From c400e27f71309a7936f816a5e5f287c703518de4 Mon Sep 17 00:00:00 2001 From: "Documenter.jl" Date: Thu, 23 Jan 2025 06:15:59 +0000 Subject: [PATCH] build based on b7401f5 --- previews/PR3919/.documenter-siteinfo.json | 2 +- previews/PR3919/JuMP.pdf | Bin 8009468 -> 8009680 bytes .../PR3919/api/JuMP.Containers/index.html | 30 +- previews/PR3919/api/JuMP/index.html | 556 +- .../algebraic_modeling_languages/index.html | 2 +- .../PR3919/background/bibliography/index.html | 2 +- previews/PR3919/changelog/index.html | 2 +- .../PR3919/developers/checklists/index.html | 2 +- .../PR3919/developers/contributing/index.html | 2 +- .../custom_solver_binaries/index.html | 2 +- .../PR3919/developers/extensions/index.html | 2 +- previews/PR3919/developers/roadmap/index.html | 2 +- previews/PR3919/developers/style/index.html | 2 +- .../extensions/DimensionalData/index.html | 2 +- .../PR3919/extensions/introduction/index.html | 2 +- previews/PR3919/index.html | 2 +- previews/PR3919/installation/index.html | 2 +- previews/PR3919/manual/callbacks/index.html | 2 +- previews/PR3919/manual/complex/index.html | 2 +- previews/PR3919/manual/constraints/index.html | 2 +- previews/PR3919/manual/containers/index.html | 2 +- previews/PR3919/manual/expressions/index.html | 2 +- previews/PR3919/manual/models/index.html | 2 +- previews/PR3919/manual/nlp/index.html | 2 +- previews/PR3919/manual/nonlinear/index.html | 2 +- previews/PR3919/manual/objective/index.html | 2 +- previews/PR3919/manual/solutions/index.html | 2 +- previews/PR3919/manual/variables/index.html | 2 +- .../PR3919/moi/background/duality/index.html | 2 +- .../infeasibility_certificates/index.html | 2 +- .../moi/background/motivation/index.html | 2 +- .../background/naming_conventions/index.html | 2 +- previews/PR3919/moi/changelog/index.html | 2 +- .../moi/developer/checklists/index.html | 2 +- previews/PR3919/moi/index.html | 2 +- .../PR3919/moi/manual/constraints/index.html | 2 +- previews/PR3919/moi/manual/models/index.html | 2 +- .../PR3919/moi/manual/modification/index.html | 2 +- .../PR3919/moi/manual/solutions/index.html | 2 +- .../moi/manual/standard_form/index.html | 2 +- .../PR3919/moi/manual/variables/index.html | 2 +- .../PR3919/moi/reference/callbacks/index.html | 2 +- .../moi/reference/constraints/index.html | 2 +- .../PR3919/moi/reference/errors/index.html | 2 +- .../PR3919/moi/reference/models/index.html | 4 +- .../moi/reference/modification/index.html | 2 +- .../PR3919/moi/reference/nonlinear/index.html | 2 +- .../moi/reference/standard_form/index.html | 2 +- .../PR3919/moi/reference/variables/index.html | 2 +- previews/PR3919/moi/release_notes/index.html | 2 +- .../submodules/Benchmarks/overview/index.html | 2 +- .../Benchmarks/reference/index.html | 2 +- .../Bridges/implementation/index.html | 2 +- .../Bridges/list_of_bridges/index.html | 2 +- .../submodules/Bridges/overview/index.html | 2 +- .../submodules/Bridges/reference/index.html | 2 +- .../FileFormats/overview/index.html | 2 +- .../FileFormats/reference/index.html | 2 +- .../submodules/Nonlinear/overview/index.html | 2 +- .../submodules/Nonlinear/reference/index.html | 2 +- .../moi/submodules/Test/overview/index.html | 2 +- .../moi/submodules/Test/reference/index.html | 2 +- .../submodules/Utilities/overview/index.html | 2 +- .../submodules/Utilities/reference/index.html | 4 +- .../tutorials/bridging_constraint/index.html | 2 +- .../PR3919/moi/tutorials/example/index.html | 2 +- .../moi/tutorials/implementing/index.html | 2 +- .../PR3919/moi/tutorials/latency/index.html | 2 +- .../manipulating_expressions/index.html | 2 +- .../moi/tutorials/mathprogbase/index.html | 2 +- previews/PR3919/packages/Alpine/index.html | 2 +- .../PR3919/packages/AmplNLWriter/index.html | 2 +- previews/PR3919/packages/BARON/index.html | 2 +- .../PR3919/packages/BilevelJuMP/index.html | 2 +- .../packages/CATrustRegionMethod/index.html | 2 +- previews/PR3919/packages/CDCS/index.html | 2 +- previews/PR3919/packages/CDDLib/index.html | 2 +- previews/PR3919/packages/COPT/index.html | 2 +- previews/PR3919/packages/COSMO/index.html | 2 +- previews/PR3919/packages/CPLEX/index.html | 2 +- previews/PR3919/packages/CSDP/index.html | 2 +- previews/PR3919/packages/Cbc/index.html | 2 +- previews/PR3919/packages/Clarabel/index.html | 2 +- previews/PR3919/packages/Clp/index.html | 2 +- previews/PR3919/packages/DAQP/index.html | 2 +- previews/PR3919/packages/DSDP/index.html | 2 +- previews/PR3919/packages/DiffOpt/index.html | 2 +- .../DisjunctiveProgramming/index.html | 2 +- .../PR3919/packages/Dualization/index.html | 2 +- previews/PR3919/packages/EAGO/index.html | 2 +- previews/PR3919/packages/ECOS/index.html | 2 +- previews/PR3919/packages/GAMS/index.html | 2 +- previews/PR3919/packages/GLPK/index.html | 2 +- previews/PR3919/packages/Gurobi/index.html | 2 +- previews/PR3919/packages/HiGHS/index.html | 2 +- previews/PR3919/packages/Hypatia/index.html | 2 +- .../PR3919/packages/InfiniteOpt/index.html | 2 +- previews/PR3919/packages/Ipopt/index.html | 2 +- previews/PR3919/packages/Juniper/index.html | 2 +- previews/PR3919/packages/KNITRO/index.html | 2 +- previews/PR3919/packages/Loraine/index.html | 2 +- previews/PR3919/packages/MAiNGO/index.html | 2 +- previews/PR3919/packages/MadNLP/index.html | 2 +- previews/PR3919/packages/Manopt/index.html | 2 +- previews/PR3919/packages/MathOptAI/index.html | 2 +- .../packages/MathOptSymbolicAD/index.html | 2 +- previews/PR3919/packages/MiniZinc/index.html | 2 +- .../PR3919/packages/MosekTools/index.html | 2 +- .../MultiObjectiveAlgorithms/index.html | 2 +- .../PR3919/packages/NEOSServer/index.html | 2 +- previews/PR3919/packages/NLopt/index.html | 2 +- previews/PR3919/packages/OSQP/index.html | 2 +- previews/PR3919/packages/Optim/index.html | 2 +- .../PR3919/packages/PATHSolver/index.html | 2 +- previews/PR3919/packages/Pajarito/index.html | 2 +- .../ParametricOptInterface/index.html | 2 +- previews/PR3919/packages/Pavito/index.html | 2 +- previews/PR3919/packages/Percival/index.html | 2 +- .../packages/PiecewiseLinearOpt/index.html | 2 +- previews/PR3919/packages/Plasmo/index.html | 2 +- previews/PR3919/packages/PolyJuMP/index.html | 2 +- previews/PR3919/packages/ProxSDP/index.html | 2 +- previews/PR3919/packages/SCIP/index.html | 2 +- previews/PR3919/packages/SCS/index.html | 2 +- previews/PR3919/packages/SDDP/index.html | 2 +- previews/PR3919/packages/SDPA/index.html | 2 +- previews/PR3919/packages/SDPLR/index.html | 2 +- previews/PR3919/packages/SDPNAL/index.html | 2 +- previews/PR3919/packages/SDPT3/index.html | 2 +- previews/PR3919/packages/SeDuMi/index.html | 2 +- .../PR3919/packages/SumOfSquares/index.html | 2 +- previews/PR3919/packages/Tulip/index.html | 2 +- previews/PR3919/packages/Xpress/index.html | 2 +- previews/PR3919/packages/solvers/index.html | 2 +- previews/PR3919/release_notes/index.html | 2 +- previews/PR3919/should_i_use/index.html | 2 +- .../benders_decomposition/index.html | 4 +- .../{9008dedb.svg => 63024adc.svg} | 670 +- .../{eea18202.svg => e6d57b32.svg} | 1002 +- .../index.html | 12 +- .../algorithms/parallelism/index.html | 2 +- .../tutorials/algorithms/pdhg/index.html | 8 +- .../{325ee38b.svg => 52d38cd9.svg} | 200 +- .../{ad01c356.svg => a2ceab31.svg} | 650 +- .../{6df54025.svg => d8531d0c.svg} | 132 +- .../algorithms/rolling_horizon/index.html | 4 +- .../{39d7e093.svg => e84103ef.svg} | 454 +- .../{9f18465f.svg => eeb895cb.svg} | 454 +- .../tsp_lazy_constraints/index.html | 6 +- .../optimal_power_flow/index.html | 6 +- .../{f5be8345.svg => 8d3e80b2.svg} | 120 +- .../{4943efe2.svg => 9b6d190d.svg} | 124 +- .../{f698032f.svg => d42e5874.svg} | 56 +- .../applications/power_systems/index.html | 10 +- .../{894b8100.svg => 4e0e6de5.svg} | 134 +- .../two_stage_stochastic/5ef5fee0.svg | 99 + .../{a88a6b34.svg => 9cdd0a89.svg} | 142 +- .../two_stage_stochastic/e0b424d0.svg | 116 + .../two_stage_stochastic/eea0355b.svg | 114 - .../two_stage_stochastic/f465fe27.svg | 102 - .../two_stage_stochastic/index.html | 62 +- .../tutorials/applications/web_app/index.html | 4 +- .../conic/arbitrary_precision/index.html | 4 +- .../tutorials/conic/dualization/index.html | 50 +- .../{f91d9612.svg => e867dd5c.svg} | 4856 +- .../{d1c5d9dc.svg => f0813e54.svg} | 4854 +- .../tutorials/conic/ellipse_approx/index.html | 12 +- .../{457206ed.svg => 7dc2b446.svg} | 66 +- .../{b90dca74.svg => a4dc8bbd.svg} | 586 +- .../{39d58e8a.svg => b41c67d3.svg} | 558 +- .../{4e59ec11.svg => f59bdc7b.svg} | 544 +- .../conic/ellipse_fitting/index.html | 8 +- .../conic/experiment_design/index.html | 2 +- .../tutorials/conic/introduction/index.html | 2 +- .../conic/logistic_regression/index.html | 2 +- .../{e22ab5b8.svg => 664f0faf.svg} | 70 +- .../{5a0e42a1.svg => 890ef6d9.svg} | 76 +- .../tutorials/conic/min_ellipse/index.html | 6 +- .../conic/quantum_discrimination/index.html | 6 +- .../{4a49df52.svg => 90388fab.svg} | 70 +- .../conic/simple_examples/index.html | 4 +- .../tutorials/conic/start_values/index.html | 16 +- .../conic/tips_and_tricks/index.html | 2 +- .../getting_started/debugging/index.html | 2 +- .../index.html | 2 +- .../getting_started_with_JuMP/index.html | 2 +- .../{5ef3626b.svg => 43a1bf83.svg} | 94 +- .../{7614ac3a.svg => 65fcc78e.svg} | 118 +- .../{b15d4f3e.svg => 75fa0fa3.svg} | 88 +- .../index.html | 10 +- .../getting_started_with_julia/index.html | 8 +- .../index.html | 2 +- .../getting_started/introduction/index.html | 2 +- .../performance_tips/index.html | 2 +- .../sum_if/{007d8169.svg => 872ac60d.svg} | 82 +- .../sum_if/{20b13996.svg => b27cefad.svg} | 108 +- .../getting_started/sum_if/index.html | 8 +- .../getting_started/tolerances/index.html | 60 +- .../PR3919/tutorials/linear/basis/index.html | 10 +- .../tutorials/linear/callbacks/index.html | 2 +- .../tutorials/linear/cannery/index.html | 4 +- .../linear/constraint_programming/index.html | 2 +- .../PR3919/tutorials/linear/diet/index.html | 8 +- .../{073d6b45.svg => 280a22f0.svg} | 108 +- .../{e997eb25.svg => a4299ee8.svg} | 108 +- .../{d5d62d7e.svg => bff17d7a.svg} | 94 +- .../{a6c4b167.svg => d7088ec2.svg} | 84 +- .../linear/facility_location/index.html | 8 +- .../{b1a6b853.svg => 0f37474c.svg} | 124 +- .../{6f4b27ac.svg => 4b2bb7c4.svg} | 296 +- .../{dbd76357.svg => ac082c26.svg} | 292 +- .../linear/factory_schedule/index.html | 6 +- .../tutorials/linear/finance/index.html | 2 +- .../linear/geographic_clustering/index.html | 2 +- .../tutorials/linear/introduction/index.html | 2 +- .../tutorials/linear/knapsack/index.html | 4 +- .../linear/lp_sensitivity/index.html | 6 +- .../tutorials/linear/mip_duality/index.html | 2 +- .../PR3919/tutorials/linear/multi/index.html | 6 +- .../linear/multi_commodity_network/index.html | 4 +- .../multi_objective_examples/index.html | 8 +- .../{a18412a8.svg => c3a0c8b3.svg} | 78 +- .../{a7c8bc8f.svg => e4059e08.svg} | 80 +- .../multi_objective_knapsack/index.html | 8 +- .../linear/multiple_solutions/index.html | 6 +- .../tutorials/linear/n-queens/index.html | 2 +- .../tutorials/linear/network_flows/index.html | 2 +- .../{7d4267dd.svg => 11bd4796.svg} | 60 +- .../{dd6d9910.svg => 260828d3.svg} | 90 +- .../{bbf657b2.svg => 2a732aad.svg} | 62 +- .../{10a04df6.svg => 407a968e.svg} | 92 +- .../{95c3d798.svg => 4a9d65c9.svg} | 100 +- .../{72172501.svg => 4f5d77be.svg} | 96 +- .../{fee7ea10.svg => 56842870.svg} | 96 +- .../{c36de71a.svg => ac563f8f.svg} | 58 +- .../{b79d4b90.svg => bcef44e2.svg} | 66 +- .../{f0dda662.svg => df9c2979.svg} | 56 +- .../{aa313eaa.svg => e2b40c90.svg} | 66 +- .../{a96ab105.svg => ed494786.svg} | 