.symbols
def __getitem__(self, sym):
""" Retrieve the probability of a symbol (ascertained by counts incl pseudo-counts) """
if self.tot > 0.0:
return self.count(sym) / self.tot
else:
return 1.0 / len(self.alpha) # uniform
def prob(self, sym = None):
""" Retrieve the probability of a symbol OR the probabilities of all symbols
(listed in order of the alphabet index). """
if sym != None:
return self.__getitem__(sym)
elif self.tot > 0:
return [ s / self.tot for s in self.cnt ]
else:
return [ 1.0 / len(self.alpha) for _ in self.cnt ]
def __iter__(self):
return self.alpha
def __str__(self):
""" Return a readable representation of the distribution """
str = '< '
for s in self.alpha:
str += (s + ("=%4.2f " % self[s]))
return str + ' >'
def swap(self, sym1, sym2):
""" Swap the entries for specified symbols. Useful for reverse complement etc.
Note that changes are made to the current instance. Use swapxcopy if you
want to leave this instance intact. """
sym1ndx = self.alpha.index(sym1)
sym2ndx = self.alpha.index(sym2)
tmpcnt = self.cnt[sym1ndx]
self.cnt[sym1ndx] = self.cnt[sym2ndx]
self.cnt[sym2ndx] = tmpcnt
def swapxcopy(self, sym1, sym2):
""" Create a new instance with swapped entries for specified symbols.
Useful for reverse complement etc.
Note that changes are NOT made to the current instance.
Use swap if you want to modify this instance. """
newdist = Distrib(self.alpha, self.count())
newdist.swap(sym1, sym2)
return newdist
def writeDistrib(self, filename = None):
""" Write the distribution to a file or string.
Note that the total number of counts is also saved, e.g.
* 1000 """
str = ''
for s in self.alpha:
str += (s + ("\t%f\n" % self[s]))
str += "*\t%d\n" % self.tot
if filename != None:
fh = open(filename, 'w')
fh.write(str)
fh.close()
return str
def generate(self):
""" Generate and return a symbol from the distribution using assigned probabilities. """
alpha = self.alpha
p = random.random() # get a random value between 0 and 1
q = 0.0
for sym in alpha: # pick a symbol with a frequency proportional to its probability
q = q + self[sym]
if p < q:
return sym
return alpha[len(alpha)]
def getmax(self):
""" Generate the symbol with the largest probability. """
maxprob = 0.0
maxsym = None
for sym in self.alpha:
if self[sym] > maxprob or maxprob == 0.0:
maxsym = sym
maxprob = self[sym]
return maxsym
def divergence(self, distrib2):
""" Calculate the Kullback-Leibler divergence between two discrete distributions.
Note that when self.prob(x) is 0, the divergence for x is 0.
When distrib2.prob(x) is 0, it is replaced by 0.0001.
"""
assert self.alpha == distrib2.alpha
sum = 0.0
base = len(self.alpha)
for sym in self.alpha:
if self[sym] > 0:
if distrib2[sym] > 0:
sum += math.log(self[sym] / distrib2[sym]) * self[sym]
else:
sum += math.log(self[sym] / 0.0001) * self[sym]
return sum
def entropy(self):
""" Calculate the information (Shannon) entropy of the distribution. """
sum = 0.0
base = len(self.alpha)
for sym in self.alpha:
p = self.__getitem__(sym)
if p == 0:
p = 0.0001
sum += p * math.log(p, base)
return -sum
def writeDistribs(distribs, filename):
""" Write a list/set of distributions to a single file. """
str = ''
k = 0
for d in distribs:
str += "[%d]\n%s" % (k, d.writeDistrib())
k += 1
fh = open(filename, 'w')
fh.write(str)
fh.close()
def _readDistrib(linelist):
""" Extract distribution from a pre-processed list if strings. """
symstr = ''
d = {}
for line in linelist:
line = line.strip()
if len(line) == 0 or line.startswith('#'):
continue
sections = line.split()
sym, value = sections[0:2]
if len(sym) == 1:
if sym != '*':
symstr += sym
else:
raise RuntimeError("Invalid symbol in distribution: " + sym)
try:
d[sym] = float(value)
except ValueError:
raise RuntimeError("Invalid value in distribution for symbol " + sym + ": " + value)
if len(d) == 0:
return None
alpha = Alphabet(symstr)
if '*' in d.keys(): # tot provided
for sym in d:
if sym != '*':
d[sym] = d[sym] * d['*']
distrib = Distrib(alpha, d)
return distrib
def readDistribs(filename):
""" Load a list of distributions from file.