70 +- .../linear/piecewise_linear/index.html | 24 +- .../PR3919/tutorials/linear/sudoku/index.html | 2 +- .../linear/tips_and_tricks/index.html | 2 +- .../PR3919/tutorials/linear/transp/index.html | 2 +- .../{a0b92c67.svg => 077eef88.svg} | 1058 +- .../{523efa10.svg => 0ed84c5b.svg} | 2054 +- .../{688d763b.svg => 18edbffb.svg} | 1070 +- .../{6b4d2240.svg => 461bb993.svg} | 1056 +- .../{1ab115ff.svg => 51af17bd.svg} | 254 +- .../{2bd719f5.svg => 5b994629.svg} | 1056 +- .../{686ef6a1.svg => 7ad3e03a.svg} | 256 +- .../{436ca34d.svg => ae452008.svg} | 41796 ++++++++-------- .../{4f5d3b38.svg => c2255665.svg} | 1072 +- .../nonlinear/classifiers/index.html | 18 +- .../nonlinear/complementarity/index.html | 4 +- .../nonlinear/introduction/index.html | 2 +- .../nonlinear/nested_problems/index.html | 6 +- .../nonlinear/operator_ad/index.html | 2 +- .../portfolio/{faace5bf.svg => 9ac4f1c3.svg} | 1126 +- .../tutorials/nonlinear/portfolio/index.html | 6 +- .../nonlinear/querying_hessians/index.html | 2 +- .../{30349884.svg => c182777c.svg} | 206 +- .../nonlinear/rocket_control/index.html | 4 +- .../nonlinear/simple_examples/index.html | 4 +- .../{130af623.svg => 53168d36.svg} | 148 +- .../{62d404c2.svg => 8c54e0f5.svg} | 294 +- .../{44df754a.svg => dbf95bbb.svg} | 66 +- .../index.html | 6 +- .../nonlinear/tips_and_tricks/index.html | 2 +- .../user_defined_hessians/index.html | 4 +- .../transitioning_from_matlab/index.html | 4 +- 270 files changed, 35900 insertions(+), 35901 deletions(-) rename previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/{9008dedb.svg => 63024adc.svg} (72%) rename previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/{eea18202.svg => e6d57b32.svg} (69%) rename previews/PR3919/tutorials/algorithms/rolling_horizon/{325ee38b.svg => 52d38cd9.svg} (86%) rename previews/PR3919/tutorials/algorithms/rolling_horizon/{ad01c356.svg => a2ceab31.svg} (87%) rename previews/PR3919/tutorials/algorithms/rolling_horizon/{6df54025.svg => d8531d0c.svg} (90%) rename previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/{39d7e093.svg => e84103ef.svg} (72%) rename previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/{9f18465f.svg => eeb895cb.svg} (72%) rename previews/PR3919/tutorials/applications/power_systems/{f5be8345.svg => 8d3e80b2.svg} (86%) rename previews/PR3919/tutorials/applications/power_systems/{4943efe2.svg => 9b6d190d.svg} (86%) rename previews/PR3919/tutorials/applications/power_systems/{f698032f.svg => d42e5874.svg} (85%) rename previews/PR3919/tutorials/applications/two_stage_stochastic/{894b8100.svg => 4e0e6de5.svg} (76%) create mode 100644 previews/PR3919/tutorials/applications/two_stage_stochastic/5ef5fee0.svg rename previews/PR3919/tutorials/applications/two_stage_stochastic/{a88a6b34.svg => 9cdd0a89.svg} (77%) create mode 100644 previews/PR3919/tutorials/applications/two_stage_stochastic/e0b424d0.svg delete mode 100644 previews/PR3919/tutorials/applications/two_stage_stochastic/eea0355b.svg delete mode 100644 previews/PR3919/tutorials/applications/two_stage_stochastic/f465fe27.svg rename previews/PR3919/tutorials/conic/ellipse_approx/{f91d9612.svg => e867dd5c.svg} (57%) rename previews/PR3919/tutorials/conic/ellipse_approx/{d1c5d9dc.svg => f0813e54.svg} (57%) rename previews/PR3919/tutorials/conic/ellipse_fitting/{457206ed.svg => 7dc2b446.svg} (98%) rename previews/PR3919/tutorials/conic/ellipse_fitting/{b90dca74.svg => a4dc8bbd.svg} (82%) rename previews/PR3919/tutorials/conic/ellipse_fitting/{39d58e8a.svg => b41c67d3.svg} (80%) rename previews/PR3919/tutorials/conic/ellipse_fitting/{4e59ec11.svg => f59bdc7b.svg} (80%) rename previews/PR3919/tutorials/conic/min_ellipse/{e22ab5b8.svg => 664f0faf.svg} (88%) rename previews/PR3919/tutorials/conic/min_ellipse/{5a0e42a1.svg => 890ef6d9.svg} (88%) rename previews/PR3919/tutorials/conic/simple_examples/{4a49df52.svg => 90388fab.svg} (79%) rename previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/{5ef3626b.svg => 43a1bf83.svg} (84%) rename previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/{7614ac3a.svg => 65fcc78e.svg} (82%) rename previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/{b15d4f3e.svg => 75fa0fa3.svg} (85%) rename previews/PR3919/tutorials/getting_started/sum_if/{007d8169.svg => 872ac60d.svg} (55%) rename previews/PR3919/tutorials/getting_started/sum_if/{20b13996.svg => b27cefad.svg} (60%) rename previews/PR3919/tutorials/linear/facility_location/{073d6b45.svg => 280a22f0.svg} (79%) rename previews/PR3919/tutorials/linear/facility_location/{e997eb25.svg => a4299ee8.svg} (79%) rename previews/PR3919/tutorials/linear/facility_location/{d5d62d7e.svg => bff17d7a.svg} (81%) rename previews/PR3919/tutorials/linear/facility_location/{a6c4b167.svg => d7088ec2.svg} (80%) rename previews/PR3919/tutorials/linear/factory_schedule/{b1a6b853.svg => 0f37474c.svg} (85%) rename previews/PR3919/tutorials/linear/factory_schedule/{6f4b27ac.svg => 4b2bb7c4.svg} (78%) rename previews/PR3919/tutorials/linear/factory_schedule/{dbd76357.svg => ac082c26.svg} (78%) rename previews/PR3919/tutorials/linear/multi_objective_knapsack/{a18412a8.svg => c3a0c8b3.svg} (87%) rename previews/PR3919/tutorials/linear/multi_objective_knapsack/{a7c8bc8f.svg => e4059e08.svg} (83%) rename previews/PR3919/tutorials/linear/piecewise_linear/{7d4267dd.svg => 11bd4796.svg} (81%) rename previews/PR3919/tutorials/linear/piecewise_linear/{dd6d9910.svg => 260828d3.svg} (78%) rename previews/PR3919/tutorials/linear/piecewise_linear/{bbf657b2.svg => 2a732aad.svg} (85%) rename previews/PR3919/tutorials/linear/piecewise_linear/{10a04df6.svg => 407a968e.svg} (82%) rename previews/PR3919/tutorials/linear/piecewise_linear/{95c3d798.svg => 4a9d65c9.svg} (84%) rename previews/PR3919/tutorials/linear/piecewise_linear/{72172501.svg => 4f5d77be.svg} (80%) rename previews/PR3919/tutorials/linear/piecewise_linear/{fee7ea10.svg => 56842870.svg} (92%) rename previews/PR3919/tutorials/linear/piecewise_linear/{c36de71a.svg => ac563f8f.svg} (85%) rename previews/PR3919/tutorials/linear/piecewise_linear/{b79d4b90.svg => bcef44e2.svg} (82%) rename previews/PR3919/tutorials/linear/piecewise_linear/{f0dda662.svg => df9c2979.svg} (86%) rename previews/PR3919/tutorials/linear/piecewise_linear/{aa313eaa.svg => e2b40c90.svg} (94%) rename previews/PR3919/tutorials/linear/piecewise_linear/{a96ab105.svg => ed494786.svg} (86%) rename previews/PR3919/tutorials/nonlinear/classifiers/{a0b92c67.svg => 077eef88.svg} (62%) rename previews/PR3919/tutorials/nonlinear/classifiers/{523efa10.svg => 0ed84c5b.svg} (61%) rename previews/PR3919/tutorials/nonlinear/classifiers/{688d763b.svg => 18edbffb.svg} (62%) rename previews/PR3919/tutorials/nonlinear/classifiers/{6b4d2240.svg => 461bb993.svg} (62%) rename previews/PR3919/tutorials/nonlinear/classifiers/{1ab115ff.svg => 51af17bd.svg} (73%) rename previews/PR3919/tutorials/nonlinear/classifiers/{2bd719f5.svg => 5b994629.svg} (62%) rename previews/PR3919/tutorials/nonlinear/classifiers/{686ef6a1.svg => 7ad3e03a.svg} (73%) rename previews/PR3919/tutorials/nonlinear/classifiers/{436ca34d.svg => ae452008.svg} (69%) rename previews/PR3919/tutorials/nonlinear/classifiers/{4f5d3b38.svg => c2255665.svg} (63%) rename previews/PR3919/tutorials/nonlinear/portfolio/{faace5bf.svg => 9ac4f1c3.svg} (79%) rename previews/PR3919/tutorials/nonlinear/rocket_control/{30349884.svg => c182777c.svg} (89%) rename previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/{130af623.svg => 53168d36.svg} (88%) rename previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/{62d404c2.svg => 8c54e0f5.svg} (88%) rename previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/{44df754a.svg => dbf95bbb.svg} (87%) diff --git a/previews/PR3919/.documenter-siteinfo.json b/previews/PR3919/.documenter-siteinfo.json index 320348a133b..d975bdb2199 100644 --- a/previews/PR3919/.documenter-siteinfo.json +++ b/previews/PR3919/.documenter-siteinfo.json @@ -1 +1 @@ -{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2025-01-19T20:11:49","documenter_version":"1.8.0"}} \ No newline at end of file +{"documenter":{"julia_version":"1.11.3","generation_timestamp":"2025-01-23T05:59:50","documenter_version":"1.8.0"}} \ No newline at end of file diff --git a/previews/PR3919/JuMP.pdf b/previews/PR3919/JuMP.pdf index d54db4dfb870207564a071d28144f82b40d9b6e5..a9e394052b42bdde02c8925b83cd25d43ef1e4f9 100644 GIT binary patch delta 255473 zcmY(pQz@Pz5}$oq*^MCI#80u#|%gf0hn zc@eV##;Y!!)<7>mo&aVhL>@!N7Uc_2aJ=LD9)BVOtg+dOCa;QZ856CGIn*u6n2FLE z5)(pF^fVyXN9eNc;w3Y$9PtdWiTst_Gtu^;@H7+0SqIdEOF(eYO#y~7esPP~i- z?lN;1LG9I(?(zElHGImpENhB*py1EEftjv`tOB2P#}tLFY15_i)SY{v@Pi;0 z9Rf!0-I3)c;HcX&K;Y!e`|aNO?Z=W|>xfM&^yr?8iavMAr_)sgyJGL|?P;eEkZSd| zbuX$yGnQ~NfIskjst|O7F~|;-!z+um?fB@KvvczfUnJ1#xhs-&XMTJnpt=@Evpsj4 zFwkhnlpKc?`cN3`BTaXxAk=iPm|)trdKmh$UWi>KuH#j|k`?%XEB{4tDnplK0nPR> z63U)&l5|p5NT?}Qyc-PLs>m+_SXgJV!q9E1HS;`aHiousfgM?m1V3{$Xn;cngo3*%^MZaoH8+j_PBvH&c*PRj7yik|}9lD>2 ztx6YO!>_YRU**gyOO*itw(vmBEOpi>^xW5F6fvq2y4vs%rIHDJJnK0WN3gtm{@Ac? zlWLQ~Pj|=FIh!Q9qw;-h8<)6Yv*kn_RYCB@n-iagZ9JAfwTVVc~=fQ=#n(Gx{ zOO{4*(|FkQ7g7(HB@)y7j3v-^O#Ncm7g zO1mJZ=Brn~WrCjp>@&@6Rmh95!Rq`TNsQtpb9qVB+xd~L5n#14|3C_iv?lZP6RkA- z6TV8pq%1>5sL^8Q;qsp1X0-1LDtpUQN;>c=NtCr9nvL>=?ERpdF4>uoOZ;o20*isx zk+M}WT+b|;Hc5vg{ePNk+RDvqo6t_KrgGCI^Jz*IQe#p9?I|p88S_7BWc#~A{^43x z=7{;@z2+^-WnppiC&}FiY~s^9o)kPD_(k5+!_TPrG1OjDe*`ENF4H;+T zx$2VtQm_#NNqHzLWmw(Em!c=f=f{*NMzx5AX1tDb=O#eoIi&b3LEm`@s2B;1SN9G| z5?!5wY`OjeRM*|DPrcvOLP8}r4J5NOhB?0yhg@a9VzQ*|pY-19k}=rV=l&vd|KeJn zu7o$mm163@x|~KQ0qelKzExT*rL zI-BeFnD5LsJn1NFNF$xsHC-|EI1mP)8);3PS4aLUKK#i;v_##kC$Bz9YY8@T{c8lD zZBez+uesVG{^aqnWKyE}4=S5-^#>M^AaAOBQ`5ULA}Csm5hx5#4Hw8B)cB{M@Z#>< zaAAUw<3$%~_xg5G4PlfNcpu)-1$oPx-19egW;EbB7blRo;tx10b`icy$a0g$KggT8 zBXR4EwE%<+XAxjb;G2vn5nx;Zv(xZVY)Wl4{PtpKk{a1R_+L70bg&@xMcsC_B4oTT zpcr+&2sr=Z_Kgm9^GG``3?x(anND$b2lX?Rl?(mqOpPL?>T0W$4^)rL^AGkf&kQ~G zfnryI-pj$5yuWudcRROVK7RrV-n6rk3d2rM7Lbh5nCg$_%iO)sTwBBeLaU>bTa`jN zUZtw#XQ{sIC zQkG2)^8O0(Tj5=ErIm_D^vj3lty29RGl@Qz&uGM-sKnR_vW3u7Eu-f}ccEgK%a(9= zlx`boY+YzkzMr+($m4$oRIpF@pmC&4Z!%qZ5t;3wO>Qlg?PG&Au-$YXwsrP+-G z-=*3A1(P(pv3p5fU^`zv)F6UW-^u-KgN80a3h4M~wSf>;o@v(%=Q10Xv9gV!3;SO! zQ&bR?ix<+4FbJ*r0|oFn_;g$>gAI;3eAEf8HBi72h742 z^`*7CuAfTYbvm93SddC(dp<;FSR6R+0>c?Y^0)-2t6ER#rDxv>bGZPGoB=|pdXAPcp?8uY$go`s*yw5-Gd;Wz>>~>PrY;Q6EwW$+&z`zey2|Ao7zry%iUAo3f z6k2;;^Jb^l_Kd#)Gq6WSHB4+yM86qDnGOMr3;Om9GeEqcH<;3S*9aMJp8ujcoK8=U ziJId!2ZU>Is;*bG!%@eCYTsy+ncR%8l?qW@AjR5JTcK;hF5G^k>*%8;rdMfy)+-#058=uYPwiui=oVJ0`t=_i`bFRIJcj${}U6`hx=73Agt@`Ia0K2z0fcK`BjE^}pl?hP1KgHvSsA@!x?+AmJ6n zh20E(59ge6YqBT4$_htRIgKA<6HaEbl!pViFU9eGna|?utEZjgrz=8Z6I9T~kc)fw zVIz_-rakcxG|^mwg5R!=^`urx>wO(DYr1c$jXS4^!HhIXU?f0&;>6<@6>H){N(9(z zw@s#|``6v=altSyo!27*9K~R7-!w+(?)2XS!q4_v>C~S0=KfEP+eEW#D}H$b^S$#$ zd4+J5LAJg=xrPvZhn5yM}D%D8U>*s?ZuV`DWX>t^ zyi2KdkPkrGgv^F$0p7xP#O~~~2NNBVZhgBkSYW^2I$ZxEbVwz&fK9?1Liyeelvkm7 z6MJOUiJRj4+n&2&KqF-H-f+q^b>@K_)i7&rH3*QHe@Gh~S>H-hMnWRC-a6aC`@Mfr zBgG-fX;iK=!%$nn-a@Oe5;1XUoh)Y%<-+uvSv|M-QhG3es1-QlKUj=eOaENV$G~rs z(|s&^C|~t-?RqrJ1r;1VO&X7MaT{Z2Xw+6iNu2VKI*j=HTM8=?Ca;K35h!qk3}F^* za0Ji;hK9-Mt=AS7^BwsF55;PCH2lQdOFo0)&nUUIYn@Xm)Z!AX?xcN|BP9=n;b0ItDbwg=E5sZWf1u9(%2W%B^S{3^BTHKX1}hI__a z)4S2a?})Fz@w@H2dg++2XJ}$tXp&{p13ZX0uS`<2qeb&l)}1PmdyQk%*F$?cb4OpX_yv1US1NfDczUrpy9#I#7$P4{rm=K}}@ zQ}7};BbtbgQ=*7A2vY3!adU#&Txt=H}W7B&3N_~BB^;BJ^Q^?Z5}@>X`1)d zx2)gGjG1p-6I`9krE(`c%OKqvCIFyxg`-`c#{B*@!5Z}2sh70>!0v-g4pgx`1TfY< zzQ6Lbt(y{JAyr#4`d3DP8ZE6GNyL|v*Jb)mk8H?M?Zg|C5?s!rq0JI=Mf1-)!1>Ip z>7+n|l!eYDN)IPTrQiyb){+mY`Tsn*!ocA^NV2muTn^$?MDvNSy<8-Ni~@Rys3nYp z#BPu(n-=ZyF#bj})ycHGy%vFLEuqcO<+i8kem9p^cxlWzV5WeJfG)X!noHH-R0WXo^_h%|rUB?