Note that if a row contains '* <number>' then it is assumed that each probability
associated with the specific distribution is based on <number> counts. """
fh = open(filename)
string = fh.read()
distlist = []
linelist = []
for line in string.splitlines():
line = line.strip()
if line.startswith('['):
if len(linelist) != 0:
distlist.append(_readDistrib(linelist))
linelist = []
elif len(line) == 0 or line.startswith('#'):
pass # comment or blank line --> ignore
else:
linelist.append(line)
# end for-loop, reading the file
if len(linelist) != 0:
distlist.append(_readDistrib(linelist))
fh.close()
return distlist
def readDistrib(filename):
""" Load a distribution from file.
Note that if a row contains '* <number>' then it is assumed that each probability
is based on <number> counts. """
dlist = readDistribs(filename)
if len(dlist) > 0: # if at least one distribution was in the file...
return dlist[0] # return the first
import re
def _readMultiCount(linelist, format = 'JASPAR'):
ncol = 0
symcount = {}
if format == 'JASPAR':
for line in linelist:
line = line.strip()
if len(line) > 0:
name = line.split()[0]
counts = []
for txt in re.findall(r'\w+', line):
try:
y = float(txt)
counts.append(y)
except ValueError:
pass # ignore non-numeric entries
if len(counts) != ncol and ncol != 0:
raise RuntimeError('Invalid row in file: ' + line)
ncol = len(counts)
if len(name) == 1: # proper symbol
symcount[name] = counts
alpha = Alphabet(''.join(symcount.keys()))
distribs = []
for col in range(ncol):
d = dict([(sym, symcount[sym][col]) for sym in symcount])
distribs.append(Distrib(alpha, d))
else:
raise RuntimeError('Unsupported format: ' + format)
return distribs
def readMultiCounts(filename, format = 'JASPAR'):
""" Read a file of raw counts for multiple distributions over the same set of symbols
for (possibly) multiple (named) entries.
filename: name of file
format: format of file, default is 'JASPAR' exemplified below
>MA001.1
A [1423 708 2782 0 4000 27 3887 3550 799 1432 1487 ]
C [ 560 1633 31 0 0 29 0 4 681 897 829 ]
G [1242 1235 10 4000 0 109 6 383 2296 1360 1099 ]
T [ 775 424 1177 0 0 3835 107 63 224 311 585 ]
returns a dictionary of Distrib's, key:ed by entry name (e.g. MA001.1)
"""
fh = open(filename)
linelist = []
entryname = ''
entries = {}
for row in fh:
row = row.strip()
if len(row) < 1: continue
if row.startswith('>'):
if len(linelist) > 0:
entries[entryname] = _readMultiCount(linelist, format=format)
linelist = []
entryname = row[1:].split()[0]
else:
linelist.append(row)
if len(linelist) > 0:
entries[entryname] = _readMultiCount(linelist, format=format)
fh.close()
return entries
def readMultiCount(filename, format = 'JASPAR'):
""" Read a file of raw counts for multiple distributions over the same set of symbols.
filename: name of file
format: format of file, default is 'JASPAR' exemplified below
A [1423 708 2782 0 4000 27 3887 3550 799 1432 1487 ]
C [ 560 1633 31 0 0 29 0 4 681 897 829 ]
G [1242 1235 10 4000 0 109 6 383 2296 1360 1099 ]
T [ 775 424 1177 0 0 3835 107 63 224 311 585 ]
returns a list of Distrib's
"""
d = readMultiCounts(filename, format=format)
if len(d) > 0:
return d.values()[0]
#################################################################################################
# Joint class
#################################################################################################
class Joint(object):
""" A joint probability class.
The JP is represented as a distribution over n-tuples where n is the number of variables.