$6Vm(ES9iDI z#S7jSPiePI33Q z7|~9UwrKXSGQdyGqX;q~sVyXd{aj4t$@d*;$SSy1I$nLguQGmt)nl}A{`bm?Sda() zuYq(d$by5!#x6X&MGFvQ>V8B2oC(TNB*Kb-(?y?~!M3|hP( zaV>&|7?LBnrH6TFbG)vT`-_HGm14lr@oYr83bg>8A+Ny72rqbg0T2POmzO1b_?hBG zzx;y18=Ns8-|ZW;`EVX2;w`Frwc3)v*Y_Lm3`CwCjxZG>O=U+k_$-8<-`mDSF~%Ks z_G3mh`a@cgkO(cssnQWh{zR;>PQL)-#)+vn<4VeK80`mfu3&n( zo1X+~dGU(~BK<3Rs%(Pw+~v=pa%lOKwjiK<@_JZh#JQ@Bi=oEboR>Uz4y&^-I%{>r zhqXhj!6ipzA%s=sClM>0_yO={SNE5;%G3M?%|-_8xg>0alE7M8zRE(`ra7!y?vo|! zDF(ocA(*aLa*Mbiu+DJE(J4o0A323;kcx`hk=^E+%|lW4-H_Ab-OQIifI#D~C|GNKs3c!0Yz zMj61=fh#g_7{LgEb2E4t!H9w5GV~b1NPvAa0E}Q5fJdYwY&!M|FWE!KiRs&iuTUFI z(GgZw=4Ki`F?SRJ)R`=S6*P>LXPy7%bysS}fdP);v&0f}434XXbhuV;pjv?@Z^CWh zH}b?BZl@nvn(Jkij&mUiC2w+Mg2RbR2a|wJ>q!+Dhvzc7N#ETKu2Vm#rl;GKzd8D;A(|8zxv9HiJ-Z0HeLq5o2{Q_Qo)E zZY*?dYLa!-)Gr-3^RytOH?et~AhvbGBjJX`p3dxehG-r(17S(cp6HuPG=>PWIT{Fl z+)JFQk~_HM5_3UeiM-H$PE@C0O$3HEsKlBDXh7JP9G;xJH$)czS1egXZjo_eJyy{$Z=Ih`Ig*xMEyJ~I}Neg6RH=lsA?dY?j zuC@6QYu}sPQ0yp96+g=5v|tn&U99B?1TX20pNHl2W7o6R=%Wi#fK_*~X%L5KSnojN z2H}QjnmQ^C+4m_ss9|6CxRvY=z-^`RZ%!s})g#sjQ-D0Qo>rNaZ-M*SKIvrC*qTIa zc}F`Fx@QafGB5SJF_5@2=i+xcwWxobvt^_`w8~OlfpgPaZ<9M<_chB71=kKACpUD%9bWA~1Dz?!n&`m`uU`0w68;KpuX8!i`@Of_?^j}3 zAUf3KO)jt_q|LKWarOW+ibl)8lHl%oRqVNg?siDPtkV48%N zZicT+ZfPWQ#0?drq{sO4cEM@_q-02AP0>Eg3?j~=(dhe}G#ohCLD$sO!aN?Go|oNpvW|Q<`CTljCu1ZVDN@%s^yo zMt~@wSL1jqL%Lt5+V{X6FsLC~AdAEgWnZ^^l!7Dh4N|}6q(pMa4JSVX9CO6l?MzX+ zlxqmskBmwoLj)4h_jxWLmscmJE|GrWamr_EvjMN0c-FWvyAFlsKuGSModr;8^Y){X?g$ip5RU%a*u4$M_CL!vZ z9Z*}~B9-f$x}n!KdrrSM#?oB4(g}qe$z~K2HI57fp~q4&bEjXnsiYGFhqh|iARJM# z)ltO+4)M_?3GN5B78S`uiF;#5^fXT>Yv0 zR|MhzohuL%&yXa5>U&5hX@CE(l`4&PVvv+-pLw+09L{PC3f5{Lg{u1Sd4siQ*Y)vD zXPb!5G}p-SzZ2EO9K~(8ZLlfOZE=6i&`+Hj+U4Q1XHHFXvGC&o&fAkbVrDAthkk!W zG%p^J60z5Uz`V~Os|!?oW(?tSQQ#(C7j(EItmLZW@->I;#Qw(`h-TPx(Vy?K6CB##XEy#&NSECU-BO?dJ&rABcg>-k2H8ieRW65$s@Dp#b*( zZ&~45cPgH=3%T!;_5m{b6lFJ10v|3G^3MKWH@1LOwTdBM#Kp{4e~53Qv^jarjBD17 zL^@e?EL6Xw1Q@3MfW67_o1vYCgNE1X$iVdrZMy&1+1Z!h-p@<(_w%h!%dE9=*`~ow z&hjjFT?gevs`IuzBcS2;XSj>)P46CfK5cm7k8ec7$GbFi3_Dml)cu#4aQH{YSKpkw z;~R~LcjawkILlFvC1bx?Rkw87%ex@suh5Q|C9c#^DkhB^V-|V+QB)ehr)m%7jb`%7 zu}*W@2V&l9PBw0I$;~=2wI+|}@&np5D0-$3Xy10Io#~z2*LaRo9 zl+kJVmVpswaYTptzI|a#-4b?a(%r>^7ZAD0T3s%}n}@SV`8 zpMIz^NL|CG1{Aumjv>K;04wYuh^c%4jlE(q59VTyd&H{2pJ6ixW7qqcnFVPBlWO|j3?%_GmbCupxZ5wOx`aV&4eYM)!-S#j{A=g&BZ z_3&AV!e&M6n@NESrWC@^-`NMln?HV%YP&D)4;X4(1A-{Y3R>=6vUP^XWAE5)@{Hqs z&#UTi=2frIR#dcnned5>@$Q0cKlp~m$oX)_k#$$LC0EP6ZkWR2X{G9EU5Y0oY4xUF z-SbW(2YE~#;z%8{*cH0sORA6fBng-Xom~f&p&>qG##_jbj0Dryeu#IY@G98g*|cx2 zVr7>#02R(C+ma6T72dBE-Xx3jo4Uu+P7}4Q&6L&ET#BiO*+CENV?Jy-(^l^GtrDw& zu{X)&lYF0M5>NEri!^8Uk^4*PF0>Bi zGl>Y|y=b#=7xM4c8^LrZe!^z^Z0Xaw;$}J}0N89*wA5mGmY%~JS+2b8-BuJjZsZ<$ z7U4$R$Yrx1!7@;nQM|LfzxT77cvd<+vLa}0FfJg zvU1!B3^c9tvc%k_Id&DygkcRQfrFbex%B?GX?aMYVby8Dqs0J z6O(pY?rYPgEZvL7*IhH=eRFCg^ulKj>~9Y4s> z9R)tgi$8htpmH>cnPdsSbB*ktts^v+`XpvoL}nS%p(YvJp{WZJ)TWtepAclu10SMx zm9(}yuWO`b5GT-RxO8hO``-hyHYUpK*N>iAm?+3c>b5w7yWBkY6P^Y+02VLUoWOD< zLG0I*I1-7u%r{9hW%)5^=YzWg>J1YWLc4dZgT?R4L!ZU;faB@mV%dKvnIfZnNW6 zU2oqdmHD(kSqX`4_R}Tn)G5w>xul=2!mP+1ACK(L%S&a$lZ_ibOw>1|IsktYK( z>_;e=1SdzA0CocF)mK8vbfyY<vW5*9qn9b~QA1uJ#SRqCCzXBb)u$bx%*KU>(Fa8&i@dSu$h z>Cu#8py21&(4knQ8E_;(FdrC!4*{hhKSeJ%iyWe|=soT(kf`&T<3Ie8IG=TjBa(96 zuO__}()AeAUs>_kOuRWCiY`9tMTLlQP}%W$*w3Te{Hp9d@t=cz?M*}F#GJ0d=D?cg zy<1PC)`{r^aD6FI^WLSX<1LBeD8%Zz>;-O#b?O0)WY&xkdhY2+mDkl^8k+a7V>G;X zrt5+?U~-s301Ws&pWny2cC%k09;<%z3-5_~7Yhy#1rICPoh<538~;^i?Af><>i~li zqD)H~pxdkbRYW^T^ZP{L9b_?2&BPuam`L1O!XCB*fDgB;h8>rnJOlpGmU~YdsyM@=518HTIZgNCIGb(A5hFc_;Ef1#?Z9AmZYgiz*ROjn{(E*GJaXX``RBCa& zNjTU8ZYIOyQx-=)UFZT;9&C7-GQ;4*T#=g;t}3|IM+@$hV-2A@Lc{*DExI*AoDSvM z$F}Q@y&So#ozU)BJmMyC5z*ri2jv*>z&^uxz9$vuqoA|X?Xl8Jp>YAJ!JH=3Iht=c z#V9nXf7#rI9#9cUJ39C`Y&*ot@DdsmalS(j5UXmM!Z@)&(DU`;Pt$S$i&g35+EGHp!5; z{dvXM368!5X4`)DI#(1;;OrYY{T}J;`}1%sSyxxF5G7F9=K2JHe&Sz7FCfT;RvS@@ zVpc>1wyXbDxsA|yO{=HKIQvMl;VQW0BY)KL9b2k_SN!$M(%UwM?S(s{bz;~@R^t{%y% zR#x^s8A6mkOJ988U|)!Fy0b5M;NdLm9)u}5FMIQ)dbb0a%MhJe6W6mzz+W)p%z4l@1LhbcWtxf zpURn%h(18O^ry;S_nI(9Q>LM+wDdI4hf85XyE5~@ESe7Z@lHggM{_tTgjp~*l98bd zV-6k~{Kbaco=8HM@WNou{gZs5q%XAXCo+heIu{}tiW|PdrkEi&gL>5pNh3+_Q**(C z0OV`!IL!f%tq`(#f@NA`fsCwZL#X#F@e|)cd4zH9pI#psmBF&KXGIRq> zlAyEThx~ASPE*l5_X=D~Iy{Nni~rk+jRxDMZ}>`t>@JXm=!(ht&Lq#{emseD2*9|J zv2!TD-Yge(#|KUww4U_8t|Fw3Tb&>nYi+;z{m0DcXVjn=Q@KWK|8>Jb_Y|TBJ6rzS zW>Lr9PuXKiC#Mm^bTx8z!jKOJ(_^D?1npwp(CBqLfZm}$F@mWoLs7w#)Jr28O0NZx zOCRCzp3G?+!$}{+^64 zK)AKE(J2%2sgguD4&(l}0yrv6tFFVtBeuC4RFsAEX1=gPyC{lY{ULW^6eo2g2Vr8UaR{Qk?A{;VK$vTR{E<+{5diXBppO3)=DbE6 zQ%mz`VzsX%BCpOo3+CvZzm#k6e>7vFk=@ari0kFpyTL_S_+PDt3AFJ3*Qo$CDqQ{$ zFFYe{{IwH~H)G98C;0yVQS7D(y!Nge3A(ouJr0R01e0>a@b=7_QdT=(#K}5=7UA$e z8=%uHHGT@X12v{#ckCzkmGZyEs$%n1yl#SMdg(_3<*#tqnjWb*efhlF|Fip_jac~C zGzQ}cl{CnzU@Z@85LWS8io5Jp%C7XPwhJeDbp>C*X6`KouNW*Q3GPsOQBj6?tHjilpw1sS@UG`;hhZmOZjkNV%S za_;gX)2XiEu6^zbL=1x0e_vLHY&Q0HQ*U3N=A|={<^*7x(ih)-3@;oYR%OB(WTZ3}$JJ_$*Fa?xw3p75OYq z?{TVZn=Q)lBcb5O0rb!hY{|D+6QVS)4CL#Ef@xwA|K-?IbK$xbAay@S<9Ixa>v`?B z2WGXC(yE7uDn7v>jN-Z9Ob z^wWHgjsThWaB9lsfQTIb2RpbJx#@9gNq>TT70ibv)$HtMm}ouK8~TAY&xoasmj@L_>7nM=v{(jvi0AEqi^u{?sBDC(N3g~2OC#iA!1COs2t%@2D^dYl zh&~G3;EROdbT5XE^-&faHvz6fl;uY2C6Z4qkWVd#NTx&&oTW4Mo3ngVIGAH6vJCIl zuwjF-?**>6%mw>5ENs$%k10vh5*BJK35?RFWp*WOIq0tG#7|cv0N7>lE^4l=)yv$O zA_dA6{<0nmX80m86h7O!(c`bwsEUzHbIYv&>BA2;j*C1V)#zc;(kMQ=@y?1JyN94x zPy5DgN8?{JA*K1tQNH<=iWkVIi1y?CZSSpV1`PdXP6wpQDj5l0J<(QWI#_;dVl|$z z5n%?f?ImlL$B;=^fI}A=qkO|UsPGbwNrDd>_J$*(6>zZ>`7^2V_qDHYRP6)@&gGA@ z80j^Cnk;Fi9kK2fd;gj*;Tuo{Y2_@g(ooelHt39w)LKcg|6+DB9!tPiJtLzVH(P1G z9Kyj?i;B}XZ=W>rx=oQcusTfV>3a`Ul>1OJFZ`~qQIxYN0Ds=B$ewwEvk-Bd9U0|# zQs3K1)d%I6!k;TAY@K}Dz4TbRl~~lo0OZ6v0Egm=qRDYNl3mxLaD#iA?Vjnm8!0Hr zELQ~a4AQIcjG~_1Wj(r0--=AUXelv0CP_4MR0`&7iDwQ6nuV0IPHQJjqWg~`Ld-c5 z3G*@p_)>0xtO>4UV?Bq<^8XG?J;C3gd;8CrOv3RHnZ&+46Pw#=VvmUv^+^L@YKBe1 zf_|4bgt-|ma*s+%(Wt#99B}0|0DR66V*Z>%{%>m4aWe|{HW83LRf_CzQ?z7&Us;DE@4digr*jDKXf9Hez~zM(bot-mUXZh4*2M{ba; zvHe%j`o3B@FtRJg%}EcgB2vpWAV>#l5~-L5yoau!+)+=SHP~y&NM&X;`>eo(dRP6W zz)$6N+7hwrB^($!pn?rQoO>yd*B-C)AOfsXVWhfwe1@UfOa-g%JN)kd z0JHE;;>*S8+PX<4LQ=#%5k;`pz;~FtKsa#(MknQpGH-Zx0^z?+kDYa35_iR~fuLRK zsUJMN)_42+Ht{8!h&f~eqHIU&jj+u3ukh_%E1LSF4)l}iT@kBx-IL!HSkRy|1ED78 z(Zucl!vpw36->#?pm+t&ChU*GS{u&6{JCeNFcw`fX{a#r5E%-3F@96Jre~~mO4RaH z55ZJ_2(BoKqTIw#2QDJJ2z4)%%*J^M%#rKPA*I)6SS6q$S@YMioEstF&*dkeUYzog zwd%%YZfQt;XG=~|Rc_>M+Zrl!2cvA71mm!?P67V|_-;<7YZGS8jQ4NFa~tRSQ`YeQ3Wiy5Z-qr^XK!1el=G)+M9ow0!mb;I z5)f^rcOoNjd&MRRwvO#;iwAv^6>?Wd3Ejh`n0y#+jn0&t%^m#*VK&XGl@!6aVa^7C z{33R*7T%pr^7uq_w*_?0ccDl;r4IkKTWK@Ae%J@?G^O z+rG#oq&MG?*s$p(@&VCzB&i(WZGDd83>b;6xzc6g{3?eBj6(~q+gh2-eNt7jL$#>< z6>TvUxi*!P$HvG~C~{!x08B|t*&>I7*PRCjkV{0xn@{_<<8376osHhA=^{pqq#m!% z$F2d|uB`Awd-skdUYEi^NFe97@zXDld|8m+*gxVd{?XpoLKH7ejUs(!AaZ-JMdp2Grs@ov$+*Xg#D+laiWqdw6qb)Oehtl!9WQs(#5Q) z5D}!=u9=Pk<@!R5CzjoV(|x5*<+AxVs>t)gO)1!`PCeGZ6?yV%rFoZ{!T%Qv zVrHdMmu6I3qVQ@PtKeYpO%}@$G)yrqeKta_A#PrE@yDt#{yI{OIGQF436gsyN#}K- zfu?Luy)R0NJQmhz9EcV;Li zV4x8ol@K7K_?7w}N5tzx)n=Q-HYM&ECkFl>lo}x*c~X9c#H)R{=z7YxS$NBEo}-6E zY$EeY(m*_M4%)Ce1=1kQRN>9EcJoJC4N$mGuy$i_vFwV{SMltv8-ON7$sXnaPdeuM zv_omurZ8_>+G)li_I}|0i|bZ^!dwRMP19TmZmHh*UYAbyU`k$h;~7*X9ikH<$h2As zHky}J*`C?9M1{x+9hrEGv7phJ3x%I{&x)RfED@1c!xJ-xTpuEYx)^|N7T6CA;%AKUVrfh4{2J$i@1MDG{X-r2lF$j``#RE! z?q#%E3k(T?k<^#Pl63=i1p3_9cbS1pU_MXpvk3jcm{c<%-{)m?#p%wySoxe%fsN_w%_jbt=!}Xc%y*v+qR+Fdgd5ff9@wi{O0VpDrEa0~2mMhmAsi32Qba;6-BLZ2wnMMFhzd3~%>Nw-n z@OpOt_P!2E0WSx&zQYFoZKnlIj~uab2g?eaFF^qnkVpE)irOv77oOm(P`rqBbo{POg`&T|vtV>jL*93_0&`ZJCN^PeL-Kx=m;LxQv8ohE__e zu8FCj7|2+2nwzWR8FW{k;Tm@8r<$dUy!yD~nX;VU(Rk+*j65LES{t5SfaQHIe!44A z3qs@5X|+9vsDJIzuW}V=@u^$*o{);ay;;9cVdz5TzRmxCCr z!a5sW%*GUm<`@9Dk-b5~8DFicJRA(|o8I|;7V8h;?vI-H{CanOogT|F271{5TUpH^ zUd&_+ZT5N!Wgf6lv%8fnQ-dcXI2d9dP6P4gIsMcA*pZau-m9Txtd)980qWrz)WuZu zGH(711?&E{)-v0TWY+IYVVa-pD$ezhu{2pVN5CiMR3SiPd7b(ASqkSS^-`C0tp3y~ ztf0-l%fjH08_wC^3cRObux|BQT=3&5;Kzdqj3H=50AuG44L)n>*+S$l=$wSu+tmu~ z5rky2N?cy-UbMIqt7wjVA#xhUx7gwkdQ&J6za;=6Ul7t@+1XDS)twKqm|+SRp}*hm z&_+6b@eZJwu_7m2X@t(JB~4S;csf#PLDBI3{dcw>|IfD;0k{180^|Xs2nrtDo_$xV**>jX;*E?WDJ?;v^Nf90hOT@Wr__l2y# z{(No@u+2nB>n>VRI&g%Bp6(&hyESrfl6`~H@sk+4^fOYEU z9lGJRuVtH^ftn~`ccliw3QT)=N?@fF>!|An-S-aK79=A|3RSHkq>UrR!dphK$yI-G zTTfDlfZcDtM2mSAhDm~-W6GVk$&$eUIEIn(xtXLpUzDqex#-8ySwdNQNgJ8#`o#mz zX9VCkAXnODHj_xC>QPZEnb6p{6LF(TtOy&@wN5hWMe8qNGhYDN0$7Pz)n`RjZvc)3 z54_XgKy&$3#LW$w)QRaY}E&<-5LTGj6ZK<*C!=uZvi{7byRnUtPRr|xj?wBR10 z1qHn}9C=(%M}3yN9^1>N_sWKeXTY>)w!0*5GCxmWS{^3uhm3%z%uKAt@;}jppKps? z=^c%&5O6^|d;|`$9??P<6?5g*ef&1J9n#$y{w=YzGVub2)CEGot6-JhM#BGjQotR9 z`R{|WadTzF4uSIm*h-$c?rz$4FM*y!Ty2P(BD^2XagEek_9N9_FBP8v!bHx@dy7G6e0!pM7G0z1 z6P1X81I?w<$asPaj(&e@mEhOmPAke1;q$`QY#~xAtdfeei3=`&9A$M7gJZ*;{q{Zau7D0 zLWLO6ShjdeS|*i&o#U>%!b2Odet-;HIIrAP%$^5yH>6_3qQk&tJDY)&Y=RS5l7J&X z$=Y@eA0yv3-Bq#to|&b5dOnnt>nCbpMQ7IT`xBf|^W0KH7&Zt10Sn-0sdUK!gz}jF zFnrpoqy3dtOFsEYOtZe`MYvMXw)TJy-;yGmGO!a>wF`GLZSk+MHx0tnYHOLj?J&~x zE~*1;+;igdkYYCA^TJZwRd}V?%d;-aE?2RfR}W2M@#3hV6*{uO2acmb=SDkbLoz|$ zdB=zDHueb&i~?0Fd&8=G@>z&Li~Qt`c))?EGC9dE8(N3|u@QjCm36Mf|I;V4>FIuyGY z!Sv0CeHO-&Z;=P_!}lH2{PnnrS3UF=IuGk;uNGM!fpe5M;hfXdmM@0FZuZ@K1;+=t z^<}0+K9fHgLda!G0^YfBu3HMK8@8$?GF9V4T_~2G|3P0MY!W+GQo$dvQ)D;rc_l~L zu|2I)fyC<~D6(OOXQ`$pbR0PmPx*=Jx-2%ktre4aF)SiS3bX*dwfZy4Yz{hshrt?k zZZofpl>3_~P8*YE?I+Kh600}&qn_S*2(VKS>g-e;?)bAD8qu1_B4&tZLb2p{ zx;|E>{h*u;tM9A+h{^pSZt$t@pWWx^IsIu6wq_xn!ua^QM=0RmrZ`Zp;Oh&R>>qEK zgM7SN0`X8hCp)GXEAX!CaV};cBVA=iKu9mC4CyAl#VlMJA@CEq>*| zn$B!$M*%i+!Em*=SLy$nGwi3gH(u8mJ!k4t(8W0Tdf##PD^qri7QFj*xSyjrY$K^} z`01u`Xw&esSC)!lWQLUnC1&#~01_uv=`nNK0=`3gVe?DKlZHyq?%PIaAmAkNLeTtNh z1wGkFTavw=J>;+VF2WI!loMLGL@F9LR^rnhGRap`mO6++e#Gp9EfoPOFooSkyVr;~G=@pQ69JF#DF*23%GDJ>OdMC|H%$s$c2pYqfOeLv(FIWFCsco7}tp<5Wj=9W^{n038~`5B@*#@EXC=hWfAA?!ing` z1_}ES9#K9qO@4&^?3n{J={x@B78tl4t|_>D7=PST_VVXqBN>IoEgx5+B(%mb^1oPK{LSJ>#ACdO5v2qvFV?-o0Ia4p5Kr1k+ z*r0ZJ>z>MW?@q`pe#&S~YmXVbu&Nx(Uk*hiJ*8ufU!n-63?dDJe zTY_0c_*=|vHgkXo7YhXS_=`>bvsI58qY*>@tt+N7nJT!CHv7SjutdZ1FQs9f!J>co z(`$%oq{w#qaW-M>J&Zr*!{sXhMsW=`@g#DCrNh$u{7XG`@a7GoH(r*6OWkTs_v^<^ zRx9e7w6q8mg&yv|?ASZ-qC4#NxQ4nfH~ODC^_G8-VqE|+YRGFH`bExEqD6n?_Y=(~ zd+pM8-L9zc9Pr$JmYq+-ZPE@T9jDN2{vWRXGAgV0>jH&uQb4+;q&uX$q`N^$L8Jxg z=2lAS?vU>8MnI&yq`N`7>sG{amm*TahfZJwa|>U&~VexYUUFruOif*Ngm2keEfEtGn&B%B5 zUmz^jB^H18CJM)*j<2>9*J8Wg14{>|mqxoNw)!(3J?~rdy&(S3+TLJi~93 z28ax&I9jy5Y}N*qxY-p97=(tM7OssN3$$6Pjn+3nT}rZzwykz zUZUUqylQ`3RTzv^2-RyV!?6-go`WBh3F(h^=f{yd@W86=#BLW{sZA_gOr9}wF!*Ib zO`tt88maZ+>d;1G;!d&T0TW8^@PwUD5zm=hT~dfKF}h|UJ*FN@kwsVStOrPk{>w8N399Lsz~JL0b}IYnIgH}cKT~n*wDPuL zcxJ1$k8kc2cakM&pL1YU=lTOYiae36RVaTH#)_XZ<=_2z^ww{^Iw#`!xnD71^*8+_ zjwVEQ<}8f_|6Fzn6}Askv!!Wunkap?waVa++Dk~)kC8pBuzDEbv^(z8HGbNK@;Ywm zCqzjg;naT~K=>^Qwc(Y*vcrVWSiOQl9C|W7Hao`DiiLLV@{-+k%&^_uvfpps9dEaf zt!R-SBL*J5_M^cg89T;}b^g|Q{BUTrT*DJyuG6M!ZGCfkFL=x=Ec*Uf2+j?D<)$w? z>W1y6ZNyRK9*u+b3~r=C`Ja%?b-YflyVm;8r-z55P-5mUP>C=7(kO42e&8Sb{lf57 z!nnVs5+*0^?HNw4v(@ql0qPMOH z=+EkX6TUm4oDswwYmiKw?xks(#ulmfxD2btlv>7R|9Dm%qVi$?$2VyC3A=~6652se ztvN`cRGD)f@uXXC3PHba9#Sc#KHc93Nm5obL~{nf@#x9gTjbmD$FeXwd0#qQ{6HbO zc5#02__GCdsb;~!mBh${VL_J{qxpW$F&FP`gz1FVRe!7SMY{6!pHWJuCO>od2ok=? z9(?_t`V5iZ3!&1Rt&WvbJl91-1`()s(WXfYj$?@nf<{pYnSto_)6oQ^U5odHT16fT9D*63W2PJa)WnB`0~=4`YA*S!|Ye z?1cu#llgT%ZYf*&RwB*Lgo7dfBdJ@X2X0(!wu#|qA9XQ~gkHAS2B>U57ekRND+Q{o z6;UELt%RFH`y;WAy6r4-lh}V~Eh7%d8 zxR0+<5reYIWqQe2sZO&k1nanE zJI)6!(uI(%2Amd!R0)UhbhRseXvk3t%9qvr^Ip`}@W=Swkao@in%!MeYBTsX|(k_nU3OdkXfcfz^M zG#Nd-f8jZH56Ost*IgWUah>rk?fem6tOqtLY&lFy~|#=`@4)pZM>w*;&Stl{#r=+2d-Fj*)QLjh~{FIlVBu(0@kgBMr@dcV%P4 zUh%p)-|breQ)neiN!X_xI+0iO+bzHIWF%jEIc>ia7!4ci**n?#>tykp{p!5*@{wlO(X#FjSNHn-wa!1hOL|zfk8Vvw|9(uk9(Ssk z#jV~9R6P)C*U=nqiN>c|W{;H-l-eYrh|UkE5vHYgEgY-a9vJT+EdJ2qG1X$jxYG~A zpY(^pbDd?aKKe!Ult3hOytCo)@j~SZ&RthGft~OZPQuMA#GcPQ-2d;dTNYnv;#kfj zuHZ(GTJNBY@tCK$ zgPw>V!IHSmim}WjgH%^UEi(hSOVT=N>X-+lrp=!yVJw&1$kKY zHlv*07TSv=K_IF=nEnY^-_WSR7a}VLe7)`Nx{dpj>N6(Z_t)$+G`ZuC?vznKq_Zt8 z3(X%&OG`i7*c^-ELt;~XU5Am=m$_4G(8b?TQptoXDk@IS%=DCLbW~MUEi5byrwfOu zL%w34{9GPr^cr+3Dp!>0V>_@S_E#@-+8$0T)vN!rq|xzKLgMNEOl1-V3W=4yzU069 zi+{$@uA#(YYEtQ-6MlpQ1IbXwq3bp~Ff!+H!0MVV6q=48hlhOaS4d7uZ?n#|Z!av_ zyBOG|!1M>Bk?V7)o_I908qF(L7LGXe#D%ATKs2QtD(SuJ>y^{+Z$ID0?!!?$zZILu zuPW3}L^m&9dQm#=3MyflIk$WYrmUjk4Qqn6vGG`$fglqT(jb<5kaRAZyK;+NEwBshX$GSBj5A643IdGv))CdHG1ON zSh(qPB#21ov0MJ;haCh@YTUSTb|ZuS8lR;>In(C?|63;2PSZhonnFCAp6=eo(R{sK zZzRRV{tO)sm2{};px6EN$wps{hK7b*4!9a|?r062DWgGly}LXl;n=_;Z8XOk`p|W@Wx4^HXGn2$=-sX8V+}9V>vwrb!G3EC>=u96+Wo6}5k(OSYm%FLy z#^b{sp6g(Lf3$oqf~Q}WJr_HB@$NRE%k z$HMwH^a8Y-+`W3BZ#-$8T4&v5Lcr%CAi2U`c}(IS<}$L}Lcp}%l#SHMrdg;i6*~mY z-1vn5v_I*J8eiAg=)SAnX16TD7$?AB^!9Bhs4GO&3gb!Lh09B8L_ z9H~~ePc^w_NaVBT5=*|}=fCL;c=-}az%6ClZK+dk=C}9^rS7zD!%noFd!_ zlvwx+YFEp(U3Z>parRBZ-cvUpxFSTi7G~9M$udd#2YqOVq7AA75_&i^i>xr+XrsjQj$#RdE;pf+tukv%Q#**{P z%CE`E$rw5n5zoue4a!}tJ`)!gmkrj&#>Sy!ZtKOSi@U3%k#ynxg9E4#0FhHYu$q6u zi1TxENd;XLnem@4=k08GQs5bBo_dp64diF*7^M^y2eV}&0?~-Iqc9k;gTCxhgP2m3 zIyf<(yMSBGK2Ui6I+f38VknGeMFcru&Z#_$ zVM`)cdk8+uZJ}or^y~X-Go`{8TQn3k{2%5wiR-HxUTwu|3pYEZa(@&+raNd5%^^&@ zy1zNYyU73`u<2S!hUV{)m5xV#cZ&76p0dTsJ1#G@<^@LR=Ek>+*?af+Q=n<>?#r#@ z$-?5I>)|!AGXz49;l4U^N~X{8bJyq;ml_ofP0o`FKg1d86ze|r%1Z{sL_GQ9Q?={nPu0^U@2PN66sk;}oX)p~ zQe6Knydof|x1M1Ia8Lg*@Zmlsw2OG?PuXNufx6ryHN0^*GCF#hZtdP=p@vSW?&i); zgV)U|2h>Mg!NmDwt(ykpZPjt1Mm~z|zvcFJ>KO)_q{G!!amtC_UV1QWYHCULcK5R_ z67&}-co2Ez==9&S>z@T|M5>eZHgAfLNsSTQFAru{I{YwRi!9V1Z99HiYH^=v^Y&Cw z76q+>DGW&ZmlXHjbG2-t8XDRtE?5M7(C&Oh$)fP?)xqoRbcqHHVG6SnC%) zzJWJJxY;jnZ*n;-k`Biv8 zC44rcHZWD@tNheLYinz=U378sa{JnEL~J>27TH|&nCP|!7YQ(f^#H&fj>YKxGqtI)ByGREqpg#?- zGl=kEt0Ac-Qpw**h6;HQyA()$kNmY5M$D~lh9Xas>TR8LS%#SI$7qbjMURA_hSA+; zk9YQt*)WY#JTWFFyZotJtur`f`NnB%eEjrx5KfNK#uq+nW-2Nwxln_KFW)xs<;1Ig zo$pS_@oHBH$u;=KxX9JZ2*_gBc!`K|a>l?L$1!$8*_5zjC7}l=>pge`7OMS;w2%zO zI@@JD%Te<30gi4ZxflutWtKoi!V{j;bZkB4e`89Th!Z)>HU015(NNxYv35aMvjxFU z{{0&_UBY&6Z!fw=LGC6?g{7h7(jOV8LI2+mEUM73FuCXxHzAIg9HPd;cNx7>mnb4b zrg?L1KF&T-YBZzJA5W8DnG8YT;g{q5Y5F^4GQ^vB=2w@K?;gY ztEnP+_a7yk%{dF2mpRJ}HS!*AwBbahSfvR@P{{TBEMq~_Nkd)i~8JGj}-LAb-;+>ZAQBGdHj*u-b==RY|B&JZ+Cf%Nove< z$vcjvJx96nAqj=UkPu^NJ*^Smjul3M%%pa0RJN( zA=fR|hL(mA^P&@R?F=Sy9xb(M45spY)=lC0EK4#sH+KuL?(Q8cD{Hw?J1tXvMaA*i z8I^awi4PcY-+J`p$k0&f%3LXRP-|=JcQj&YpXl^cFam0Eh11a9IWQ9-q_>tCG&Am} zQ9(4{xbn{MR$}2Myd`j?J(>`0rT6l8hZb%Mw{z({Rg*-X0=ugmi=J#*Oy1Tk0 zR8-3C*Z)xC%0XhNY2VA<@~cxuhft^YC9@ecN$U0iej3@0^0b+wMRR2}U6Qm$>;9Wo zDVg450fbtAe|T5dt4=zDm8^Ly$i-x;$F!3RUz@Fq;SekC;eByt|EDH`X|w{n`Eu6? zj{#Y`y&^$6Z*)&dp=*W>kU+@!6kn>%F-?eQ&sI=8jb zCu2M1m6j8EB_+%)yNF+n%DkKFj(#pZ0XQ);%S%bo>qub8g^n;PtKWui{&~n}5=Iz6 z_C21-7_%VMCWA1JFhzrTRM(~%7*bxY?EK{zshk$icy?a-0s{G}-YeC4ZqUBVV^MrG zrVzLE;==$8kbUZJo=(|O_pRD5b3Q+7u={AjSaU=KRST{dm94@3l`0>n>KOy4%;Cc3L(OzRdkek(KT63Z*Y)}T4#>k6e{nu?SOEZt# zvbaAFc~wO-Iv3l%&)V}R6_|-T&qDE(Hh~MF$(3DlAShSpdb_jE7ncN_b$9A_v&lw~ zp7k}29pa}~FT86MS;Csa)Kj+opP!HJ7rLm|r{p2!iO7;RhyEu=p^{Zk!t}wOpLwhb z84X1cpCA4d?a9lR)Z6&$if zHs6`vpgXXj&GM7{`OY@E|I-~#KzCF(iO4*U2v_C*PZUUS`y?a11*9lY5gM7&<``hO zztj{aJav~u`7Dv?8#Oy;o28qj;r#0MM2r4wKKOTr(E3+4gXP|WZ9XNprsv16-)`+5 zR<+o~WS%it3Apk7*Eqx7IF|9CMs+1qfo?K~!+#eaV+ed$j#gnOT3M`2%yg0g zS7esqI=b4mbhcLt7y;bXu$y@P_V)JK(qSIwJ8A$J>OaqK?YPpx3KVh2#3D%aD7rPTZv$HpV;Yr1x zoSY;HI9mahourrt&^{&x$3-3tB_r9%-)^a;vZ{)MlT%{>TB22qpQK@$1gJZY?ZV%# zE-GNZ0N%7eQ$8~>(N%^FQT@iy@I$MWtVoSjym!;#B^1-j!lHNeOE7axY^)Q&Nlx=& z!dI`*$b{U+vZUtgJ~O#|j*5x`az(ert#U0dJbd_UdxV9VS+nUM?6nE!4lTe%sW(qldr=_T{COEU8k~B$v{vs_!kTAjz=^MdjEiWy7=+c>UKz=*^atoKy z*38VT)@rKF&swpW*$-Dcrf*pj z*4t4aV($6m=0`-;Y9S{<7L6}5ffdygP6`B5Qc4OjAz@-<ooGX1bi`gD-Zb9!cB~C2Y)Hoy=6ECU9+m3lXc;7`0ij zlNEo)0Cmh~vrJa}+Wk5l+&-m#ti=bts`xp3y_|R{EAI5at^kB4M}Pt7@)g&A{Ff`Z z$Qb1t(eV9Yh_=LJZc2=M^uOl+cL)6c-rJA#+$YUxT(6rSp8h!*yc1;tMc+Up5C){3 z=ibvGympANdHesFgrKECC{POE9bW@iMVq_O=K9lXh#1~Q9gopJcbD`zg3RH1d8BxH z5vyZ@K4tVVGz7k%LYOLWdmbKy;m30$K1wKopVIH=z4kl;!{GjFSPVxaQuxL-hx~cI zm6SRd_6et_zHBOyGBP4i*?mGh z5@Y+X2?nJ9fQVcZ{po3J2dEjd!9=yrW?{GEUwwVZn{be8ij%YEmXH^bzKoduu;0Y= z^gKs1#6??1@|03?)ETT^K#nCET_q3*(34ayjNi>>62%E4AFfkPakm0f% zhu4CG(8u#J@OW>_x8|jxHlxaLYc^2D_L&m%+SXK5s4k@P+L6V{FVMFfjZmyP%jI7W2uG48uPR2Xtf0Knc zNoDG}C^t!|sU?XJ2n1ni=)+R!hf61;z|E(hwDt$Tclnv7H>P%Ci_JfInZ~pVJwOkl zyuq2KPe5_9>mq1{1Fx=g;^wxi4Av#mtJk!hducc@-;GtE)RP2E_1$Ou^t_>)a0|= zs!vX$AZ~hJ|E-0kWze1$Ps1?=DcJ3kM-K8C4(e?cL1)+gzej~T}Td@jkF?ly$o|LdTn6G*M z8Ipr&3-p_xl1EOncXzVM0iSd}&7_1t0{TuJ_?lZS18IRvRDep0k~RFy!=z;S`gR55 zt($qcE|V2I>{*||B8)N^+67FSQTrc0#bgDD&k$XWlttC>oi`aZIrnf0bxI5q3JbA_ zU$`TvmUsfd@4Kst11^GV*o{JWCLav1wa#7<*A9MG!+@ulrP-LBodrHr0bsmPBzc;J zu19R;tnPy$F7K9qmR^`Z894zi0vtgQrGaY9*}#zNFy%;KGYT()`AYPR3A6R_{iaDO z^Is>Zx#Uj>7MGwPUld6pQKVVO0T9hM30Rans|ito*Dn9Z~Y{A5J(^48%ryz zV9;leUQaiECe!lS#81rma|MV3oloW_ChGahX`tN!(<Kyf5;M5jt6>shA{CFN_ zZzEBxH~Xm9Eg}H_PLq4!(*n6_4HzK+q-(FX^75k~96Cx$%5YM_Ks6{0jM!$M=>pFD zZ)Ce6bGt0!#0;_>q>wRS#f1>C1xscbG`oB%Nm8KzLKqO zOf_J7#S{Jq&Ri9`+fak=#fyYDcot{U3iL8~2YsWRy81ZqoZF}5|8#dx0R;_Y99YIb ze;{8SXq3aZ5A-wVbEwcU1F#WRfgJ~a$%D~p43|s5_TBaM{g+&hBpZ-v0VXvWhiNa+ z_bn|gP0ssy`T18D(ZCh9ov&m0InopV{4!{;clT`lG$8eh(uZnj*Y=oX0!|h{j8R6( z%E-v*>D`(89Rrt5h|CT!P1EF!)UYrm3yYl@rPXv{Pn*x5_W|l+WBaneKsLWWo%38> zYfl)ztXU+=BsyLvr+!!fE|8$}-ucxsRHslq7ndn4B*gK{myC(s;FRIv;Yw&_rBu9} zy!`3eSu;S&4!;-e?L6JCVZai3dg#{Gr53b5W`x9I9+`a^zQEbim}a+0Q$?d!!vv!- z|MaQ!U1gRNgY3q}Mx=JtN?utR>ob=IYvz{2Bbo} z*P@LsboKO7YE(o?{lWR7Hj^cZzs0Dnso8L7MBwG*;J{5VXZmtDS1S`i=6pEk3>*p9 zqa_-&W#EVa%BpuT2fR99X4YDaQPz6EW#tBtYf?5s^~=i3BLp(ijf7rS(yt#&qp;08 z4AUmpk?j>Ki@$4_VQe-TrlMvWZEI@-ssQBZ*cRo%oIhK8gM*6QuSv1c{rsE-pN~Hx=Jt#4Jlc7%JZ`D-`G|UT)O3^B{;L2*j9dhm-K10&4{<02GjT zspQ7!)a{jxjmgT7Jq#LogFi)~K<%KTqqFGNWNbv(yB++k1O%DaV)O$TNpJuhEG%fG z?(=+L7!0J}l88@kS5VvHKky43qt4(WrC>K7Cc*wtS67!S7!=9pc1)f!l+JA(FGfz! zM?cxwndNerHFFLQEk1M?y^;nZ#vpl8K2Zlk%z6NOT*f)6v7zCT5%dAfRTdBy3AZl| zflCZ>$M{LJB1Up%u#i~TryJpal|y+FTUO1yQrsEm;=Su9)YyF>a@!~3KnfxOs8+F& zn5gIul{-9r=Ok8|xf|ndY99dkJsN>=8iYd^r ze|T6r3?!hxXJ|&-TlkR+ESL3xh@RPf zr3r4XpLO5*KV*?-)R60gY#}gsi{Kz}Nn9Z@ZH@>7g*?hJkj)pX;7F(uK?(*XUuTU& zpWd7Q_4(?PB2s`zFZ#?oOAks)aG1=wvFSY8aThRjh277ayB*Efd;>E4$wNa!g}iT_ zz$yp}3Gvwc{dMN#;1Rs{2l%^Kc)c02E?n!R#owT&+G8=e&9Y2(42#qaBCnX7C* z)oJq3;Na7%D_#x`O7RBZsZCC5LIL^KWL%3lTB~P~Gt&((Yt>U6g5HdqY&jd)LtU2v z>VQlK4vjAd!s@YC@b1;oayA!4wQxhYDcaraiob14CZYbSF*tu*5x=6)$UP+PiE6OMy&Hb{;oa=j!QVf8dxHu547?uBOI=-XwXmNMjVphf zu!j%8ehq%68K3uITg?mv00wy)FJ2M(>kl%8z#J$ux!vC{j(QkbUVcpj_w|%^ zGtc3&JexT2-QeQei7~cQJ%Kb4*FT!47y+=GFEaD<^G%>D*9b5171M$g4&UDd6L&j zoo+%03Wy-|3CD-kp?+;1L(N1kWPuS9ndBK6gm3-W z{=2)opg02X6A2Vpu^TL!mcDEAv^uD#M)nd;fm6%eFE)+AxKDp=>T+{8ff=Go3ZbV1 zf@z|jjdzcGso@CJF=#f0M=Iyv-QAVzH&z+8dVrK)0TzTlO22o6uSqUC-h$mVBtD57 z1vZWyDQIP7B`1d(BsKxHi$<(GF8?w~4~b2_o)8>vTTVi^#jn0EL?wa#coD~k6a*?O zG6WzQlEE+tVRy>YpGWbhzV?&(i;IiXqe19H^qHTnyW@wKXO<$s-K0kDl+nohrdTaxlAr_$nYPlo0EF#iQLe~?fjym#d3YW0OJHu zqV7kKT*|hBK#xCiSWe$OxJU60{!d>Ei*@@RgE$DvNLI|Gr9oPj7Zw)w5md{>qC$LR zlau}cVb|1Fxq07i(R2&CVu(36KTpuMyR-ARK#j`L@eFJzr=z7b>FmrekYg6#1Po5} zyN_bxs(7MUmT3ac9uK$9PEK3^xVmHdpa3J+5I=v4&@&!2CRfJ&|T$1h}WjlPVx>^HOv($TLL5-)$7A1*E2?f{ZuI`>JOR+7Isfc=`g@ z#)Ru1FKRBl6`nsw5;Frs(2yCZxalS#i;$rl9T{O07A6JF#@@pqR1ZIWfRAgl>=IaiNw2DYMo&y;~^G!1fhAbqWpF7&?1iNO+0j_og~AMksDQD-@UcmX^5Wi9qP z6zmTz17@?&o#4qpaoJ?iXm^k-&YakFXlzmW2^FCxkP{@t#1!ies)P_7oqhG~5DfDO zo3NgHH3g|X>2AaXP9h+%R1C6ta;FyuvoVTpo}N?)FkGo7VjTwqGDG=xVko`>uKq$~ zBfoxStk5Qzy&=rY%cIBnN_!`iu_D^eSyJRprW%>+=lfOQ1x3g9S)+cLi2yHe!aZ{X zwD5z8FB2V%1tzf2lf+>NRWU)%FJY5OC|_3Q#|aV)msH1B-*xE6x#ldg3@mXz_tOo) zJ8%&oIZ3;z5BnBPfzOXHApwguG#Fx0RZ>zik?+^YMs}I!HEunhu;>jB4#p75Tga&C zlVOvPf&r=WTttxF(1{-c|d zfqeFC41u%FY)MdVF3ldC73xPu7>HDIm-p3nRpUj;wpLp8U$ePwTxus&PT~j=_gmCG zIN&*nrJelr|CD|k!ZdZna=x}d#d6P7S-E%@p`u0!6xLUdXww{1Lz`J- z$&YGM_#bk68m8+dGR0a~v(+GB)Ct>5Xi679`%1Q+_y7A^k1N~7(5zu~4(vy0QVI2X z&$ow`FJ!_Q!0Nl8R1V%GTU5-o25E?is)DSHCsd#%DB477w7m8YuwXuTk1)`FH-?LZ1#vFK*85%&j@O*oh>HJYU}EF zf)Sq|!O8lovyh##V>TUsRzDUt+s)c#$^i)WB!KJAndKMHLks5hr8K_m{?&3^EG_(J zhv!mK90Hs_BFSUMR8OI=mO5PytIJ%%61eaXaVSy-gQ$rY-fPT<46e?YcKOR6Np znrFqXiv4_N9`F|IBR)rk1RPklp)%)~EX{rC-k^DBf zYe=A3?;N_CyF1#*oZvx^1o6cb^YdymoGWa1+N-V8Z%FGm%_M*Bo)Sf$Y#%BL`C-N^ zyq($9-v93X*t^+y^*DsGSiW48FW%FkDezeT-=qZcF~ozxAd7}1`RL+nsbW6Q$e;6X z>c~fb3RCy zXklUY(r+MAxOc&xPB@E$a}JL@P3*)7FsiHM8z*i65kGMx1qKFc|^aNFY)bGjW;kfFtaFMIo5Vr!1xcAtl>nrI{U{#^UJH^_ij1d>M zz`UoW-2$orltQ@bhDk&%nh?B1buydkTyWc10kj2n>fys&h|-zI7|{xqDcmJM{OgPVK!w+%`jjg>WU* zN|{~3Q00_E;b9ER9AuV&8dlhEkBcGGK5>PT`a3jw^~W+aH8p`+%=_sg4h{~(HZKNT z6g*xz_&STR&fmW!bL(l`1#*aTI(lqNOCCx;V5o&jzxkfx>XN`EtY&vjSz0tDb#n&~ z-3xla@sXvBio7h`Fn|vV^?g&cLtax=B@bK`MNp8Hl$7MX*cF8fqLmpaH3H=-ZD-%g zL6wdlA{su6ZjSQ2`Uyg&gXq@uF>g>eS(3i{v0F=ak8fx85}!^j*^X6TgQs-8oJ<${ zK!GmmB+eb(y$$Bx&JO(MO*=syz;15QFL~EeG|IYsY z$9-R-X2&bTFxt;~2FmS7842kx z@F&4K;GP{G9E86XRqhili5;|CXs86<%UXAcPRYA(VK7#5^tk9GP(dvrt0xrK#feyr z?V`)Wsr$ibxJ*#nDq{~}^g9*s26LGMbS=;wz-OXUo5_-T+3jUuuxK`vTseCHnDBpz zd8gB;8-xMeZxeJY-x<$Vck9ayjC1p^)yi7UXO-*poOIgDQsuX+72lPYyPVj3_b_?# z|EW%vuM!JgkNX75mLIRzBPcoPRMJZlEz&TE@g@`XsRvuH${*q$xX;f$`EKamu)J*5 zstF5wAfSOQK>czpBE~NXNtfD+&z61ge`L=W|@)<9KB{?9YDqr(dW7?EcNO!y33N;5KCJfY2%+F0*jhS!{Gr|FIFF>|ex4G;VQ@e*+ON?}Q z3^l2?*>}8TjGJSA&4>t~R~08ZG&Yr~2Y%#exBh~Iv<=g|2ksg01GqSa@5YTEWAuPn zc+aw|@M$-L_CE+G9~kIs^bopwL;yOhB>qWaqI(Jk28<_JoE7`Hb9hT%6!Oe$YK-$KpdLd48Wx0%*v}#4RnEdBU{p6F|A=b#tp#jg;yNUi z{tKPrK+!lJ{(c$`UzV7dmiWJmtQ%*x-y?A+3+MYCPSBgaAzS^|$xtL*WXGe26vqp~ ziOTry1qci0b2<5Q16bGXFMq!&;;YUtF@L86-U9`fiK4&V5d7eO!dU#>X>-qLrbQ47 z4_eJ&5HTX(`v2_%G89-a(WAJ40leS7?00(~Xdt~a`8l9^9R|E4`7Ll?z1dZ9pXNp# zD-5eyaf#5lVL;?5$dAeQODI`POiJm=7@MoLs@|EZA;rzBPOEa@CFQ5v+QKg8WON?aN<&y}R3l-FqsFWl2!8ccO>fqk3_n6iI@Je>QT& zAc8}aYI^B*WIVG58zyiMMNy|OA=qxNwF`I)0}*(u%ETeg`gEeSRLbelsNXKdJ3--y zw+zdg$YcK?+STw-uNqpy;K08=hBa^gt-9Vwru)D7w|X0k8RL0m1U5A&B>?)5R`lhQ zOGk-itrg#h5qESwB z&)t>qHBqM}6&S5HUkmi)#dI z1dkno&skRHDsS67lM}1IZI{bd^+WAoiJCM-4AZxWNYGJyt|12ZW6Hg^f1e#EOL$>@ zf6oXs%{7V!PXcahiC<-c^WKZ~cLjnbA`Sxl^O{w}#^RE7?X=_GzgFw|wteZuMgj%3 zn}i@oC_X8X=0Rq*uFV1bWr61w1TawoH1q!Hc%mp!W2=c^pe6P|z5EDVv{_^JxOXiM zxC8QvBeI@Xc=CH`DGSXZsT5_F1>SAs*4qNb_>l>Nb7Pv-1bq2E1@~t&wvG?Mnaea_uL)_3*sd z9sT#UkLyL3grWGD&oj1_^Q!P3q}|jonp-@VtW~Xp43r)MKQDeR&g6JrhzpvSAdyxa zNn!FQ>Q@ZR2~ABGdMW5eKe9hO?<^})Xya^WVm=64PyhoK9*A@QhCrqIC;pj^+W+p@ zQ|y$(ZgKk+;Xxh_9jYkKTwj{3m{0}GGwwf3VFA1U7PA{_|MTg9HLk3?NNqVo$xb^g zP?H5Q818wmt#7ftzrJO+eDr5mc~z$@P@9|_rq>6o*nSAuz*7l|w4vTKAx_Uu{iqZ+Z#J`jwtH@ueJm+=9w>an1gi5U$^OI9|$H(L7-b<9S536u#T zB5gE%I@i4f>unl4fq4bQ;IOJHrM5dsHT=pyCTZL*naRI(D7Hk-B2%qRocpH~+JtT{ zF!d*j?RgZ=RMcMmH4Eqb-|fin$y8EF=;Xqw zM5U1Jx_>T>)i~Fd9K6zY;nyB^oG22ut5lMFII^1YpkVqFK^O{72biL| zI0)dtgEcLx@#H|}rD>nPW4okIHD%!}z7HHRY?snuDelwF(_R)B5eLbt&b}^?IpXcK ztxg<758(xVe`W!glTLXOubZEaKDO8DYu$48Ybth@a~`2Ztkjp#n&O!myT$Lu>&MkH zZop9=U0h6iE|DTc$9&!?LT@wQ2ngr`e$JzyQ_nSHc(dm?%x^BS5uX=u}>?{k3Ow{DX$V1igMA)Vuwg8UL)@oipDD%S%dR`<_r@Voc|Edbp>C zbiyiXND+wa%?Qt1qPygLF_nL11{W1$bfAlCaF-gs9x6N*W( zZ?pIN;2XK7)ndZO=BBPwJZak>6N0h8CSJKiRwr{gT2fkLVPmrc6<@+0P+Z4{ip0c3 zke>u)$(Nvx&eYf6pgRBrZ`GaJF4UgWlR@8g{|4{bc z;aK*6-1ub+W#%>#3E9bL*ktb+LL!u%nSGW~M#5!f@4XU{9kR(D5mNS+?Df2_`~Dus z@At>^&vXBA*C9^lb)KK`e!teofR&Zir=BFf^gR$^XP&Q`m8WZ803>Pb7{#($WKa&B zZUgejY52pnIg=*UbPav0)w93L+CDx$PoF*og`Oj{WYC^PqBE$J$SEiWOHCw(r8sc0 zn_{^1LQY>3DqRDO3aAAYqu5w4-s9mBPCg^{i;&Cgod4sOXnwT1xk7aFdQ@k_j>T1v zOW-49V`Ia+Lra3M+S<2AOhUqPakb6^+4*3|6g;g0^P zmnkWKudh!P>fMBY;5BKuLQXya_f5fTg1#=>#Y(97rhWGLSF^HT4->K`ogEzyJ>%!* z%v%NH558$;#>U11w+J>Ltz0|B?l(4JoW$S9I*-MNwS#F6HQs!@?#1?9LKErfI{9V5 z>vOr2hr$*xM3x~S34qXAAIv6>U)XjBCxs68{RQZLy zlM(}RS2I%%5Yj>*$w3xyW2dFL`Sm4+u6d`dj(%0#I|vv{)aCGp z2i>Ccp5S#w6vahEYGEXCG!&{RD~G;)yEdF3W%ddxg+VIx@Y+x=X=3l$sOQoC=K0!p z0U(fE3yy(V*XNE+5X(1V7Zv>hqKxrznrw{_0EIu;Bpv|vu5%e)}&pkfg0PBMfLVMYLHZP7ekr9RJ!g+lK z8&hkbFtr{052H*;Gk6|tEF0Bn4w5PGnAzU0g;@sD{=8ri~Bd`bGWR`ldtUY3%#=`p>C_qWcFj<-w2uFKZhfuxjG%;>Y41 zmlP{!Sz2;PCKr(lAWZI6&r)4i3_|Eh1xLKDjIp!tj`%pHHW= zxJDgHKzem;bydW&hejuJts~JGVPHrGorhNbF!