Variables can be for any defined alphabet. The size of each alphabet determine the
number of entries in the table (with probs that add up to 1.0) """
def __init__(self, alphas):
""" A distribution of n-tuples.
alphas: Alphabet(s) over which the distribution is defined
"""
if type(alphas) is Alphabet:
self.alphas = tuple( [alphas] )
elif type(alphas) is tuple:
self.alphas = alphas
else:
self.alphas = tuple( alphas )
self.store = TupleStore(self.alphas)
self.totalCnt = 0
def getN(self):
""" Retrieve the number of distributions/random variables. """
return len(self.alphas)
def __iter__(self):
return self.store.__iter__()
def reset(self):
""" Re-set the counts of this joint distribution. Pseudo-counts are re-applied. """
for entry in self.store:
self.store[entry] = None
self.totalCnt = 0
def observe(self, key, cnt = 1):
""" Make an observation of a tuple/key
key: tuple that is being observed
cnt: number/weight of observation (default is 1)
"""
key = _getMeTuple(self.alphas, key)
if not None in key:
score = self.store[key]
if (score == None):
score = 0
self.totalCnt += cnt
self.store[key] = score + cnt
else: # there are wildcards in the key
allkeys = [mykey for mykey in self.store.getAll(key)]
mycnt = float(cnt)/float(len(allkeys))
self.totalCnt += cnt
for mykey in allkeys:
score = self.store[mykey]
if (score == None):
score = 0
self.store[mykey] = score + mycnt
return
def count(self, key):
""" Return the absolute count that is used for the joint probability table. """
key = _getMeTuple(self.alphas, key)
score = self.store[key]
if (score == None):
score = 0.0
for match in self.store.getAll(key):
y = self.store[match]
if y != None:
score += y
return score
def __getitem__(self, key):
""" Determine and return the probability of a specified expression of the n-tuple
which can involve "wildcards"
Note that no assumptions are made regarding independence. """
key = _getMeTuple(self.alphas, key)
score = self.store[key]
if (score == None):
score = 0.0
for match in self.store.getAll(key):
y = self.store[match]
if y != None:
score += y
if self.totalCnt == 0:
return 0.0
return float(score) / float(self.totalCnt)
def __str__(self):
""" Return a textual representation of the JP. """
str = '< '
if self.totalCnt == 0.0:
return str + 'None >'
for s in self.store:
if self[s] == None:
y = 0.0
else:
y = self[s]
str += (''.join(s) + ("=%4.2f " % y))
return str + ' >'
def items(self, sort = False):
""" In a dictionary-like way return all entries as a list of 2-tuples (key, prob).
If sort is True, entries are sorted in descending order of probability.
Note that this function should NOT be used for big (>5 variables) tables."""
if self.totalCnt == 0.0:
return []
ret = []
for s in self.store:
if self[s] != None:
ret.append((s, self[s]))
if sort:
return sorted(ret, key=lambda v: v[1], reverse=True)
return ret
class IndepJoint(Joint):
def __init__(self, alphas, pseudo = 0.0):
""" A distribution of n-tuples.
All positions are assumed to be independent.
alphas: Alphabet(s) over which the distribution is defined
"""
self.pseudo = pseudo
if type(alphas) is Alphabet:
self.alphas = tuple( [alphas] )
elif type(alphas) is tuple:
self.alphas = alphas
else:
self.alphas = tuple( alphas )
self.store = [Distrib(alpha, pseudo) for alpha in self.alphas]
def getN(self):
""" Retrieve the number of distributions/random variables. """
return len(self.alphas)
def __iter__(self):
return TupleStore(self.alphas).__iter__()
def reset(self):
""" Re-set the counts of each distribution. Pseudo-counts are re-applied. """
self.store = [Distrib(alpha, self.pseudo) for alpha in self.alphas]
def observe(self, key, cnt = 1):
""" Make an observation of a tuple/key
key: tuple that is being observed
cnt: number/weight of observation (default is 1)
"""
assert len(key) == len(self.store), "Number of symbols must agree with the number of positions"
for i in range(len(self.store)):
subkey = key[i]
if subkey == '*' or subkey == '-':
for sym in self.alphas[i]:
score = self.store[i][sym]
if (score == None):
score = 0
self.store[i].observe(sym, float(cnt)/float(len(self.alphas[i])))
else:
score = self.store[i][subkey]
if (score == None):
score = 0
self.store[i].observe(subkey, cnt)
def __getitem__(self, key):
""" Determine and return the probability of a specified expression of the n-tuple
which can involve "wildcards"
Note that variables are assumed to be independent. """
assert len(key) == len(self.store), "Number of symbols must agree with the number of positions"
prob = 1.0
for i in range(len(self.store)):
mykey = key[i]
if mykey == '*' or mykey == '-':
pass # same as multiplying with 1.0 (all symbols possible)
else:
prob *= self.store[i][mykey]
return prob
def get(self, sym, pos):
""" Retrieve the probability of a specific symbol at a specified position. """
mystore = self.store[pos]
return mystore[sym]
def getColumn(self, column, count = False):
""" Retrieve all the probabilities (or counts) for a specified position.