&@YZNL8kp+b9h4-%4_d&5Iru4d&j z*8{3)%{U%IY8slngW}B0-yjc0+&}(&@l&KZmugoXQzO9Y@ZxDQ)Rt{$EzTwD5B8Wxbm^A>{iL)R{6N?-k2Vu9UK%yMu-c#->NIof)!eKqirw6wI0j0lN} z*1;!~e|M!Ra8#)nNKC-Gm@QZwkj%_X^`yJ$E5F-yDN@CKm>s-{L#%9U65+wdUN$Q{ zp;J^;MBq{|`h|ECw5egY1nh!cTg_FvycLi13wVBEtxA zqS#c0k+Tzw`vmBMkI{4C6Yy`~1c4zYt_ulz}Z7gay2Ym9`+Cg#SQo3u0z= zf4a@(vO)?NWhge5z*1D||HAwt?ez&u;(?TNR zVbmwv@94TQH6X>YdbhN%v3u+jm}=a%rEFtE6Gl{|0lcWUFU~(rt%nZ}4IQtR3}cb>dUuuLjJ0 z=H1QG00h;DC!p!(y&&sn6m{pbl7#h8t&{Qf z9UdM#c&6}9>_O5z#RaxlNXMp*w{skAIQQ zXZtEe7m@{OfuFR$3RNpDHy)Ya5gXelm zagwQH1m`c@`nFp}Jzt(BCb_?|OTD)0tiMNfW$_kror3VM4Yud+az6(=qshLXn?po% zVZ@#ua=hJ_#V(bYE;PbH@IP*H<+ z#6F2l-husy;@At7x3{7VxW}XGk3N*0&LvXW;E4T1WFjW}S#OG5C43#mwMl4f_|W(D zBXoVwqro~szHRjp7nWP&WUm){aId&Z~Rb08}%Ryz{0;Nf-C*_YP6ARx?+O2e@m^G)H z)fe2a4MCPuxV3j2Z*$+ya?8(lw|Y`N`jg|ec74}UGkUUYMnJqWX@##y$%A3VW6p|k z$W_NcI-*`>-^gK~ZztJdkVDVy!y)gac9VQxiMu*w&ak>j@0+`>JZZYV zdUe_>xkN3`c8uw`=CksVX^?;a!S;fEu64;qaa(&R**W)&svhr5e~^>Jnm~$5)9P zRaZ?V($f!o<&DUHKB0doE~e6b>yuk!5PIn1U{0~QPkOL@wi4lNKy)kDrPuV=uFG}Z z$j08@Kxh*_ZN#oqeAb{4`WQuzqj%4n>b3F1;P>x@Zq?4L*xID$p3;jm{KWTc{l%c@ zQALx)O=@#?bv}WZFmrC{RztNUzmjhoDv3VACFuMo$>Ubn%osj6p=C80xXe2fXg4#jml_-J1It@w5CZ2?CW z{YV^Qo}P4n!$nz|HM{+4thxTYQb^H_yOj(}G)_(Xnxj8#m740<_Q85_Br2Dp-Qur& zj>b71sL#B2y79KeYRZG`OeQAa!|2FUuVZsAx&WN8qc+=Ynny7PZ!Fn~Q!3`V-`_{N zyFTF}%3MC1Q!EDWLJKc5mQPu%XQ2Hzl2>%*g{Y6m6;e)#bd}c$7`;zcsqX5UmUdsokP; z&}>|2AnzMZOVaWP&k`eEc+bp1vy23^^#(*NEeu_R#4s%S+i*X7})pPE@<& zYS!ETKi=Z_pES9Vx{7hbl|Yk z$Q3a*frn|XF}I#u{*64f3{r0ladRG^n7#ioJ-l>dpDPtPA38_9_8PwY?{XWr?~LDO zE_9p!|9{;2+7zC?_9`R6mTUhMGX;@ZXz{r5{^qAz%G#ZTvCknPfl~})_G>o&na@0~7{FRnq6cAQ+cIbFWf@TNd3AN*LT*CDSd;;=rD@FDs?fbVtP zUC|XQtmPz_MgnEiHPQ(4Zmd`lcHGF-$`}01bh4O=K$1o2(@8DnNU$x|XrsHvFzj-85#D|b@8pgkMHD}l$pt5+FBZ- z7$qUMi6jJPvGi$-L+N8D9=EB-Q_w{(NLU82#c{xpmaz>{0IG@quX=x}Bu1J6ia`;N{)Lk;FHqz0v-|MsqJ2zzL= zP`8+Ne2lHV{X3?U900UHz90Yo{m+X!J>d5A@%C0r5e?QtNt)9B$eo020KD}@M6I;{ z`bFypH=`EbLwKY@=dbUEf`>M*sx1~%b_$uDCGOCj59yKFD#^Uv=}l=}{ThK!J)@Nf`1AC2;ZSlSCBb)q@6i9VbGRtA*}#-r^iNq5TWx@fj~ zCSZ`=MLm`I^NzG#RBo@r?S1s6@9G0tOtTsfL>E+KK0ZGT`I2e?HDVv+H((6H2y|N3 z5b&#D&L8gyz*+)#eCehVMX(NM>jNCr>GjZXr78Zgf<@fQr>)FBOcjKUOccR;o0B(^ zy%hQ^jN+moXOx-PY&=(+ za0Z&C5s_mm1eCW1edOC?e4M?-_-vg$s5;~cqbfp1#pwL-`gGN%bYsn zP^N~3U94n6EfIJq87Xb4?99A&>>A@YbVIKNPyuuU1K*NGMqU8Ap~FtK zVpXPJWPkVJ!-pvn$n?N~X1)#v1Ar=<>p{^MYFw09T8Dz-cfOV)U58BTu#j1ZK{ElC z&E?&|op41n+9={zk{TbFSjeAQSm@S!y7H^iIYUR!e6bb^<@WJ${bWq)m3K)m(%k$D zx&e5p%HO2uqQ|{aX#~+HJ#!ZY-mZQUC>g48ze?Un?%UMbDw`0aL~c3f<2)$BmiWZR z#_&T7xRjHXvM+USL+b}=M-gpTI{8Fu8JDOt?-9>~LO~$`xMOtDqeqWKuaYK`qLjRe zLhw491i}i01nmZ^$FEXJA$be|DdLy&U+m3Ic{h|7T7^Eq6Ili5t{DbNu1fqMcRK`% zC}sr)z?pVlpq@fk$T;8ZG3R&QkGU2m(c5_g>=lJ6cLBPD2$v4e8kc1=@Y~rDpjeZY zI2EV<5=>5w6w_!&Nz2nzvf&lyy!ICM_0vJ!kVE?ABB+wFc3(swexiVr-RI#B8~Lsj~3k>#-Is#Sn+HC8WT_wp=*CM zBIl4^1nTW;Ll)h!VlGQ$)eaDH1{0dNvWgldsi&oJO?|52rTy<`+l{lWC;flHFovwS zy8;~CGw%fL?D_qDX4)Z$(izM~KI5=mpdofH?r0|II@#Nj!0zRF~MfKsO6eu_%^Ktt{0+iX$6)TRS;415KOzvT-3 zMjsKyC&s5(+HCeW=f?i*IUYi_SRJlTk|e8JIQot_OOjD@ohk>Gv$|G+zDi7t^15K-r<|vx~s>SArq1v6p=og_4jt*dp2-l$sns26~H; z!zd{->L_SWp&x&k>=&J+Mkip|qhD!Di;1BEbowGGsosnZB-6kZqxK+iuol3hCstOp zl$5}HIPA`*fxHhSY)|`ASa(ERmeLH6)1%!^22uv$|1zkIky^Kl7cUCkzRgyR>F@!s z-1uI;_-DQwfZxeF4*?Ilxq)gUUaQ$ix2p!{;7Gd8%&dZm-f9C8rBESjcT^&H(v}t% z<^Ael%z$>Y8c=YsVJZ*-1dV2K(a_KU=&URliz!v6Z^JU>2ihmY*e3bzY&8~M`rqG( zjjXlVt(cKA!J)Iz25Ja^dIk&12Bb~FiQ1MmW}M_%4{G8|StkwOtyvdtMw zikMX;cN@NA;ot)l^62w(;ZR*#Cg_xD%YfrD(6n3+SA=_=ws( z!&DUNki~;C#rJVc?*}{;0zC!~C48!YUyJ(|7Z^hp%f?TX9%5`;Dk=>JLi#?tB3}Q% zwgX`s(i5TJ9EIp3i1aaA14lMXl>!kO4}1^`HY(+!h~izpT!C#T>~Fu}!$? zp`pqt;nEN(wFY6HibUu_0O1bqMn3x!C?k%3$!;&voQt(edo!Rij z(GXJN=2VISRUsMR|vR*y=INod!$~6jG(22+Mnfg^%9|C#=6`Xp8CWCC2F-Fu6mEs!UiOw&d z1rlA3y=gKHEDGffwK`xL#GHroG%wQMW^r6vTdM;?1rcS0T&q=h-RAS4K!n|$X*(wZHp1AzKv{s#09locE!8W%T3!0)&70a?v{w)#1-Wnv>}V95qRPjJibaKB1zxl}n+-$`Fbxf8+=x-JF+kt_rPfjQ}m&H{}L9( zAe4I|&I>Az;_Tt=0zyKq1iWzB6(gb$1h3O3_c_P)jRy)1P2J}FgTkC&Zv-1> zHnzcQfK_xmn;!L7|68!z;s-HK>IX#BiZYwuZj6F6 z(dN64C~IywzuyNIV9fK4OE2a6<YH7VmG z&UPT`K-JCr2&sF2e#sjcP4h!++-se?@PYx*PWw#fUrrQCZJT=lNUqkedpgn@}Fhf+nU3~)`Y$p78h(SEV}d)pm3 zKYamHj{Tm9G!(SmW@ULg1&N81z=^WoyWa+x8v#b(`3DHT4EBiVB>Ua0c%;L!Tw6=4 zqZnAZoT23`W96%AkvP}Qa3sq*MeB|Cwu{&ESasM6vqYcb&i*sq;G_Jc|83IF^r6*? z)gkwpcxO8Hl|>3_>e$6csuYi5pVZoKx&Hk&tPYU!5hRnrYg_{!;6{^1-{>UG{$b*o z+85zPxwhXw!j^cEkdO(%xc*>*9*vnGu8>_=aT91jjD7nR4gq>s@L4|-J9`j!f02QJ ztpSQ1-ym);)Z|CiMSVF7XXXB(HZmKN2n80Gg*%N`BHrrU)P5-xB{}$Z3r!!@c>>yf zK*TW>A)pJpc~85XGi^!uH-R@!@;GmM7Rs1UmIQLEW{<=fZKPUde+$cAp^MngE#SIRDTtsJYX zVVEg^a~RC-e0mg7uq<-Uw%m5=CrQ znL-9HKfjjP3@nDQP@|pIF7%q-1!#TzBT6GHfK=K&j&$Okf!dvNPDk~tQU^fizUdm_ zyzwa1&1&;-x43i6Y_h^ZId_Qo!vge4xVX3~sp3=9(~rb%+`2U|JS@nTSCTeSLjQj4xDNbDz9CJZ{mDpwn0u zhiwF)Y}>ICdUw+*)4Gw^Vsm z5?Y6ohKjtP;dLamh~S%9%pPxwJa>px)c|u(?e4^shn8w=G#6AY!bIXYgYH$!;(9+UAbcW(yn}qZf%2R0FpnQO>#1&LNeGBfpDmrErO8TA3j>S|C`j0o%ykneMI%|ESO)7j6tqCiLvsZbpz1=@ zJ?LYB`Ja0PYvEl)oDB8nKI`RN+k}?ABJ+u&MDcoF+}WGX@XlcD&U|+CZ~qOtj4;qH zz>W$shZs&>VaH#%o%i@Lt6J8`GaDOaig)Jk!^728RNgi=Him{0TTMsOi1-{;2=8_9 zLsNMMg-QoMWIAg};2L~}ep)&mda4DegRUS#)>OfdC<>Khxv!T~*>r#E|F`tki1GD+g(NonVIoK1*6D!cU*D1LuGKZVeKhzDh1 zwz>&@SRC#g$0NLs2+KUzmcO5sVr zuOJ}=#47UMyP`JV6{Bbt$;47z4;{E2;H~I#fgQLRrEGMsr3nziKcYdLmvq1UH5C6p z`!1tGnDBL%5wCORnT}#l)#1~j-s^;o?bYdFyb@x)!EW%%jsogo*Z~F%LN~Eg!80nN zR_GaFRMdd2NGn?@@Xed33%zvDFFiuBqp3veR(6?Px0C1Pm4YRmY^4OS958=rizTN< z&BJny$v1#tIgsywu+JA7GmtRZ4Ci5jDL|wI)GYY*sSi3qHN>O;Aq~1XOhpahQI(fa z-aM<#kG8wtRA!!Y8r+yT)ueH$eg8f&5g^X@r=fzoKai;@*lpl#sdwHRVDfmi@`#d~ zx==chXm4*13M*I@F&!f~iNoH$Rk$Bf^eTY4y3Xgg5`wiDk(1e_C4E4*l)i_ zl~EqGGBr)V+L5T1JNf;4{;_R^^+*>4yZ0@|acI9T`aovFfj>2h1L(TqmO~2Fk9!V? zh&An$%$sjku=pr{5LKsC{}_QTkK^AboJbb-*~nS>^@|@^^Ww*=DffM1a0@)mz^&#X z&Z{WZ`%RbP3$$u_>QO&?#4_%nB<-6C;ym=;MN~3P^=NIHaLdI)j_1vwlpo(jKlQpD zWKei!7#mxWL);2ziMC-I${Hv~V2cg8%;j6J;_iL`iU*ShZ*ZS~em>jGICTj6(m=Hn zPVQ3;4L72RIR1z@BORV*=*ft2{b2pU1ROx^ua)mc&=3?v=%fuV8m=t$OJm3bI0oO# zR>R#DQ{Aw@TGqJJd@JNdGr<`XC!jsT!NKW{<`6J##zh1K$^i_r=E1P+psomK5E-4E ztOXU6ZsCJgLo!feqFd#1?2{cvy!Zi1OMB!Vi8~8@1f(XwelenVdU8_n`i%K1)O^rz zLuXNCJp${SE>R%%rZnoMNvz+t=Jy*D>$hWn8&CB=@`^l>dmkNbZhv<8+z`@z5Po@^ zcqsTWDkXT)=AH2AAj|j zP+y-A7rR$i>j8xF6eAW2XAt-J87g>lPml<~vp9P|2JHu+=Z@na)PE-0K~^aJE8O~Ww6He)9UK%Y`PU9gualjaZvmzQeAg2N9RR#cOyK* zD7UNy(F);lOJGhCv`JRtf&cjBPnsqZQRe|C5d`a|<|jFgkW>=NQUtKfot&J&#v}ks zHk29?9)Dzf+G-*8A?2>48GL;u4Rk(}X;S_Q#17B~sX`+7k3~MFH{V8$xv8U&mp6Yj zk;7nF^Itlg`s-iFbKLjCYiHohs#~C(-$t*L-{uz$NHzTn?rZK||50J34cZ$;YE0GU zo~0;n2~rHGV6Z(=Vn$m84&uF(R{nR*=Yqj1sR53kfs|Pe8K9-JJ(buTdPrmXa*WQg?9^A z15_9rg3@L6^V~(R`VL8B3JA&{;)$-NrM+9Sg_lwiylyCui;mHRS>3YOa|`$OR=*Q! zK-EZ2z3!j`W#o*al+w3tQJTqrP-%C!9a83u#h-~B-OR~ECSU!28X$D+?N}ZY+CL7X zkMy-R8A;7W)MJI-p@{o_$8ompMQMiSsf9^5$u! z_qsf01fAxWtH#v5@%9??QgHnxSIibQ`ALQ~YMjJG#^Phcqco{g&&}pdNNa{_)6>JF zOrQHc7da+14bj#BRQz`8T&al!grNrkF(w$vgFnJ9{{qVdnuGU(p|5Y*>)!r1y=(84c{aQ<-R3s(V|lRpgzo|N=695FlDc0kG54; z7Va&q6VQ)53;EwSvi$K_sXUA|Zg=7ukrl#xAAYQ#!`0mNhh`&BIdhGKbZ{`Yr~kEY zGn-N0LhSkNLKTnyeeJ(d2dHnm6VIFfUGL}K_ab61J9!>c;hJNcszu!rb&42nu$-~+Y+6BRP#YN}W-b_}u0BlluX!$^Yx)cSS;w`Jn&%<4>|T z{on5mhB;SR_EyW<&fCT^ZUv6F+1j!EV+<{ zw3=OdGX&k+d0ijWTbGIOFkz)W9|M+#c@RFX(ekCcG$ZU-QVO4IYfJUZeo1U1<<=vd zR1idZJjghuG*Qj6<#7~Tug?9?`kC{>*K^mkmmlG}u#69Nu$#Qu0jlW7DD{0H@V&L$ zb}1Q2i|JV%ybD)xiDF_ql<7Wun;q=v?O3YFIl5d_6_{ULO-wz__zHSA9v&V|5!6dj z_RF;Gx4))*-|>>0G8AHqM5uaFtgPb(p0*z)AH(LPd2Q-q^JYZ%JcJ&8-Sk7D&dL3x zeVw*cJe<~g*!L!#k{eDwXLEH45fKyLk8x3*p1J`j*y7UCU6&;d{!_4|gOm~0ox6AM zCf#++07xD}ktDC$y^j7I-RpdBzTn}>Z58*j&9U~N0(PBjEhJbv<|XyD?`p8hRh5@( znO7nQ$-yVRTBMZ^aiJ(4bjKnrEGl#^AC?6Dq%%KR>nHB~I*GfLXWmc^ zs%zKb0$f~EPfy|0zWwd(YeUeo0Qv_Q3=27iSAgvhq_7#*C{*=@jTH6CvVIuDQAg{; zh_f6C?cB*9!ks3pkeY2K1%Vk6bB%p9XrtKUN=)azGqc3GcfD>4)T8`ogMh?vw>6{b!I zx~Il|?MLbex7m%BGO<8I2M!blYU&3d{e`}y@F^P$O9bL#&iA1n>r21lOrye7Sx1GH z9_9JFyw|??*9L^-H|{~@Enkm9{kNVP?k0WV2;VUGWPs%*O*Ol#=7Zh=-&eQ4{5kbp zE9s2lFH&I`L|EQj+K=HiJ_5CO9s`Qz0ijZB{v@@+BZ-gnRYV+lsXWrJBqO4uqf?K+ zenq}^nDavrFUcEb0U_6Jqnz?u-E-Qzf^rW25pY%vHQ-o%$B%=UP<-rzq~uvV&wkAe zz&+~RPxZ%SUK3MucPvhUX-Go^#fO`*mAEWFYT(A$UaUbs(!ax06peEk3w0oq{mb}X zPowLE+W~Vbmu^038I2r^!af#MW8z%VvLI z_(a7KL=9_*X(XTt-~YUE?4`Ek@$&IelftZ$O9BH?$RKHP*_!Zc!+hR?f0ujilht+) zz3_38#6C`4YFJHup^Aee-FkX^H91iIPdKZgppW3bJ!ty`Wf6bBX^7y_R6sTpIa?!KO1cru0HLniaVX595`wBQ+3qE0Y+?5Aq17RK_m zksGY6vQxqkk&W{!jx=gaRlsIytnO6u3X}DRKjT6P@S5Jg2mOOX@ga0%D~66}Pxw~9 z$*1MK8|AdZ;qwnKVLsuj-fz?QzAWy1T9B8MLn}kbv3JQ4G;bIR8h&nj`|z6?l+G@~ zQ{CN|9PyA~tw=|1eTqY*$6keLs_W7&-*b;OI*5QQ(#anL(mh&FLAQamUz@&KjyI0Z^WdGG&%CR{J zqa7H8Fwp8JFf@V88?+o`!7>p3DCRUrc%c}e2}EnBj2;SM^~BrjK$(L;9#HlII9muP z#0GKGKqFpKLc%3DMyRG3s@dT=4o8l}h39pJh9?epeW?N*DhY!@#BcQZxfEv%FezXi z3(I;4QDaa@*19aCQ)7T{3GKCvqRN`PVgr(CFTf;9|GBQ(1Ir}Zu#6T#rO^bL1hST< zJOk_ncqYgc52wBcV|?fhDI z9ZuAGva*GoasM@2XiS-VvM2Gv{H(o$zw(~%-{3BDe*E7%34lS!Fdv$21{jIEZ~X)! z*!gbKxe-0EznLHg=&$1(d;sdqDyiji#VFMk69?*Wj(CP+tsKT{anya*+v6NI zUrOcVI{t-Nxg*rf6pSope`Z3MigSK={Cy&YD12PR2>rEejv$zfA1^DCp-Tzf4gVR917G3w zVXWPg1SMvrsq(iOI^*Fcioa3@qwej`2xael^QAVyG$i=w&|!wF!`Yzr4uxiov(8l(s69#`D& z=MI4*NErA*h|i`XL@8+zD#_$eE+{jnPO1`06G=B22FL)y2!z2bz>n+e#h+&WfSdxh z{Us(@Ii;@H>LRU24^HJZmr1B_eK`psYzXA@Zg=ifVY@KnA}Ds>K@1Q~ta2ifaC<$( z`b!^vx&}K2Z-#aoyiF>t>@ujdoq+I?r&p#Pk311=uc9u%3M32g7B}IId$B%onS&5j zvoVx@>l)nn`%5Kx1XPk&3A)E8CLp<1!sm!;1PhgXNh)5@ZeMG=kgwK}E7DKnJ&*Jt z84Nt+DR|4m!oq-`FtxON&5!j`?Yq~{{&X>~wsB(0d^uhpwu40dG&YU*QVK3h{nua$ z_C@jL>u|!d?3?~h?1-K#dZ+8-*!cb=+jd2gsLfvo(uLmlZ@VN-@n-=;#Kp#f+|rr_ z&yM+;ik^v*2R=rY;=gO6?k)S1mXcbFB1OnenB>C*L_CC$1*<`a>KFR>zA83%?78jK zgeNyy|C!i1D(qWn|2Cj*0N_amr}bkRxvD&!6Z#t;dDj~=J}~sztEc-oQeUNQQDC9Y zRM;w)I)KFtP}Eus%t|MSk!+;)_3c~&qDLO`1@Cek##+CL~1rVR8;z1R%t@dWtzkRcw$1j`B-zof~qzudgx!H`n9f75>cXu*F$WBKid zaV@w0z}D%|N>_-T)58#@(XgLH3tgPL&toqfEHkYo-xp(`r41fLeJQoS!1Wx1s8fn*4(7#5 z%TthOP@Mb}Fu!0Y;dn8oRZ8mTKe)31zObphPfI!T^cLcbp`)P*LSspiSKvyxQdTSp zBF%XZuMgw+8j#(#8MOrf&)f|BtbjuForb0*CmSCE*AUAS3O_R2waoU}sI%`Q z2l;&|C20=1*8$bw>CE{VsEprYV@XD$>wKdtUwEk9X_CludFzVTC`>5CH_DEp@=@l? zP5fCO`oJfrOpFTx2o0qalEl1_J!lT#P|hsZ_g-gU_=H;fK=Jz&?hBsu#E0YR50wSl z6xF5n{hq^_AP}|>LJ&~%aZ?jpV84`RA!>|wbg8#0w`V(J;8-Fg6s8Fv3dEc(`89|f z{Dvg>Zr^bv(=`=kmfwuQv-t$w@A6yI0!cl8K3L)*vkLTQgfM#p6^^!DC%&;3@r&rb9M0j%*Id@|Dt+yPZGB^|QC<-cIPx#zq9?x)s~k;_8ZFH_U! zo@T8Zr&Ik|Yb&+X7fEB%!1jv(O`yBCcU@eZ9y~-voLl>yA>+}G3&4F{WJ#swtxYJRcwL(cSIIn-43+jcfRy*?l^OHVj9kT*83@$QmvRR$f0=&LqN+)145U4%a!^}d zdBhdwVIyMAF_ce2gw1-F5F?BMJ^)!%<%}WH#d%q(m}&AfRh19!j*c@l%ullOQZumB zkc8GdQc(dXv6SH9;lZkZ35I5ABNMX1c5tkaSpdng{co6{?swTJgc`}$*B1=(0AgZ- z$;0IC&%$qSQdXa-lIHl8naC8aAwgyZyAzm^b!B95p-x1sf9aVjcH`)0*RQwXGUG{= z!W{5~Q!uMRkPB;g-rUC`=i0#V5`*2uZ*HY8{a!ZUrH^W6DrNtH@*V(aM_1Qf=!i#9 zBt|gkT1mJdTMxJXVzX#CogG+qp&;GHx%Tqa{X0^8K}^HK*3ki}{{A>`{D*Q-G!;qk z{B6w3Hf?cYZ!t`1ko7NOzC|aj{dY0wd!WL}qkD;kmTQEeuRm>%U30;&fgoKg|8019 zRau#7xkUZgp|^PO7honpHUf|ciJICSsYe~xLQ9@}zHFU&HLXu7PlFwf&S-?xRL~fk zn+rlkP2mOUWF&-y2Vf^hK>4`vEg2>lP4t?*pI2Pr9DgmGTDdUFPPpVj1|^*b=u&h+ z;s-Yb5dB+P0fnK63OoqG{{*k+^~GC{abKE}%Ln9ak_wg#O%%zh6J3hNxlbrPcyK*_ zzfa;EPR)u@+MRT0j5K2DZAwdH;*1F~!#ZIRPj!I&eS|rM(+V48Y0RE(?FBO=m9;l3 z8EBNqK*I!ETTB*HJX_}&*#9WPKp_rszb7Q|Dtn86bm?DgXgl@lHmjUZ2#ww}F}JZP z^jF{g)v6rocRL@Qab9F^r&*wKsJLn+$2RWwSW-%%p(G)}cY|Iz2a39wn9E(bTLLwt zR}jZXOWaq^Ndr^F_=aY})y1qwH@?@e){L@RtyO#{*r?lh(Ae~NyO_1j?wc{mGS!`@ z(2Uwj^*c<6oXRq59yP)S7aw)T8cp)^4G5ez7P_CAt{MOkN)G_qT}$=rU;W1r!2a9haB-~3DFmG7QZh%FzaA1|`F4Pa8~5r2 zK|*jH9El!2_*y?WUE<&y0{ZWjjQ|Y(PdpqF8He=pSARaX>n1hX^q~X&09(kxy=lrt7?h2 zFJ8uCHv%?gUd`mI!##iLOdHDt39$(e_imH3ALeC|u!Lz?2_}+I2XN4^Hr=OPE5-7C-(FV|mfR^< z=>K_YZ-2W;eLwR4;(7BU#b1jrhM*ww(s6lT8Ek1*lA@T>7o#oTrjqPq|DChoQz55V zj^b3pYTsG$hB_X`0Gv9QrTDv6mG1mc?ltwWzPle&j2`a3|AOolWVjZBitXD^CSa1` z$R@}JlwpFoB#GovIW-jzf#f7{*ug>UfRytz5jkc#hxFhGKe#07^qR-9;O`E)nopUh z0YWZZB2<`Uw#V#Lb$@%J3|SnmLX$*O<%IL!m-)`tnL3JpZSwgD#PrH4LUIb~wKO$y z%$w`a)MEM7EGLtm2pcZT_uef{C&|?`_2)ER`GOdfg<8*7Xu#I;a<*fG$=zIRvOJ^Z zZ?E7Jf&cxwIgV{w`7sWD?c!s#Covr1eh?vpMG~lVZP7%ejrg7|1~Ks1-*h3v1XsOm zh^+HL`?~YAv<>+F5w1a4h5wCTC3(%vCAKq6Z8b+6IwSAYH75CQxGDbqDXFcw2ll$i zF~{nF6dC68Nt)lf$AC+#lBlWt{!+H)zmcTr8X_a&u&A08DHkIQdHH4L}` z7LC7D!cO>79CsEJPyiu9fQje+hM0K=S+U_vod=wP)b<7;WrPhCAiQw;JMUVW_D%R? zl*lDkf7lQFHe6W8r#TdoC6GdiU1;v_@5lJ0Cq8wPX)}oxmAyI{o+_F0UC}u6!RuZmJPt*(zB*a*xf%@AVj*wkunXB+a;DF^< z3Ckd-fTL*_ov^I%F4OEixnyeEx8Csb$&JcpaD(|iXpPM-kidp0xj2{ zi8|4?{&;zs#k6O9&}J0Uk%h-Q_6pnQ%{FNYBi zs`gspmEipwRCh5PqUf={Cf>Eq0=VOX+)f#gyXKoP5Q7tc6;K3VPE}SHTS^65Kr=fv z#juHD&qr#48OwRsV(L6>2lJwUEd15&Qf(!dG38!bnB+ z_s_gC|28<)(SFcj0_l3^HqMeAZVp=(BazZ0kwDW$GYMyih2d3@LK$lV3k~050_W3K z5F2nm0HhZ7*wU0nz_P)o&d8VwgF;?b_F}ixLX=yHr5@)?Um2#Ga}i6Ob^yArJ+%jH zUXv0vC8LYv>&RB^Ra6MZt5`ZXoC|Qp-?mGD*m~&wcJnvx>gPO%181iWFUqCFcGP-n zFuY<5JJX}Mu91s*I^Ns+x_-XbbwDxMY>9(&M5!zP_~7DiVY@2|ToE>Y38*FUw?af3 zgj80F263d`Az!|WkiEi89~mah8u3>IdkBeg*9#}QUkaj~c|IG0UP5w0%o_BCFsb_D ze}8>X*rTvueD99~u6;J`tcE0J5qTy1cyIZ4u3c8*LkJ#*3*rQSp_-0q3HtY6n>7Cj zz*PZg?tAwopMKf$-!G$>F>!M!e9Bi%E&^}g;bMMGG$GP6XDr6~*(cU;gz>-MH%ypR z8EJ1HmhkT~b{!kfppHxazuUh5R`RSjYEGic$p=1xAK4d;>(9IJ|NAS`_2+*)YXUD? zW8w+FIgjPl(Y(C zH8Lt43+lK29aEebVdyc3lq*KXy~s0aFoJ2V$&2}+vj|ohVn!qCAGKdxobKdLzSb_g z6!Yysaw}hHlPxvwiPO--Zw3vflV?2e-Xsw+>CRj#Vp-EMTvBN&s|#|zs_SgHw~E%l zZ!a(3yj23Zl5()oW`D9Z|y74Y7e7Eq|9k)3ePzeqLgS&+%Ygw>m8uW9|AR#h8 z(nPzvLWku-ddtLU11EQjqU`f|H$do?mQpLgkxAznb&cg0rqtm0nw0 zd-$?TJBX~#J&-YvrCbL~BZ4Q+CWWsu@f&@P5}Ljc+=Q|6J_oreI@R3vS*5s7+mhO_QAm+8aD3Y zcpXYl2=WL4`)doc@&S`KS;ojeS1qvW^*XBt50`9=yng=>U>#@%!(aMcm>h(uN6j<$ za(`yi>pCEqZ z`?5ewvv(g~UMtkA+SuuT3b87|At411is^*OnGr%Mb*tUL^O+Ccdw~RexPXvPPJ(uc zcFGIp${XL0H~$Y+XBk!17qxppkWT4Fy1Ps12I)q+q&pANA|VY*cXuN#-Q5k6(w%qx z-*=2V?&Sj?&)Dbexz=8L&gc0(LQr5;$rW@TA*26SRdEulc!rLr?|Y_j{Wkx@l!m_d zF!IbL96j!X1BV6`U^K%B%utKCV}I3G@bT>7;EworV!M|0X1bX*|aJn%uxE>cpQJ$i%Mhb+~Q=BHUCc{&xkw+@%8L!k}HwRXQQG4VT#@1sNt$6oMr^E zyZb9O8B@yM@zdDXiyiGGX~_x)=2~3geOyQbFr8S9jg`sjiLj3B8skzfX^U|h_2 z4wg#iozr?fha3MJV9}celZ?2)X83L;8JVobq{;Tews~-n`1Ap4;zgBN%|C(#61(-7 zteTM~Rp=jU_i9)(nyTxPLgUKt?{b0|q)O}s7-paLENUngqbxopyW(}6^+oyuh>*Zx->N?++T)bq#af1UDs_W)Jm0l~BI$y_` zkn;4)wsvjZ-zo)ygurNldXsBN1Z`Y03+0QjM;IBkFqe~K=R~d#IwiuUPn76+txwM0 zZQdu=)G^W(qS*kA-QcWXop0 zaEVfbE@64G!g`PWJf;GPFQd;N7=tv|%+?zmt0ndRf8q9(qaiXnNN+DeHqx?z}L4PG0V^Je5e11c>^JTa{J8oS_X6o=4yzGUiP`WT#wu9Gt z_<)tmslHKx26k6JlZS_gflrA%E)ya?t|KsowSQ27$O(f}VYe=4po*49iA?WQQF4x@ zNALIvq-00cz1c=e;|VBD@(EJ2_@F`(?Kr*$`eu&oO};LMr8!>PHLdEzTQ(f5MRTsC z*bNT8?0hQ0Qug1UC}{(#DKrs1kW2)87GRLff=4;L&#KcMc06h5Ombtw{aMrhK?sU` z8R>`J;&~t2zGwv!4#Tl-qsu~yF#|GT`Y>ce+WhKx#bt6OSM$Iuv-_Exj6dr`0_FCtX>M0NGiAk_$$Pvq(U1TdBb|x>yXG1AgGCA zEYD}EcQ@5k@6|I1$8Soy&nxWbehaQnq4h$G4>X)cHY7?n`0+2{g5)VMfdx=V$oA&u zrw-j`F@D#HAHd}eo;g8&_Xyo45yD<_X+oPpOfNx9n{QHo6wq>c4!2wifwXxsoYE&Onw1p0k9=v{fBOi5b{L}wXk2!MJZGY)pa=`^y zfd3&QbQ@v$$a#5h;Z-N&D{kY*za^XQN;K%3Z&D&k`c9kJOEVlA8d48A;pfX=Rh_kh zM9AHrA2egUCN++~+6@R&Zxnj)snm^`$M>h`HRER0S}zgw-E%GB_Jrd;Ty195w&rf- zD3nElJ}OYOrn~;zJy~n)pIMiR4-Ag2r5{gs0di6>)!Y0Bn6+D30}6?>QkJJX>PCI- z&kQ$0MPD_(q%n;SukF&~J;MnM z)7Q5wz}kHubE?&0Qdb^;m^&V3RCBV?UCli%gQK|2cQn(hCdgwyUo6+|eH&q3=|`M8 z6nZ0aD7}2>)+~i zG#9WLRA$4cEwK3Kw{olS{>MU#SKG~XhH;9xTF969;(dPcM~Lv>q*%(!qiGoIp?F|b z=5x7BJ6gCn%sg3`(=YVT;GKVc2Xr3gy4G=(P+`0h0uXj+9u7nD_oPYGs zOsf1;tj)_Z;ECK2Mnve&jBaa^A^fGMU7ajlPJp5Y!DarItiWFXEW|6)J=;s*@F$Zh zc^H{?*?)(8@HiA9zJSzjM-bGwh!>yjJn_xzh{nwLx~Hnww{NkrjG-*^>4Xt~aw^A} zrOhYd-hWlHvjs56=J=PC)-M^KNaT~ar3q=V!YuwRHL3ARi$TL?SM-x6Dp@WhTO?jE zMJxo-&kBL9yN!Uq`vbf7xWMBbZm zonSwi_3nBEL*c=gl^z(84^jPlTS}+2vAtWarg43H+n8Y)>r6RT@HO5W-uf^dHeMa# z4w7G7&xALCg3IQQ%o8(IAR9W+TBXwR4!_HhU5-9b`MC*v(1v~7KiP@pr}_F?&QJhD z6ze=oR#OucK-SA<#b5*43p6xY@LeD8uPo{usd$Qv=A1Qut<}AMZtf-w5*Ve=U|y0* zV0UyRKWe21S|bEkdydN|`5kvO2{aa&v4)}$#lk}Z9Gux^4?I$788?fm8uhLDr;XVz z=AYd2qvgsX??A-R>gsAS{$bmX{R`_9IpSvh=vrmpabP_e3)WAT*)1oWvj%heu@?gQ z{3#$t1DINXpIja3h9IiZCJ=7-uo;)=AtiAiYhcelNg`{GpwFaFHVp70CW<}UrpaYf zUAmQLfE$W#zlM&A>UV#U53=HbthuKgu7R21E2=T!z%UbTq8_YpWuDcq0_hf0x-0@b*HLGPJcl!v z`fV&$tHqEg`)S4!(N>)I_i5ahBMPJbM-$bKq#q;)UG`;~Rf=cL_57}{va`3K@Rj*^E-I5@>9MhVlU^SvpBryt! zG(_|Z6k8LykndAn)4FkA`^P$T4|=)$q5O!l)wm;wUh@9ZrGCAA{jiyXB68@MIp2*_ zW~155ZBUh?)H28Lsg)j>b*+rN%U?qRe;3lms&6zlJ$6oTX;QD4prd}#Jly*l z*YRbX-kjmuU*;iM+|G~GZg~GYdjjOeD~_4Na_Jb3=+*UjyNhF-lu_u&&HL|Qa0njS z;f7#SHl#;T%VGO75PLO~|MtGN0aAVl7_S0S_B4=<0N0L!?N=~s1Y?O<)>A69LE2ML z!2W-O6y7Ub5bT&6o=l%VsM2m(tS9s?ziGruMrcGS0g*y=22QpMD?woNSmnp_!>JKAe=@ zYkAu^__4i!4Idx!0~hpMME8MK4KzlN7Her!-JP9nmg)|G;MZ~_CDw<4!xE^DW{3d| z=4Ft4q}HQ~^EX+@Gc#YRTfQumbkAk|YD&lGao7y#Kn4 z$mBFMeZcd~`9NlUAIq;h46@i`N9LJ6RQTK436Vl#R=k0%ih9g{7;2rj8JM2JbfeE;q!{uYId zyXlqudVph!*wf{e>f&ai%m1o~HY+1U2_jsh@X{|qX;=8VQmaAraerguM^chhMv=E; z1OSIiOaF7R0GXVH1qCIA@$vB;h97#Sr)xolu9KORe+&YgM`AK||DDwY`CF@G=168u zX2dTuRk0@xe+W8caQ@G&>9?H z7TB=lf&Pm65^zKIkDm^x>Ofs0BOw9y%QWCD07Dc906TTtSX01({D#+kVA^7ixaP5$ z30Eov$jXjPKm}WT0S=BhDjAB3 z+9I^*!bvM}Fkn5{-A!zLCmBQ>+RO|F%#skoexMfUTW{im$3ml8_7PYO0QGg= zo1+4v>qat!TfxYNPBNSPUn!Wdf_7XArN~youa3x*OhhcGP7D$L|FCGECqR1}{4Z+h z2&w?z6lgyuQN(k}K&Cc`61_f_d=>+89`usTE7l~j%B?tEXs)WN?! z48N%N&!00-A@H*J+URjwt^Nuj?u=h?Mx>bGFp*5vGuJLR%l||(Z#|f=`Do*sE0#x{ z$CRs!q^BDCzTM`h?$oH=f!Oq znU`K|Mthh1r?(LNbq9c6m^XT5OS$C2m*rq%t12k40N!56RQvJ%J_aTxc*pEA7N!UH zM?+nmjpNYF$<w@51gz40SZi^0Ow3hNXWs?j`@WZ{4p?0&CHmI zHf(ip@AEu`mzUd_n7seD1jK?NAtC&Hd>hKx$L8kdpabB>X^b4=y<}Dhh-u0)^!1?ryI`VeLK; zIPLEckdP>1TF~%`N%GkNdbR@Cvl5V&~%n z1QcRS2qy3`M_W}%ryC$5ep^}52daJW$ONuLutZVJMOeVlZiY6uPR{r-J_Iz%n`N>Bi5U3nf`;*B=0IrLdo4b0E{AQ?fa%JUCOq|XOEPF z1Nd-deSKo3x%j~0T~(GmLrHKc;4=OFU%;pp1DA*7JII76sUjgJ2HDdZ#)PeMWhEG8*=8K}TSa%ceom>5`bE4_Mu#Bbu%v_m$<)oQ9*|Osis-1je?Wd<92!pKwzNC| z_Vc3e5LZgf8G3wdEQR(=X>qaLLKU>JaU~EJm6qCq<2I-QSFtSdx~3*=adA`NrUbi| zl)^$0$n|vEe(S~x_)*6@JHf9?ky@Zf4Bn4k>D_3`%F9!C0Whb#TTDO&n4Q56_v629 zfd)ZR04f<%mzpqnB3lLyxS84h1H?N4rCo4va3vuSqTATm2vnm2!!W>NaJo!GL19sJ zo>qWwS5d)2M<*j85xhQNq1pT62Zpe)FqIe-l~};RpYd^JRn?2-8=z%BIkA_N>?JE- zn4F}bqLQHA&=v{l*+fA{e>Jnc3I#qCP@^U>;8UTVOdvpK4Sq=+9Gp5pTL*>z7hnRr zu-$+u77!o-wwfTb zsK^ZHaxHar2`@8%=%BOn11Kf{&=`vT56ihK%gu?p^>h1M&j;_PKuB+1Y{J6=;(T0B>?*gWMgS922HfeS5r6hR$?% zZx2~X9e}zyA#7|P;EarnGQr1(^<+y}Sz0EiqzwH22zD+V0E0^e3nl`fUPIs@*WfCL zhKIqZo3o=`^&CWt;$UHQQ;E@_s(m~F+ZhS83_!Ts>Nh)whz3Q*#bMQ|Xlwt6y=Ooz zmb107$#K=t(gI8Bd4H0UVH;pF`kT&cAT=Dewze$Ttvb$9k;)S0Z^y2 zBo9O65XTo5_&^{w1aAbO=aiH{8K8**Gw6SnE2*dVi=i2CSUypMw43+u--E1zyGjN| zMgSF|hEP#~vIiR**ffRwpTItp>g5Kc4&clH77r-N{Gm8q5L5ubp{EB2ASY&FW=7&D zDLMJ^{+?nCD)4NYuG2w6L*p7$kBErKNai{SAj-+jg*!crjEu}vARs062LS^Fxp?kDR-JDRO0+X{#7a2dVeO78)vansaJ0mX|0zr-=evLqXP1t(Pm9%Ho@2?| zvl7xf%~$@Cvgdu&C)gRl>pd2?oVrXwgX#Hm@iT(r`WHtfflu8ReiF5nsD`nA^BQ8~ zW(vHsBNENa==@^Te-BURo=au0taHj8o(Y{6h!@L0(IS`^d3dI79q#1m+(-{DP)rg& z^C%|r=qu@2G1KV$d`dQUWxhF<=kX&T!s!=HrCMrOSo;+A@Kb=ZdlsO5{#hun3pjXOI<=WoXdLig~n6h|_WNU?1K z0^&WY2wi{SVO7f_oD%akO=@>X-*~g8aj<#ZWsNxQu~tFhhf6~yv5OZCYK}@-hK;dP z^bSR20e8H~(mH?{_m<(XyhVttV!f1VYs7U;1Fa8EVyn%5p_lT9-e|F_9%dzW2xV;~)R* zj>#N8RfqGP%aah|D=7_B^f{sLU(<^yhNI?rj}ktZ%$-DQ+EyBMzE{jgJS&Xmft!2& zS2$g2G-yTM^2dkU`kz-#q*p@~4W9l)&)Ay}&h$QgsQCm;`ZPOPI%Q<)Z1&!ZpUcze zik1|&1#)LwVaYV#4sm7&Ijh+rDat&Z>pXwZ#)U0grG1!%)Qt{Xy47SLvX1&8w^>mW z{Gn!NbP7LEN0zvC`?m{a+1C{-PDa!D@U|sBFaGhw$dw*LoNb&l2N1IUG zM|Eb2mKL)=f0<>KDs^cZ+2(W6&2>W_XNkyf?5h4vm~IuNlo|T6_0m$&Tw0%4m>5cL z%~nbOqK5fb0J37#sW^cLr{s?2cU=C^YEpl` zWHIj-2{}V!IFcr~W;>!FQ6l z0^&Xphm-5XeQSHNx}tx~KN}8n2iH(WGp-q1q0NsTf1CYHbMQy~r88{@Bg(!_%UfV2 z@aQ`%QwI_>|R*#a0>dJpo|Exwi6M`A$sA}IA@b_>k?kLzNfi<(O@Wk-|yYaJ<%ul#_G1@Y;O$g#!fi+C}#-I|I1+?)f;x+ zZoypLW4wDKHQ~t>P(shDny8@R&U?<17(%sNJIHkM<>Jvgz!U3-#6X?HagM|%Gf_0c zXPCOD_Rj7DGF(dBH_`mBjr#sm^<=KTG5s;StgOSCuLXELWp61zdwChVrV{iL#4VddCzLb29QEwA+v0L?Pxcv4_M3geg)ODkHRgZ zod8Qy{=)=XdLARh(7%oOblBm(St5q>XncQm`aOib%`iru|#4$Yy=fz|D4tFYrMJaCC7-0nvu;DE4lt)+@yV(0yr=hyyQ-; z4DYL?KwGD7?>BBW*>52HAe!~#WNUBs>2e1W@i$Ac{f!oU4{IxYtC%tD6>;8}UQ=Sj zS1y;76mli@DXez|YnN|FiE`~Hjtay-bjFpb3aG6(5Rhoyd+I;8Pq4rBGy~Z6oIkME z?%TQ_*~NU&v^J6mj3to2Sg=DgIgTd8$k2;P{kFjDh0cMdz>NKVGLTDe7x_E+`e*Pe zgl;Y(rZYV_wg#yVq2g=xSxOf>ta~X|^hXDW?8-?+Q||8uobv`wL(pCip4n6L2;Yz%f^Ox1o(v?2y2ea0UNBD!%>(*yPP1G)oJy{6@gndAc z179^DQd!V2AiNH_&NMo!kp1*JVrFZF^4Bn)B#Rpl7bHh_`N{5{nx94$>g`#51yM z3B3+e|K+pU*Y){EvR}$>d(-qZ`P>aBzVBVItd;)s?S;-np>)P=4ULo89@JnIdmm}& zl`b$wnBzo(^?UB;v#Yflsd10Mn-tR#S`)Vx&|W%&$avS_B1Ab5faBOT;drbw$Qv^% z{xF53Sou=m`SZ$^+2ss693th(#=x>`D$RIY_&xNqQ98A6MZ=IDeez8NYPU33dIS4J zoDJmL8{!g~Gd{PTv}(%M62d!PDa1h+x$L*v!hG-^F>%?_iAMGW(Q(ew%ef8|YMA^} zb)^KReSS){@n~!AzM_*R!RiXOK_(kX?Q`xSaWCUIm3-_E&jUebJlx7=W%Tut&Yl!o?+FH zr*s&ZTqXUc`KbEsZ|$$1cMY)j6c^%RvP}EOWJfjH+P_7oT$5#~Yvi=pDh$fiVaOW} zbAGxi2hvZ;IDURhjx*~TR?#?7gi|Ne8oQ_u%_N5t#^)?l|5i0`zL24;y`PP!=&KM! z8sj@l0gpuL4WC)Ybp}GBxsV3uzqEVJd&kC1lgNkWV0TeTA@8-$kofh(X9BOzul$Pf z9Ml^`GT)z*PQq8KLvk}nj;ao3J`echAL^_w`~S!q5g{U(;vf6veK1(j38mn!w;w`r zFZRhpk15@Y+P+cG9Z#znQM@A4X??p0GW@*Ea@iC&jQVlF`LSyFSfF$DEIrZUaRFXMlHGUdh>@{;Zkv8N!mo zms_v8Kw0jbpesP()3T-(TPm<*#&wIT-qB9>QMUc}nzv{0;1>cCdk(#~(kTjIV-z&C z`Q8bGUk?0}22}{n(yN-e1A8$oXz_#U+lA}}%*}XF&^bsfQ(-zj7Mh+_Lt`d=ADIf^~E4ubkMovaKOL>zr>atj*`Y&6pp{&$g>FG`;0< zf1Qv$UU}0_6|E*xBjAY1DJZtBSH#f|#C2SHlun`*+nU0V9pmR_U=^+ZW!U@0I#C8KU^}y#_?yf$yutVhyR`c< z_CR75ckw7EU1SH$7K6FXEZ}Mnopqd zTx~`APs5wZQ^Ti6+tlGqOiM_)S&@onNUmHWWQonuy3jqPVJ|jaSR|dyBS?vziapCY zsJJ7J*RZ%HZk1imX}vq(Nuw=BPD>4!#(V9^`5=sW{wg6xn~wDtjKE)yBWuQEwq2jSaWfspoRTAsy&%JPM05^w{pXBM z{==sm1z7kUCd0;Tj!#$hf}hKbLnGLEf9zcE|L&uBXLXFQeo4k|36)y#O?5o=w>kDu zOy`BoSpK4vcRy{p&rsdby>Hi_L9f1~+phA8Arg08|7wb4X8ClgFe2x)cAJ3Hdt13U zK0ElPo<~}&F z=eWn?>O4wC*|Qz|htuC@GjG8cs+Ks%oli+ zp8*X2`zrrC2>u)?`L{C_YGX?@d^9`+(Ox0<{0h%^96t{3Pb7qe@7?E;0*6`YaOo~% z^VEg`?%^uwLX@>XvX^{07J;8^cAe}z^BQjU%;-}x+f9$p678;KE8PQ~Z%(qze@%y_ z3G(aPJc@7sP2WnicV-)GED7^#ahqe6y^M->Z1+x>Z78#6CBKr^7E6l2`|)8B(tZEg z(D36#HhB`|=k$z|0y_>pY_g%#PJtha{4Xqt@Z=fTR;LYEzr7B=`X&hLFj!0 zRc<~;G2g%7*vu=6QmWAFf@pd5 zr%R4Nq^PMU=R+R}@`cv+(V(O-JESNhG2zap@@Z|TA3q2LFgOGUXAn_}vXiamNwWoW zBs92-?LEDBvZBgJ?3dlO#UYPm)RSYL$qD&4lu~_31W(W`i_oV?HQLY48tYD0(`O!t z+0|RVvE}j0pZ#Hti1`THc<%GyVpL?2QP`)J)8mXtlB@_)_2tW<0h_-Wl@KGjdstE- zK^xLHt~VwMqK`JTGQT&LglLm>{X17`opUg~EtD>qHX2ih-3Kk(RC9e)t1)l82of zPYrc}UnTjkvOoWfX<^Ezj}H8fv$jjCrb;WtA`l6>{gVR3Qhqf5=7+7r=hY6Jey1R8 zn>U}?@p1qujMvFUGPgH#Nlp?+Kx@6ZsU<5s=gf)Xt#;$oJ`2q|r|`Z(SgVxYJ~W*9NxICKozfV}-jAk1ic^q_3?i>e{fYizPx{`h!bfDo2r^+gMlAON!W0Kp%CG(} zg6D8=jNX<_K>J}c*TP=GU=VFgBX@}KRtJoAjzL_D)hD`bQEfO0gKy+Y6)9FZ4VV5c zFW5v{}LL^%U%rgXrrWge-E5SJ7ny_q=&oIZs(}t_shxcSk>g!TZyUWkYh6_ zZ{vTAFRNBa_4V_v;y4VW@e|AWETjB`D{Lb<{94OuTr!<=zKr@D(qbi@c3h00;7Zej zQo#M83~%WEGyDg_5KdEe(uL2Q{_}h;!S(L`J7u5vL^aSPKOnk`Xw;2G4q8U4x%m^~ zLpTxUf>BjJRE?o_^B}F`%<*k9X)Df+Mvw=UO-a2;P@k~4kJD|52%sPONfmY_pRhJ; zB^P*vTWtLHFPDfyo+W{e?OgyYbhtZgQLHu;-H-G7=wL>u<`$`gA6|-5bS0{Jr`||S75iK*6rv8>JmGnLiucsf^V2N0C=;&U@ z@`J*r;UApZj@8Yj@G>Sm^=@4p2TR7>?{`5FkbV|Oe|B-_mgg_#`fjW}Y0pv|E#Z^- z6QL%QDEhzOH1KtXiZEQy6^f1M%t z2vuBA>GVktUD_ZPRMI6kI_qG3fMLXB%f6Z? zp3@aQ-NJ!Ib`?yn^jCo*b8OV;%`zuZ#9o#=*kwr!aU@KkNIFdeZx zzdC7-s*YSzT-;iONmJI;5JzI`+RigwQCJdPv=WxzQ$*H7{9;wA8jmEYhDs*+^)vq7&H< zUA_1Ch-5l(TGxizJbAWJsYD>uE9-zFYfR5{Zi-j9PAZ)|(GE{T)B~eQa^U`z%40v0 zqgebF_NJQ2&0Eg!V(Mf&8M6Z(SI$39i_6-}Z?Lek)uF7n(A2xwnrd!q8k>-k`FLt$ zIZB;7*q+?)Wm~@WNz;NSl0uo_-^YIYIQx?#MamPwIP726H<c0uUDr z_75EB(AjTW29E5wfB22hUzm#kU&yzZm+R#OKADI%V#z4!L&pHfLp#pL&EVUm9{O~| z`xko2A>M4?E6byF^t_z#DHY$GXx~BHxS~0@SWhX{$UaTwf&-VFQJFtga;0WaH;$wn zbFIZtZOkh4`J%-za)g^{^%mXN@(_L69$g*Ykm}s;1-mZ=tu;YzDFo|8K0GRKKWY;H zAaD)vyarr0F#6bO?V-LI=t1X3S;5o!pWLKgrA{Y&9|-QiR(0>gyHQTCQexs5X95{ zBbG~{Fiz)Kk6GVoJ^7KmOFI*$En&W{CMr6J<*`4d6gBlk8qRsb z4~`N(`Sc=X_R&9YK{LxTy8Y$PQ@wxV0 zGp5&tRv`+@?D&?I=C(hcYsd5b1Hn|J;LjXm)-8EfrI^H0D`t7PgEncrHXd`a#|Ayi z-&;I08!3i~g0htv*h0>$5IK5_?ZB9=CXLeBueN?`^M^~?;z1Akxw@2gTJ8g_(5(4s z6IR5G9~;knTJlM)Y|_*Ugx5D0q4`mtbaJYx9m=s=a1=tKQ;-;AS|Cg6H?x#pU$<8L>^+p5H%G$u7iex1?