Returns values as a dictionary, with symbol as key."""
d = {}
for a in self.alphas[column]:
if count: # absolute count
d[a] = self.store[column].count(a)
else: # probability
d[a] = self.store[column][a]
return d
def getRow(self, sym, count = False):
""" Retrieve the probabilities (or counts) for a specific symbol over all columns/positions.
Returns a list of values in the order of the variables/alphabets supplied to the constructor. """
d = []
for store in self.store:
if count: # absolute count
d.append(store.count(sym))
else: # probability
d.append(store[sym])
return d
def getMatrix(self, count = False):
""" Retrieve the full matrix of probabilities (or counts) """
d = {}
for a in self.alphas[0]:
d[a] = self.getRow(a, count)
return d
def displayMatrix(self, count = False):
""" Pretty-print matrix """
print " \t%s" % (' '.join("%5d" % (i + 1) for i in range(len(self.alphas))))
for a in self.alphas[0]:
if count:
print "%s\t%s" % (a, ' '.join("%5d" % (y) for y in self.getRow(a, True)))
else:
print "%s\t%s" % (a, ' '.join("%5.3f" % (y) for y in self.getRow(a)))
def __str__(self):
""" Text representation of the table. Note that size is an issue so big tables
will not be retrieved and displayed. """
if self.alphas > 5:
return '< ... too large to process ... >'
tstore = TupleStore(self.alphas)
str = '< '
for key in tstore:
p = 1.0
for i in range(len(self.store)):
value = self.store[i][key[i]]
if value != None and value != 0.0:
p *= value
else:
p = 0;
break;
str += (''.join(key) + ("=%4.2f " % p))
return str + ' >'
def items(self, sort = False):
""" In a dictionary-like way return all entries as a list of 2-tuples (key, prob).
If sort is True, entries are sorted in descending order of probability.
Note that this function should NOT be used for big (>5 variables) tables."""
tstore = TupleStore(self.alphas)
ret = []
for key in tstore:
p = 1.0
for i in range(len(self.store)):
value = self.store[i][key[i]]
if value != None and value != 0.0:
p *= value
else:
p = 0;
break;
if p > 0.0:
ret.append((key, p))
if sort:
return sorted(ret, key=lambda v: v[1], reverse=True)
return ret
class NaiveBayes():
""" NaiveBayes implements a classifier: a model defined over a class variable
and conditional on a list of discrete feature variables.
Note that feature variables are assumed to be independent. """
def __init__(self, inputs, output, pseudo_input = 0.0, pseudo_output = 0.0):
""" Initialise a classifier.
inputs: list of alphabets that define the values that input variables can take.
output: alphabet that defines the possible values the output variable takes
pseudo_input: pseudo-count used for each input variable (default is 0.0)
pseudo_output: pseudo-count used for the output variable (default is 0.0) """
if type(inputs) is Alphabet:
self.inputs = tuple( [inputs] )
elif type(inputs) is tuple:
self.inputs = inputs
else:
self.inputs = tuple( inputs )
self.condprobs = {} # store conditional probabilities as a dictionary (class is key)
for outsym in output: # GIVEN the class
# for each input variable initialise a conditional probability
self.condprobs[outsym] = [ Distrib(input, pseudo_input) for input in self.inputs ]
self.classprob = Distrib(output, pseudo_output) # the class prior
def observe(self, inpseq, outsym):
""" Record an observation of an input sequence of feature values that belongs to a class.
inpseq: sequence/list of feature values, e.g. 'ATG'
outsym: the class assigned to these feature values. """
condprob = self.condprobs[outsym]
for i in range(len(inpseq)):
condprob[i].observe(inpseq[i])
self.classprob.observe(outsym)
def __getitem__(self, key):
""" Determine and return the class probability GIVEN a specified n-tuple of feature values
The class probability is given as an instance of Distrib. """
out = Distrib(self.classprob.alpha)
for outsym in self.classprob.getSymbols():
condprob = self.condprobs[outsym]
prob = self.classprob[outsym]
for i in range(len(key)):
prob *= condprob[i][key[i]] or 0.0
out.observe(outsym, prob)
return out