<< zr&O(q6CV%{OSh)rsLy5OITOC3r7HLjP~AnL=dlU+b8HxcrE;^lr^_p$wH}ilGN|B*)!mWEO|U&|^`Dg5LZQ6~p+NVS>0B z6}maDVzdYQjM= z6zsjJKN|B?V_p%N6($QTnEN}rxBhY=%8(h8Jc)vf-RSiP9uWn?{{Nj9b>(9y8!^Fo z@yh9j4duIrFU1=Y6e?s`1PodqWal4TrEQ+jKCFY|%IAx{_J{R6#6*PFdaGu$T9uU% zy8b$!C!a)_)|g0hA`UuspAswmHs|{v9%`P>tnastj<+ zharWxkTz>O;tr*!_vM)PyZ0^|9zLFuXTI$ZR7FOV%35MSqX_j~L<)^dz zQ^1CFW$C~eU7*Z1jt`sPSBuVSPBY{wKS6lQ|A@i1K3R6vp?MijP zzj85sp=@}0qr3Ba3cHL9_nlUzt{qNyED~lK8P$9J?G(IuuxsXsq08!;N|X_U0;RiUGtnzC>f~Qm zj7Kw2XIrb=F9jS~&@Z&EA9_9`JzHXk!qdPjOvFmDJ)$WG5UA+9F$`QJuhsrA8trme z;YPapO$N%Yq_sJEJAzImGC{>Ybln9a)0=10$wofw;R#bL6XE8LNEwFCW->}`O=XHg$My}e3Ie` zlsekYO^%bmAimDplXJ7w*kMI;e^mj~giCDc?ebpCyZ)zAgsIP|t*=-(%-|0@nnW86#@t2oO)b}e9k zA5l-EQjSiaWhejjnLx*`n|qgN3sek!;nB~_E^VS$j7k+onX?A%3k$Lx zMrFU|S(^S_3E3Km3;IB_d|cd5cgn?c9DFbT=;PnJTh=NnSv(tTl|7yO&bTx5Pk(j-M zf-8d*Np^i;GSR3ZU1-*A*%A|T^fLY^ics+W?PJ-~erqDzXLZ;f$c$N~Bxhf>n0v8% z;oGu~gOdhpk&B+mfEiWv=mi^-!Pv)v`YQC4e^Fh`-+9$f;kQ|ZdskS62ZREz%{wcM z(_j=ux-M+tqN93>2lnoh+x~80lR7yqHS=8?X0Q5Sqv@;ZGz{rTIqs<$3Rz1YT7UhN zfxoq^uen@)(SM_;4Y?Fg+P&;*;{8ZbQkII)RadnC==jy2jJq7ab0Wrp!w+MPAmI_Zj;Xo)TH=g1Kbd?FZQCO)&qyDH6XMw zwi~dwiN?X%@kab~vCo~rg#YqR%hG3OlXLFx3=%smvJRu6CM3`Nq_!$Un9o{LekkXv%rw@we{Ob>GgKHRocbkA+(B=7$B8FlNW= zhR8@SKD;*QJ-QGX*17s|ugZ;?gj8xqwyZ4NH5@CE5^GQmuOeKz9R}DY4rD4?Hkqit z&q{@P#P>=OGKGYO(v}Gyml4&Qwz}DTHlp}yTq^6FF*A^N$sKH0s)2Ay&ZtkD5a^9Z z>^3@@yr|-JVsT_ITXW?qa?sO$l$QzlLK^gmQT)g$vV0?sj?rB&l%uwQ$G0RiMmX1q zk@}-kPwr+Td2)>`kwoIR9f2cjo&)a1@B*Kd)Tk0tn@0%C>?q~Q*l|E;UJEMG1HGH{vs+a(3Ro!r#9tMppZOQDBdjj`>zfV&yBiE2A^%QCYw>!aMzG~-Cf?nuy zcSW#TsWJ-5fjM1$m9HPY`NehjY*VcU)#9IXTaiYuuIfBH{ucaHc@b*)8-z2TUp^d+FFTYg} zG8Bg+1no|yQk=C)Ln&eGY0sb9d7!3T%SlqUX~wi6?iwvtG2Oo>l#5ENpRpEGBXfP* zOALnY8+g!IMIl8Va9+vE?`j2lAnaro$dZyPXLFh7zn`9aMq;MUQ_2n6H zX1$#~B<7|ey&F^YCp)ZOEt;-p?_(_AFMipYb?K_zcs=P9gP3}^pM#xt$MDIT^o&LG{o9H3! zySc=&(zt^sgBX*VmS|TSc@EUutE2dn>~X%qaY##zpsAQZ=bCa&Z>JN3WJHz2WDGnJ zM3-GEVK0;!!HKVY69SzPiLmWEGV(Y9YQp^mN;?$&lJ+$0^@ zfuR|{{YH;S9YzOZoe8X^Lnv+-ve$|Ngv^N(H?{ml?uUQKUyObQw-8=9xIw@FL)AA% zXA*4f#&~1fwr$(CHL;yHwkMd_ww+9D+sP!E*yemW=id9Rb${&D-PL;)c6Aq?s{Pc} zT%2)s3|AD|B7zI{>d#m{i4d`5J6?%Cv2bn&1VNH*4AxNiC<-BLCvFG|ug$5{w(RZ> z<_vr56uM_w$Udo;BEC%^9Mn=$ojA)$}&Re3T2#31}~!}+HI9%UUH!J}Ck zJYJBt^q?mSce(@1FQ&he{=I5Dz>mRyAR4iv=_p?IXl=Qh(64wv*8gvqtS9$#>;J;4 z>|()tRTCT$>J)mZo0PpJE+;lh*A#-)Oz+QFet_aNwm-3#Yb8m#sIYrvh7c8(&kFX* zUsconf7OvmzBV0mW)4sfaGJX~DOzN5^#(v+xYH@kc-EB7R$EPcrT(t3l1%F&$z%E7eQeV0?*OII? z5-w-HUjIqG|Mw@nS!bq%&na~wV+%wGhsdHbRB^;23zHzTH(5vw4Ig3+#X=<{w-y8z zG$ja~c+ET?be-J!lYbmCz*4rwkV3^GwJ7QBlz7Hk`Ag}Ba*2A6rU#JW6q=n3Z0!_d z1!YIqoK&x6h*Y4Q078znaT)j@?dg8CYzxW@qTE(6;Tkx$3Oxye!z5yFJptXtaA}2) zgSJ0+pRT!u>z*xaBIkx@;I|i5Rje*3VaS{FA6nXC9$+vJI>SF4cJJu1WRp?xFrYYT zqk5Y%(jY;h{4S(NSLWH1WyhG5u;_~RZEEpJkZM^TD}G!{n8nMYO*0u{HOYktp#{Uv zmi!`ViHvdy?uLlFT%}R9@&O)9HC&bQGr2$;1|m4@)uQNNvkIf|OaDU3pyND?-e!b{ zHgg6H6%Hkt-Dp0ea*;a9#wv1Gl?%9AhzsLXj?GU~`P0wPoR(KH8_#c%_sS}fLgZ>M zXTtZsenR2je>esY6=#~Z!Ju|{ALZZ(f8$`nqH-(|>_x$cmGh0(1wfC>H39#y{;9`f z<2#m();0ghc}_`#_PmIsaRCWW6v--x@dWVLxG_L1r6t_XDWJ%_(~^zbEABb7Hw?@L zLXDG|EOGWjfbFpyc5Shqg{RD#ap12owJcqI#5bN1G_CrlFuSH+B6TobfS-IUmkq`z znQh8nYo$eOCxl{_8F(CImaKTI4>5CG&jYd=Sv`WgvYm1&aRml|)y>H5k~Ak-fuPCe zjEv9*A4X4>qA?4x`yedu0Ur9QGQL*orE`{@@pt*bX+aI4UvcQu7|ADj{%%3hVa7_7 zT?^b$XZi+sbE5n9f9*#8Kwe83x70!?m9Owqy#9$7;U8VH4YYCM!Bv~W>et{IdEUDc z*Zi$PTs^Pc9|pEgTmJM9gjUQX`jNCe(G_enb31k%3EoMs&wgnYrw6}hoe(kT$XdZ*sU!!-vf@6XT6 z{OHY`@t_uq)z2=%Z8Z&IN!AEf+5pz`eC0m-O0q~~g(f7bheN8ig$3%t1BVOZAdcB2 zu=8JQ`YBTQ%^Hxo2yTKOLoWDxR@3XpY|7|-9sr{_vz!@YG0}_xi=>1kQvW~`B+ZBM z{g5{@HM<2@hC0^`r?>smmo~PgsohHs)xN=9sqMZ-SCOBD7N16Aq}bos?ke&!YsA+a z*+wKiv8)RWLL~ltv|jdKiaG*~lMb5o8m(%xS5w1cZ6_@KUYh6_rwaUS-*%60+?Ixd z7${kKmVi+8JN;DD=$Aj2{_!AIx?}VoQvF2m7Z9!Q0%8S%K$JTTANn$}XICN3B!8I) zAKQlN7t%PyfSjVIK>Ojw4WA79WHokA=pjq1*c#U^cv%R9wq-YXMkln|iRb8?!M$_j zetPU~wg;x9$WEs-afFeO6WHA6s*Y8L11aj(^Y8vp)V&>1$llinF7MQrOxJYl(8W^} zgYj!C`Zg2dq|cC@wmzx$f!*cc&;@UlLWW#2^% z;8;TyP-Fii=f*gant;rPsXX!=05+CeqRX6moq8^tOKkG~>o`6)kGm#Za8XMYdhdFi z+1jNU_|1DqE@fyjiA++va_Rp3{oB4lGO0WLSh##%(3Wr(a;c?ap3FlagOqC)dBut4 zXX1y>jl+q1ypk$BRt`0$B#+1VRhZ>mH8LsX<~9Hoh-w};ek~8h!niZG34|s?B`!H# zSau=03Y%Nya_s4Oj?70!4AG>wcQM3nyuF#Jk&>PX;kC6`OisUQTWz#w&n?yNf8Go* zbxbSeJ!^5x;<|KrwpVgB1)sLC4un>uO}dw$BEJtr<}tG7bKaFZaH zM3E<;Ew+c^b(@m<@`Gdtdth^ERb^5ehH6mdK^E8NsQ-&nI=5oWZ*@7F6S+qc zp7_QcZRmxqGrS5QqpE?zw@-79cr{Vp{cf@H_JG){Y5u=tkr4s#6t~I|d$UWit@3_9^N8eMb9{+9kC9k(4h3d%lM7HOzm2a|D+=-C^ zWBOb?myBGO=S-bZ0tO^4G(W=HW-z}z#b6&+Vi}wsq$_D)#PaJ7o%q&`m@CkXN_DBf z9dqoeL^K>@4cbDlSK2sQv!!eh#PoAP{CQ25m9J>LrG+Alu<5`!65F<+TZz)+n%#BC zi&}?_2hM3kXox$L%u(b+Es+$M#EGYhi>N7}dTVFoSiw!Gj<1KZRiBe@$Ha<><4NZL z$6ivppof#fLz8_tateCVM6&amQO+{pF{p#qYAGU68A_F<^{bx};6Q8Jcn^B6 z5iqO6Ap$fOEqb5Guh!F?1g9o+=cwuZ>?#W=JFikvzk%V|UH;$A@a^u`D3Px5>f7)##Kb9}q7MC#N&S6#oUH(*B-U>T5R9kgaX3#CR ztW@IGg(^JKU&b!r$vt9suBgrEt>A#JFw;!;J{@gmczkWp+9IT%*SCPItEwAZ3ix!( zV(4v-X=wh9uowOz&>(PQ!TGNnioe8TlFdOj?<#4btN;QHTzcD_q$JQ=`z2*5@PVuJ z$4ASdwTV6=kRwGrLzu;r#xFGb^mv7khwi~Q8KEL$VZEnNml&c%3tXp(>P?@gBlG;} zaDfESO!3+~#IL8Es;fT2qe^k-c#G{(>D+}zh5h4kV>eh_3J_53T0!(sg7~y7<}Ay7rgJ%Q zHcz0$rsiP!j7uuZu$UBuo;N98XXO;@%m&6xb}JCTHtC@7vm5R!?NZQRdJrTUIxgm* zGi!SC5YGbXYetxfmI!hz!Tn=&WUSokWXE`b?;J=Ty{eWcQ!9hv?g${DV?#e&jkU@S zz~mfTI81~(I2E=R<3IkD5mY+Lq@T&wY^Ub@ZsU^W*SO1l<6}Qs+7^h?_qv9wj&f?r)*_N8ogXtI}X;{<0tItGT2>ja*js+7QTM{CuQCs7R0Rp25 zBqn~q2;{~gt@y11nNP66@oaW|1VKR&hB}q@Q?xkm^5j>TC5rC4&kOBt*NXfY4iRxO{`==vDOgeX{Gx9a*Jsfmo3IlW#XDrQ0R)cMw^7QW`|6Y>&K48 z|3}2*7U{RAJ{gQ9GEc1i_ms#0d(s5x>U~J*6jv<9PZe~(?&uI$C2r}jz_y)uD)T)j zl0Bb${*NhoDXB$HyxQ(LHXOdGQrUn5KHz@&PhXjrGAKs{ItdX!PStPx{#9}b!|&$~ zE>B!|bG2)dqHTtWqvmSUrb{hSfNoX3APo8qRtp_7ns2QLd;QnDg zOe;4vBwmh;`spQ!02)xXwqG!S2T-8C zd?dq$<9*DX+KLwt+mh-Z%q{*DvQ7Oy!j$F!#FTOB*n!V444e#j4w@NPwVHd)oWe`% z{D$%@yfx(9!ev-)Q*J3ZcDe+@wsu_jDF@REARzj30>8+sxri{?{&KymvSN~twEr0Sa@C7(6`~36@~eK))h5g z{I{x7xwiAPmpG4(j(c_#NK4?cvLh>6UJ$`KP_5!K z5b}3BiloP8@UwdulW)WCrmtKWXI zIB=1VE8&8$>|@wVMb2U}a)Ike_xqOhuY!j$!7*r}DV%e>ODYgyqw*>CT0TynK7&-| z5}vCV!k;r2P4E3q2I_ZCrBelN04|!CU)mURvaMPaAo$Mag(!O=I7`gD824uGv>Y?> zvWxE)Sjhu&)JZ?O1A2fZU+XmpKVpv+$p6Vsk5}#KAU&LX#)d+~rV+d+)m|O{B*yiSKXKGCr7ZuWfAYG6>-(s3Wl^-YN43OVW{%jf!lR;YQ37j$s;w z9z4~-fmjwp5d9zq&ig{*e&mx$9t7XCZtz3N4H$S7JNAp(HxW)f;DM9x`w*62vIzhi zIkC+lQ_NP|bimQ=x%lQVkrG- z7WxA<8orEw{N>MTYgxI%T35kZ_3r`NiR@#Yr4T(K3U zPe#>LDBH80Y}$?3tfj)5%gMZZ_s7&I$gdUkv<48i43q=K_hJk)G+3kzjS z7^lff4A%aM=-K9-9V-m3jzfP_q^3;u8pYovBQl2Mz`tDDJqOExj6I1ze_PO)ywlU^ ze6Ja8g^HmHC_0w)?JEdHm&V!2xuV7zNC)c0mH-*Thvd2_QVFBgJV43k^H4m}Z1ba^ za8^wg-?11|43O&n7Apk|TGfAN;`U8E{>WTfSVK;zsyoLeBfI?e54yy^@j_?Oc77>ptJ$YM_ zQ5GG7;@g9Z7Xx{NU(CNB;@_6!zGHv|G+FHieJ2zsTEh+rBwFGdf2nvm%Tukh-jU zUL$|E*vLFZ+OaYOFr#9$;}i1lMsOL%NA}qwLqIKU_aI>l z_s(3c{Rm$@s@cR1a>5x0--xpBlp_HbsLyH zh_dccPBJb@HkVf}hFNegAMfxb%3I;5>CK$=Z$sTCK22n~Q+z<>_S63sHaN*#+X}T{ zT20&`r<@A#iKzHa0T#&Z&}k`XS@miOeb6>@`t;v&u&#ga^&zeflP4a?&$gJ2uv30` z@%;PqLhsLrVJS(6j(D+X^6e_}R*rkt*Rly@S-gmJc|HikWxPoBICQ+oFN!g2_?98) zPZk){nr?eEgUhK6nM`rpPYy0Kz6;|;6KLvlPv;6NPmg+jV8LW~!DOc=yX9*9>50p7 z2>($aT8=BCv10n&Va3t9qjcewb_V09SKDZe`__Kt8psk)DCHPWomi?GVSqqG!@8aR z%s|>bL0O~f(GS^;*eQb8FMZ5aSMt;C#)?+^a)Y)`x_OzJ*mB7Yx(rOWHW{YDrp3MB z_RscBY2I`QV8}>wRPtobfoV1#7r{vnJXUGjaOAyuCXWO4cKYJ;1az1%&MB0z3pmXW zvur?PA%aDS-KyJx8Miux=Vx6PRP*CY+j`?NYbdFi7?zadF9WV{7gXydSTtc^#RiXg zH(#RpaHBE1VjFf@iG&kN@++7i0ZAzytvymj^YmRC&=U~nqQ%wpIr#Y#5D4li$yML~5?$U?A z5}wJc-I+#=6MyWH&z720;>?H8I$hl?h?hQ=XJlW;x67;sTFneSmV8ra7JpDtbLh_RGQ24H2yKb){tG$c2w*0+H|NL?T zUfVL^n*gzar?0#+!_}HUcy%aSG(3C)K6klh!b%V1pui2op>J>|K>oy~J8^rrTHIV&LwVhqL3g(hpf065(@4fhH^J>GQ739yZrfM_ldB8ENK z1=jR_#g^m#$+fMSgH&gT3U=Y8>BPcVh1E>PhSil2rVf^UorS0&1qvq~4$6Jk1`eNi zwW%&Fm8SX&kC4Iw1`zCeIW=$BQAHVofF>nZ5%<^M1q#5BLn3IDXYr|IWp9a~l zg@H_Ijb88Kcx94%|r4YZSRF*b=FT4Mpvvu5?o6%2o4S9v3r#E_sI-n{PMZQdQ0V_B;=CkbQdaY;nb=}^P z79>Rs6?ygr%i{;SnC^7Xs+Lr=kJCMNl0tTMh_L!j66FKWBi@I@ugZ<=2>VLn_M39R ze@eYdQDmT~PPSx=A+o-gS*A$6jt<*$z#|vCZEecv4#qal2z zmi|f0T^}`3L8*)5IPxDJ>fIUu8%#3B(p0tmG&c}KEE(ZO2rLmUXA=4?1w(8zOw8Qpj5OWuQ$92=Q3dDxM>t)9q_a{E z&T#+}P`@BL+#~C%bQFYF?0X3aEJx`|CJ3$wxtUn+x-(g)_&5!=DJT-b?3G1TN@7p~@yNW<-ZN5#x&9XLvr#t7i&CAvFC z0fy^uHEWP8qE@N$Hle$+IR(Cp&=#MWa>1ZdXrW)8;ugu9L6AwEBMtbpXbztt#kipF zYl(|IE?ZgL^#&nqOa0{ zCuIpwQ(4wm!8*bjBXy$BH}GEM_40#m1d5IkCWb`9z9ArpLh4YmfMwKas6ZuVC$&wr zS?Itx4iY%FHGgyS^ma?=Dqzt-y6CTDV^N68X z4;oN50>em{#^D{1QXgHu+?>Y1mQDX8hq~=BWXG|b1!UZvp#O0KsV2UgGmZW6)xc$YV zNy3j{;ppruD9Tu+m$cA(mz@UIz6^f(47Sh{u!1*{}}f=&~zi1-7qg? zIlc%8gtUw?m^4jR*aslCoVvSs%wG|0%mGgl!l8xf2GI};O4i^KG0NDz#&H-?8wf6E zzo@TzwE*^)q+fk||f)Rf6> z0>=^ZeF~(4B6@P-o$W|q@UH0U;N8eLu}>5Go$^R7RL9DNiawa6??nRW;h?%9=RN~+ zZhR!=yNY!&;;z7!0`z>iMPfqkx-SI6Z&UI}PX?;7FK%|1WAscZ+F>l64NFtI34luE z`a_!)g>;B#&4q>BzV!*Eli34^fL%+`Ew#E2wrEZ}NLnODSi>Ui58a)sCD~zPF#4Hn z04A1x3Uw7=!l|f1f&hH_*8fwQ>JH>`vLGdM!kNjYz);$Nw8$|r(x}IJn6>=~2n0lR zwj+R1jYYNKKM!1Nw z3;AEa5=ghveNU?&#t7Wo|vcXPa# znjdp#afY(LtlU%iztd}j*-ra-MLSDSsbjYvA=TIzCl)c*#;YwB zg>+}-^7(}c%`>fZNqQ%oVqNfv5*T3WBN4`2x@wt7;uya~H+<6Q5Eax(lqP(dtIp{d zg)RduU47x1^}7T#IZtKl-U+Kc7lGPW!H^^Ur!I-HWw^?kQ!F&ho9`&ZZ9}Mo$A3$) z@q2=~p7{?0j(KKzhNj)LvQw%&=w{X5!V!PhujA&DY=rZ4WL2!2KPaTH4{JRn`g5l? zWY2*!5W~<>tP4%w4!7Ak+r3+-KsBSX+L;r?x@ecy{7Y$i0e9A0kk3W8Q37`LBtPbx zQ?rOpLO%7FzfZ@2Z@I7x&@`BT(-nAYaAHLYcC#Ki^im#Giy!;=9`882>1Ih4o4>Zt zG(z}x4&p?cU7z#(dQqBI#)qbSK>WZm!eMdDa}R6OciCzP*jDp<)hO_p513pYy@D0^ z9aW64Z+p$dvOh*K_qu?lw}j;I(NpaD{<^vQ1^u;hc9)(sfr8$au!Ul14a(YfC60Ox z29(}8=7{djf`j6?&4Wf}AU**Th@^%ZEd+HdV4?l$Xl0x%>Lw9`*k(?*o=WxamttHu zb3`NJ0SH^d=wQ&HO=zp^)Y|Hef*%rmu=X|QMQe*uk2ix*d|zEH{lwA8;z~=^g|>y? z-s_Cg+Jp)(x;8MiUC>gn{G}9;JW&gQCv@rb!gzQn{yHDG)5ti=wD_a|@s1*XSx4&liwRK1viAI@@1>@=uADo=I2 zBwSK+w=H+hH4}6;Xt^%;DQB@CU8W>3Ik^pk%iL(Us0w!Umc#0tO+@CBk#nZazqC^;FeCTjatslM$`Dzhx3_l?_a$Iz8yOsXfC!+uuUE{0#$5 za$+R=6kP>-o%Q#M$U^>iXtkIF6g)#e3W6$Hq4&X=5=8nN3TBi|v1J@1tPM328emW3 zM;OYMNMs^?Ee?I+PTxF-kFG5I&C;S@TLEGxA_^yY&^LgHnm&cm!4-gwj;(Nb*C0e4 zynCsct8mWo;#dF_2hyI zBUVz@i!`v75R$AJ_u1~BG`znuNnS85+Zmh+#}cGyJ{NAC;ke?wCRh9>ed9>7Uoqfu zA;;%IwIybB?L=U5-uS}|G>$br9Dx)nh5XBUOvT?ZctI?~fVQzl*h9q|KLnWPw47eP z%`H-gpLa{)%IcSQVGqSh);BK6mUpksNeg(}|0*s!JoIzQhx#iH(IR0h74)%|eVn|> z4Do9gTpc#$=t^5t8e8Z$c2#9{V%=2GffpTvI%bW-ss)#;DF%l!aB)+p^TU321^_si z=dMi~`Yn*aOL6qd`eT^=?Faig&IMcZ!L5Z^;%%!5DhZP;@`M9)7geTP)msP$6P0m(RTq`D-A~Ul zz1y!_qAu2I@FJajN{MRMzJTy2&sdk7&dUQ>8uB7P1>wh5LuYX{sz#MNHmIS<=srL5 zkd>oL9P?;4%29b z*1ll}oHRDWHMNZTc%!%gvumss$Q@{EmDXLGG(n~36PK=2nDD|da$!uJxBiSdFgr`{ zDeBnqKtmq^6Qg7}=t7zLcTQe@F7$2i4}~C;+XP5x=c0Of&TCYFSy%VOvjB618`-0P zV`IZAbt?@vkh=7A!1L@85BMck@#cxj7Ud%R~3`3d+DoZljIAESf@s75vXIrQke@a45ZL zg+rb4-*C}k)<-`uF*zW4CJzx>_Q;#2%S9%nt-gvh(1c=L8SGbeu5u-e{=^KLV_27# zN6Xa+Ap!xrJh-=kEw2f~@5eH|WQMvDXCpj=zx&{6jyV#>B?Ryz7Giq%6;M2t4hoep zgRKg^1*)-A@WLH)N;-fWis62)vR$8esk;S?)zFNwsu(wpBK6Gek5gDc(#r zT%!^_;Ll{DF0%{%kX22<)7Cm)f3>@=JGM$0E2`C-T?C3NBbjSJ`6`Da-U5*`VL=h$ zdn3}pDIUP7WnW+$#FI8zxQGvXRgK{HPo7&imulqMWAYg=`?H)Y_yl8sNXGGa`kffW zHSO5A_DqK42~OQ)M|LO<%fZxQjaDY)=72O8Fi94l`h<2u<`0KbpYw%N{%n{_ZgJDq zX^5Nrx5tBpypLUU2EMmhu$uR-(Mg(TY+-k9;gI-z43-G9ZiIUYI)ScMXS!Fb?`e7@ z^_*3EIzoln)@13zPxo>sCOyfmrme}eq_U251~TryhONW1o=kd(ON(2R$Fkn1hOOE9 zz}&xvJHvS541Xr~ z5WuI$W~dhnQm_6hiG!r9yF)_5%R559X*EC%;Ul`U3!%iyjZLAW($~+dR=f{7GM|KE ziO$m6>U?9$a#_o4S@(ae%GcZQdaXEN>MSCdLR?GwK4Lh$zp&=h|DDzA#0iL%<{6NC zX0b79++3Z%1+8KzvK}IROIG6Kal#8Aj?TCedq|&3P6<%6E9iSpFSlDe#1Qoj<%mLa z^D=y}U1_FZ+T-&9N+s+_8M@+XM(Qi(B*x|TT(~tGQ4j7S5gz=`vlD4NSb4a)W3#>K zGNiDg4n4`=k@(2Qr#MCWsSga-K7$|nL^OOuuin6lgr0N@t;nCjK&)bjw^5=zyq6s) zubZ$3+iVMs#z;kr9nPj`q+2lb^mM=>Tv_DlMQXseLk+FqBecD@f-E$u_EvRb#L5mNe2zxzy6~ zKInL?l`Bi})Q{4ZR*~9@e>`K^WvBw9vgT^%T7;v-G40uW5N}cYPXBlLH_zX>7rWz} zp^fj;R&6R?2d6C+=ZS&OnFbWYiplZTbxYCEM4K?&yxHR8v5A6K8;NkE^>0N8%K;(C zmovDt_IN+ctb4*m9a1n++7@409>02)x;B&1C9ZAd7SOxu7*<aOXf~BGhG!JuwVhL;e)S?GRLKa_z-pjEF@qt7MGEEvi8XAA0xi zAqaFCOybsq#~866k0`gFPZ6bCj#182)T}MDpN>)#EE`U8Z zJg#PxH`iTm-6Fv!#RPKXh~EsI%Ou-%+D3IZKHCpFd})kz;`YAx-OEp(*8yLJ)LK>3 z`*WPp(z(@8=|H*K%+*j&z)&G}lgos?W(S?h_#t14UfKBL+w?V2Nx;F=FC5YXbx_fP zIqp~7$`uL=?0#io{=deh@!+gT2r!?bdkP=5R~`NA_R~|tru~o~W#E8zErgtY8DVrk z*%5ZFOc=b;F5zn@wW1RbFjrLJ4#q9u7D?c;GT`v&)XGwkbc;48px0eHQ*E2r<92N< z;$^D$Q|&E|NQ(z2j6+45*C(FpQ$J^b6MsWHx7T5#IQd7}1?|Mz_ zkLbUZqn|yEt!ZAPkF!UsyPwy5@<+e6y89*w{UZhbSAShrJb$G{RYE!<_4Nt)#FFk^ zOmie>Gys=7!Lj9Lbmt8MPK(k8w|8+s64o@7>z*5~19gA3jT7Sn$jg9K#Dg}2qJ@{f z;P=_g@1msC?Rl5xb!~u!Z5zR&J4P`=0}gd3t@)DV?o^RD%b%W^uD>qoI&XbeQkA@P z-03buz6|Y5okcO`;sY`YlcbLr*PIhJOBHOQ9mzK@mG9`PNCHTe37RZy|Ipn1S*0pZ zzdrxVv&mbWDB&IhSRBej_e&5~Bb$G`S^sL^P_AD|u*^;FTDu+&IX+@*!*8pl=Uyp&?OX++P4topfN zZwSOUPB}>zNP%e^Q&~m}s=k?*SXm9b1D#{}UabKY# zWz<#doeTV6#`VU6x#vRWY^>xzZ6Ku-9maQ`(eh>-N9 z?o#~2S;#9cDEMuEI_n@YAu^|#)bZTRrXT` zpj`ZEm=eJE=@#EZ>q>B#bIOC&q0^@Ya^VlR#og>Gn9YBQ?rgQHJ$>X*7W8#>TXqL7 zQSZqmoDUsczGj2Nc6r}0YC}r({0QYNl3FF9UDRUn7!|m?p{t4W_ic9 zZQMZJ+Bc;oPGjV@M0*7anF@PM(0ksZ2%1! zJ_TBL4(MID6Eq}KIu_4IMy$M!ky9h0VA>So=|^=99#-Kkz=%%_dj@wO8D z7E252i8StDdeAg;7ZsJLuS(}5p71Orn|%*bURymp_zBfLx%e-;j zzOS$Jf8a;J9I^kRA!$aaG@$J1v__~BV6(Js&PJ$pV8CvxMv2#9Fzv>jY4OUN$J=U8 zz9-|At`36z0I?`t?h<>t9bzIQ$3|xct!EoofR3H(djm}XYaoGsm!i$e1(t+ApjkOr zXp4f)92D{lIUi~NG!+M@-GKE;n{#9YH)U&bvg=V&hphRj{Q5BFv6}^7cbc1#=U6}w zwzh@yFYrP43C-Jum4M?57BoCfGqK5)p!bx(Z?PM%hQRHGGvu3i2uJx)!TUK+ANEZd zmYDClJ)}%^Ex(GOr<*3tUEs$C%at&oe)PQLasUz6r)&h%mGz=89C3}T6F2M#|OVB~9tcgrg;k3$3%}@}jcexA#rs29#g=->7rv+wqXqnzqshQ zdqKcNFV+^1XzEQTrEqjjmlR;-yTC?G2|A9Y0@a%KQ{Hse_>sJF-iM7aE2|I~h!21L z<6}POHh@G^HK`R`)F|2j1DiST!ohG!?cxt}yXoFgY;fUnG+a^^9j78UT(`ww?lhgv zU2?}H4WOWAnRc+=PV;Sfg#5I3mA8H2sTo9zLvS0SLRSN;OC*unukcXTL0C63Hn2F> zi7^pNhPb1!Lff6x{FM62asCz9`_ZhatWjfIw%*xLqI&$vta*M_$Ol7a6QPdH$;>D& zX-sZ)HilQ#8AUdksX%!z;89}k4F_uurN(GXiDnQGVL;WiA=3e?*D}MH8B&iU%RxP{ zXuF2_J&wYmqdx-0;l%7%sp6!iwPIr9I!SGY#LQ4PshJwlklh4tMcV=n?@gDUpgo5e z6f7R~6R&w73UV4Vi9>Cx3Fvz+gfzJlgAK!;V^<;L+$g2}@o5a}yj7yDn4KC$FHwK` z8(jG!_e6X5SV@=I@cDg?L1<2Ew_ZK1qDT=yFOijc4l zfbX%g;Y64aV%u$BvhX|2?u$U`rgMbwE4!kbt@3L}!oQvPv|klNTb1S1n+J0?=|x^V z&+Fm|rWD#|iLLM<>@t?AYdACr4OU~#h1nn@u}R@N#EpuYi<`j%8oz#=mh@tG)^dt} z(4sd;bW!i^ZBupu71?%wBCZt+y*fslaI44hG6z~iieR0Hh&v;)a7KRD|4|=qE#GPX z`ubX+HP>Aqaz`VP&hAFeUTsE7joxrDnsLvxE@PdPEtj)rPNit1B)nUXh!?%2C(9P9VD~{n4qY5@AKo$UjYX)RDz2Lwvd0G`zpfhiKJ3Pm)oZ*ZKkcTn z?F8fT)opI7-r-VQzaG|(tO>--ONery>bs3>8v0`rIyqqFbb%>j8CA<5q! zzCr|D4_mO(;~JTO*aD-;SzqvJ+vIF_-z+9eWLX+0#>G8DLw-WlNXSKnF67Xhah_T`jrT%<4A%;n^228j~kK%p(nCQO@Yn z8zJa|SxMZi+cho^8_+ux$vE8@y(8XNe!4`-oxk$`5I7y`*%{2DdkO1seM6X z5l}ucpiI~33SUvtmMIYvZacIcZfx0h44Q*u5Sajz>P+2R&hTq%!?$}dIm8Vl;Yl4- ztO4~apN3&$Ab-*ZWbQmm19H#phZL@6D&N%*rTlG@K!HSO81e>|@P${^bGXhSZ{LlO zdzlUE%rRxx+H@0=dz0w45a=VQADwV#J<^}^amw&l2vel*fF2Z8-L}1Rj{{q+m(GYA z2H>&LMN(^VaK&V-$dVYpcE>3JgLv(0(%H%tLRdvmSfy*bJwZ|+z*6XCFNab+A%$vtPRhPQ8o^$FT<_Fj;|je?*_!h4e*alX5(gfFzDI&%gjU(2 ze+r|y$`;dd0FsS|2ZYCl^$id@h!^;$cYncjmpoFZf9>LDWTC9@mLwjRU7|#>f42Au zL-;5kKN+WE@_uaYeC?g=y1wHvG;HqnS^k6}tX2FhsnA#jJ&fo43~CYJF&@fY?do_x zOh`<7vqv@bC=xdPdBP8j5J zy3$=oPlrq&W}S06I5g-3`3OanNto^`jC!?yH@ns9F*nuSKN__Q{h??}?_eb1b{nSC zlV9cYd;gCytM-EBq0(~s`vXS1BINH`^LT75RB~`0+J>dvD$}~yRIl!?<;%srLo$!B z{W7~u&{n>chL#ForWK0`MMJBLyR}`7Zt!Fx=T8le_shs=I@DrPi2`yh7t6_JPh%)H z(C3G$`5&FmWJxq;-%{Kk<~IU{A|2kNo3#+U90XyFu%T`>9bTUOw_eQXUk07!>7yrhYA*frpHSJ5{1v|6~>AvFXQ$*(riiRo^kF8*V`KpJ;V$Dy6aGQ}zIzRv+4BCH- zrzij}i~1cLSQc8#{9JtP(OfoZLr8GEqL$s=7fC`Ba74=Q!b?~1Uzxb3{>X_FndNQx z;YmmQ{CO)9ok+Z8X6|;!{%bS4h0bAZ!2db}t!53DV(9B;Xv8gwQfYnBtt=(6-%qhUt!T_7j$ z4!~1wJ&~7zW4t08=xgzehtaA;#44{bOBqy(Rgj3PSVES;22uHWd&e%OG6!0rq2P1L zl}iebph^YZ$-2z^_{wy0u(Ke+w|;`_ZZTRjOXf^3HzQj6kh~o4>N`g3to0>r!x~k| zln8Sfm?+ec9<(T9GYX#}BNDXNFOlLuA)zn0h%#z+fkvI3eZjR`WlXD3+UK!@qf`MA zs9&ZP^N6S@o@z((7Tb_Wdl5_{2hdL0gjwS~2rhlLWM~Vk$!#5O+=pSWP3=`o-%VS3 zuktL!s-FD&#U{&>ReyW0@LexRu0L}+@@Jz6ps}SwQ{Yx0H}@UvPx2oMqb~fa-LaKb zE(u38MnWzHJIR*M<^23)IM-I}=+jke^34%3T9#LfOjW>;f_4%%{x`obvLfaVHZOwh zo^7zEcC3CDIko0-c;*^QaTZQhd8*bUmeydBkCwwTIyu9xRs1rT-{7;%!ke6?X#q4+ zf^X0sozy!Tm#W0{*LCQXwha_&W9L~%puX1UB^v9nQ9&+pi1g#vTPPsj6yJTV3(ck^ zIvQt5K_Y(WG}XtOu(C7bL!JZG`Ivv6re%=&RJ$Z?^ny_3a zx}6Po$#E|>CfhCEzCb2A2?`^~ zNyAUAK7cP7-lk2+Q6q$U6L`*ND$%rE>heuL5m$^AK?2EIwT601#0@JiT%&_qF@-+= zVjBKDYRYeBN48LQMri?Xhw0!B_qPxUs7O$s`s;^I41^(g3Y<-crirS9Rlu^ih#Ur$ z>7?r=pVM>IHeG-5-wSvTjQB&)O|{GxAl4~7nj`ePAt6GtM}OP0$lhvhzss8%P+S~@V5a_cZsf;ki7(h;4QK;|J`t0#4u%uC(!Qmyu!eLN9 zuyMNPVyR)T9i71Wb@L<~w%1!CAKCDIcy`lNX4b=I)rqHX68`GarK`rfB2v=Q!J74G ztL3&R;qO9jzZvD8U|xu%8P6R1_Ypu6h&~ z)B&t#F)H2F?Nc!IpX*~VWpMZm4o0TQ6T!DrRcna=HmI-Bv{m-$1~_U-Tpn}~Nac$z z0!_mks|Ll;^uCm$l3)sF5109xk=*<9&gW{!GbNrvScs^SYLo~)XWb;TU=&UP#` zcYQT*$NU)Q2`Xb96&r*A(aD0$D!HpoPM0VG`$>HE+=;Dm%!WgWZWW!9X{gxDepXDA zHakZ zK&`O+7S|J$<`d@gh~`}xK8k8ckd}1Jz=%=$!suP6`*r0hIFN+X#|bsj+$?R_j&b0~ zDg@g~lCOCyT_!NgJ`IMgZTO6@ZJLPMCE;vsdc1Fg&OwO+`Yc_1X4@l!XXLF|=nZ-3 z%Ss67`#(&~=2U(xTLI7+{O5Eyx+fMdgm+f6q9;~5I4~<(Hngbr3@%Mq);)6ERPU0w zuHYVc5{5r`Qabc2~aRQ?!>&AEA1Su~d(;HMwaa9j?pcU5qk;cSY>(Xtww5EO2oGG6ShWcCoS&PvwL zbN{{4VuW+n@;xan$-zkXaN|;QxJs-(DuT~u75Mqr;E=)L_50}EN!)eU^a3XrEQ|n0i_K zA(X+-B1QN1cCz<8MJ9a2ffj1)#p#{vNxW(TS@zSqQ>CTMQ_J!l(wiRs$&0#@8F>5X zRiO9#2p`9cO#RKaye!}B&#kFFVaTE$g&~-VIsyeqjlVIT5z-1?+XV-E!$Pmy-6$Sy z4#gN9Sqmc*;E$oepC3Yzf8sGiDsDYCPXE$m0BR%fQ0wRe3K9v&YV-5hUh0jG<;HO* zv!Xsb=^fGxPhi%@X-q0MnsdDqm}I_e1%Qk17~XJbH$Ok`$M&YFr7SM)Gwa>Mg>gm* zaJT32x5WuDoI@+xDL+iY=T){+X??q;{;U0XpIt)l8hjf;s+mN$T49SdbKTdLXdqk$ zHDQ4xh8+i85qx5X6-h%t(Myd$pv&3uUIm@9kW0*9KfcX zYsGIN*Vu36BGl|>*i~o9(bq_H9;oWorxb>k^ytn0GRE=Uvt z))0LhdZ($tM3ehsd80e$xS4vAztE`T&k;BmMgA<7S1KWH!TpF=e6jwyjtO384`O&D9TeV+M2{fYdwm6=szK zU1wHLv^T?JQFT?rN?x#kd2e{JAG5c9L+YDZ#+R@F7$@zD*}6p$-vmhb;YGU~jI${@ zr`kWJ1Sn8$?z%kAT9W5o3ivE0mt2Y?F}s1~c?P)n2#NTeS~~?VWqG}5i;A01uV;l? zpudz{gW3rt8B7}25HIZ$9-X6a z;E_+QyKAvl zR@P{=`&-sGdZ>XLry>%_nSY6iM0pFc!*y$4?W0;alWwCTsaM2p0>T(K7VKxFO$$}R z#@ZmZS-mR`N(0fub4K;2*+f;tE4nrAY(Y(b%NyHu4f_Jr)Y=@xUNxrN8nRu4|D6uE z(Z3aU`c|BY6?V=4L1lQOHE*|18V?CfpNSdXExarU%`99j3f*TC{`j~E?%xg6(~gg5 zEP8i2vy3G*k53TE0QMr4g5#wEJn~fJpX^E#l)2#IA~f5$8{Dr4RQJvT+qHz7`yJCM4}T;04%%U<_v zES$e9j3$%bpg8de1`y{SI<4=00X3p4Q?5HMBeuLcC5^6C0c}H8Y|hWWFdT*Q@h1?U zfY@mxHFipR$wh@|<}@_dIMrP9hILlYzKxLFd3f_5k^@i-^1>uKHox3Y`I>G~TD=o9 zui~TK=uefoTHUVlwRy!al^@Vp%5!q|>DshHHa7sX0{!W(^7Q!=yHa2YAHTtAB}DEl zW8cZVie)kwSpIIFLbH*4wZfRRy{MnGt%s!bR}MsO3whRnvr_iE|6DfRP7D75cBI9J zjsE4F6u?BLyOvV@J}%`du8wM}wQP5{hQ0$fM%#b05`ECbm#Q4c^NrUXs@n`*kwNu9 zFz!N@53=Z!ex|JaTiKBXoxk8qs7UEl*o}&&8xHY=9$zG{2p*)`=rtOLS{jg4CRVy@$c-N$6+d&ju0_}-ygE_rM`b6gslbb5=%|iJLXiZ_Jx{VvblNuI^IR z*I$bb-%!ri&p`f(lo-vwgRrCxL5SswNX;9&Sn=RM2}bMzxNDG&?~d>@ZS$@bbLuNw z*y10G##?C!WFt;^1S4L`DY^^X6fD*`ytxAIYK6wCd|tf2ei{<%wts8Mt>M$E9WAmX zqu_Y|Iw5g51cQ1aOE};WN<0{p{mV;A!y&QdtFW?#BGUw;Ffl$^;a^oq!%rHCW34f< zW8o!%*s-Q#oW${y$7KGra*9UkcbB!J@iKS48p{NsC=?88AWvY#c{QOu% zZKiThlDxq2^TstXrG{{wrw&vv^_nv1M}nCES|X9KPLqZ>#7w4*eEXpvk0#aZ^bah) zO|DjH54b%;OE0XE!8RLyvtY7hnM`oNr zAq{6@gBs5P)q5r@_*CfKN94QY?bD_Ng= zjgp3BeZ!5GCbkHd2>TtSi=BUuPYW)B!t0vDtYvL^9^UgbLYMXRvs|S@Gt+B;O?AHW zg!Y#KPcSKNQk;9YZERrqs|EflL|VSV7KO(!EgLK~^*~YD(d_`2h65gff<2+sy4H?p z0^IlKY{Q)ccp9UZWFg;w8(LMBCequT(8)Hc*u)KmU+O4U+e^<2hO-bmrX4k8Erh|D zf2B{VTJ+IAZ5t1Ad1Z^cq`k=i6ZV!*Eu#!i@Zdc?L7Vogu?t7;Zam`CGI%VN(PfeN{mFbdn!Zy9$2Z-im*~W(OP$`iIDWV z(Mhb7K2{UPmE&{dWTr6u_PMII_T@8i;MI6k6EWqWge?BWNiTGlw#*4su95? zbueQg_&6e~>-oAS44*9jLr&z&>~Rz+{>ixWqfj}gH--Asd!&U_oALR1zQszTNYvIj zYajxSJJ=D8DSW=ie{*|2?Aw;a*e{1aKHvsu<(M=pSxsv7hPM$(konZ#9Q=bLvNXw^ z)>GzVndGqOk!M|4u)jY5vS8*7riHl}+QRE`>Fn(DnmI%WH(fX<`OZ-WOvbGf*=fx~z`bxqaWBi=T8YxreiH=KwL71VwYs1W_L`fRJb93eTipF$#6f<>JEPA{*`9#)MgQ_z@Y$ug~;+*|- zXo1)YKo9KyCM!dpQI7$$6$vH_L&~8X;E1^;65z7v`AZHiRnq6LXJlwbrLyZnIJ5fr z!e0=X`O|%u+{;>~kIx=rc>Jh=j`5p1BYNig1?oY4#+nA&4u@*nBvBL1fu zp%}`gQI}D4ets?<3+Tky93;h~_wEWm%#uWSDdd^yCL&~;ixkMI;rTI&C&+_81@(yV zwAPeXPUkt}U0n)(8`8noO!9RzD&;Txb?8GvIvuG!2Tc^b2GDrDdT^Q=weJc6~O@=VKx~sVoYe&`!->vrO>?DiVyTA|`vCI?J*hL>P+yK02kRFh6qKTgUbe0y>bTh!wdb zHFd15Zv);_(?2-JgZLdP-@>(?4nX*~LJLp;q4i?b7yhzKS+;Hw$(NxxW1Aa9o5V~F zBOE@)X8%>tl81D9!0fyV4;{HQbcQiwsb}(}7X^GdyN;>iuG=7_{^|?{>``dY017op zcBzS}LAndV1RPSy_&8Y;=7RYLw8!;3Z}!?u^~lN33_YvlA2H~Wg17aDU_`+ZSaWfJ z%lP$dT>ouNd@$0V4M>CzI~4L0hALQuN3)8bJ%cuUyP|^OJzul?`>6J%S3LX4Sx=9x=#y@9~#mT?Wh2w_c$FRWG5M3lOKMv)3;CiN^ zL}2o1H=5?hYqbPfi*WBNaBqla(pWJ8*!MQNF%!*1>r!X&^3ytf{kdO|jr$7YwK{tH zsnS_GhEikjLgV-r=za%d-RNkU-g);B$nn3f^cxLqAqGh}LbmSY^eV1Nnr^p|!jOL} z)!-}YOC=X{znEHYbN}_ONCmQm-`v4ENns{=T-UG{*I@iEhq?Fu;=$OBrQst4jP-VE zSZ0+^8Bf~uzpMY@(DcWS0dHATb-^(XBH`zWKpRjrJ7#PvtWX|>$tO_aR(I%ggWs5{_oYZc-+l?$eK=w5T;L;Fpm*~05NZ4;@Ch{0$m*Fh^71E!H{Y*fvA=Tc0|gmMq`fTl*@?KQdTRp@SpHW?tNm|QAa=}@ zu*L>NitGmSuz$enZs05g%T;2mq0YX%$jXmz5ToI^K0PPqKBIlsqHC-&Au~aa?HpE~ z@~OhNc-xHV3$?tQu?{&UI!s262$~k^VO!pTHbll?ny@2Qk@Qtmxg6oer&~O`rs(#J z+XGrA(h++d4WtAEH7f0)|8PUH7_zmpVgB;>f`x3*I8gzQ^PCbEwc|K~P@`A^wevJ~ zc#AD$naYQJwm!N3Xv!T@ybj362HjQND1WuAHXz**2e#Cvrkj`#&|r)ZONRW2L%(N{ zC5*+#)xFyoRj^<9^TC*65o&>WYx=Rsq^0k-$h1;@c-Sm{r#N@wUf zZgfuI^#G8LJ;dJ!7MmlZ4Og+~v)iuW)qBe}T?u~d|M}5Npu!>OgV|smh}*E~Odo3XH6PFI9SvGVq(|lRv*cg8eJjxp_!>Qhk2w zAh;&m)Hz??4bwn%@h1{bJTU48XOCflC^6T)f#S%aw+$LLj)2ari^|k(w_av~0T;Mn)m8@~r!E31TJitPv)9!(oY0t&Kte0pd@(YxH z;sL_FEOT{2as5XE1H#JVM06Uve!ue_x<;%{BCr*i8nI|t-{s&#(T;(y*a?rAMh@ha zwO5Vh&p?|i)KvcTh%Br}2-xFl-yw`AFTPt#-Q5dQaTs_uIyq=+whIti#lAfy8K}Vz zYhYpUG&m(v>CQ37`&v>u6+2Lj4sl(5u(u(TMV$+ z@Y)uRpWaH2G45-bXT6j-GnSVk_>o2%T1B{VjjS4j`0V&Slse3(;2L|%O?b|!1GdG{ zilXyJN{%Vh98?>>=;Ty2CaMA=x)rz0xAMW9Yx$#Bqc>*vV}W!!3;)U+x^Yv+Wohwz zR9y(NPUvd3*7N7R=lM2|&-p)@0~4Se1z+ZxWDo=EZ*;~nSx}d|b^^8@pi=)8Bar8Z&6!^QA}+i~ZCHMek00%Skq-S)Qft zDkTXj`?;Gsg{j+?y@i?{%opYLb+XG5O- z?7!?8$5D0K8)>40O+%~-H*%4BU z;T}P3KpCbL$_RqXAMgR^b#(RX>+O$D@qG@PFQed0#(k-QZZ0ma8wu$*+Ra4!WIQd( zpt_Jm_l*M%&yoGDR^-M@)n=!vF;8a>I?l?fJha-C`755N73W4V^|EIHRu6vN&H6(( zp{ZvjHgeU70XXpNMCdEFZds$MAEqr<3 zT$su_bk&QApFk$w=^I9-EBU=CLiW3?W_Ds_63lOeYK|DCbb0S&{asJ>_2;cBl|qCi z64n8_i`^nib(q#pYU()+6D)V=5y{f^!@?_)AUQ^{)&juEL$Jz~@&`_&Nagb0a*kEL zE0LM_DUZ}Nsf~WACmpCtPY}ghPrL75082@uYepb^;Nxwt1~^SG(Q8fRdRlh!es&8`_I-I#~-kksEIm zU7y*GMsj$k5!BEGaW&4f7z_a1C48zktfSLdkKReigcBlc+RkGSLq=8Wns7i{2x>xJMEBREZ$Hf1@Ck4#$VleY z9q*ca3Fp#8_%rd#9Fo~aQNx+8d@wokQVxErb)_BaqTCoZS z9|jZUl!aSug zgQUY{L?%N}=p&XCxFKlr5lcs6u==P#O4aA1tw~RMBe zO1#FDA2r3M`aMv;Bc6jvcmBr~5y331Nt5Ss^Hc9-B&O7%bR0>C8P5&kMOs4m`0?dI zOk=z@VvocOGpfUZgkD^-QG(-t@Ds=gZSJ(+8v>^6~^|yZ_US^N12>1{;EvwYh^I#|=`5 z+IeTBU3VObW2`8&VB;J%VH^m#5@9!uhJJ+^=Nv%e&c_}pRSS;LQ+4}U6^c`S$$r%q zN#>gVF<#%1L2}XjQy51M0*LO=G?U1YyON!EZrz#o&Ru-?b9DIjrzTbYiuX&T|L`TN zt)EpO0k|Y=E`%O3>;XURh8{d~vcFNvi%`5BPpUSZkRv+Er1QdAWMjX<(a#9*Cq^da+cF zD0CWq2g?+`d6yaV4pb&g$wm~gtDLQB&-HU-4W$fQeBWl@w1XDWbQfQZk3z7tv9*x2 zrPOO-s}W%MiO91>d9$5bAYAuslkb?bqU}VWPA2|0JJb zAB@dPC2GB{u)#w$6xYVspWA4Xoi0I1A_F+A@>d;l+aC?+0eZt$NAiXS?nRF7*3y3nuoIie9K#+s<$A~U0tj@AfHQGtFSyepp#V<)#f}-Q)lKr!p}-m9qL+qJwl_= zc_L)bdI^P$10zx>R=%2pQ0lqPjCRaKx~=sYoQ(b&dBaOZ!!&8+x$X6KGGUg@zGz(nrS(OTgwLP+4+TY*u)o|Db8n?xv0gIei}NlSH9*G7 zFB_z^edfGGbY1L1bqXaaQY%tx`l()#Qd2b*jQQplY zO}WKFUp2fX#2O&-j8`G6g@wzX%}2{4TkJ&2dXokLXuKmQDK(&Rob8ex*7Jt@X${>@ z^PUIyQt8PYmESAN+;tUhf*Y|dGTna6(iQF}?_aN{*YVj=fDDrjfxl;e74&9a0xL-V zA~B!9AYh9YEUfa^2C>Yph#%%_t<6R_PTC#{j}yEk=enb4Whg!AKRtZFQufKIYJp<7 zyY$xp5k|^*^|QVne)v;|tEVCodrkKlc#d#F*RSE5d^;_?ZTrDDZGNjcrRF)lVURYz zT)T+F=KO-Yx(y4$U-bTxGpZgY28+xiRfY;uIyWEQ{Sv*WHx>xJYMDGRHH#KJ(#tUA zvpf$l?%17gYLh<;LmwzUh6#`bw18o1MFkrG-w^XmUL~nmf+5=f;_S=K*U(@Vb#kg%I0xt6B8&eU+liQW6ozhP3a~qpj7Pw zf_40K2ATgwEMl$sPB{ti|68b4Vqz3@wzuw>wq~Y0QgK3(a=x1#xZ|G2t*r4xMwkUo zQ!5u0thucBjKFo4mVQ|!L*${Sl(5g)gkZs>&y059WPQCHZ|XXoEm5z5eKGwj_U?5$ z=YG;kh`SncsOv-h#HU9YLXM4U*@v^GYWdschhb_81YT%&VolOuT1lbD)e=6Pw612% z^@1vF{)l}75p94m;N;7#+$H!;|AmI5BbRq){BpCHlknieL`ge9U2%!tZ3`A@*D}di z<$#%)-o2Us-83K$_;&hNp}PBpsU4HM;s4%;9#S}x@gRp*b!5=^G7dg!;F;AVrPosH z-kn$}1(v!7=y4f`1h3h!^$g$8aOBSJY4r5^uzPw(o#YZGdGQ6rvVwyNTnFpuj)D#^ z{DqFa>$aZYS}vgv6Qurjf4ekaP;x#z)#wUkl|08W7_n>+v|~Jdcnvxj&HQ+Kc3(i_ zB}B`pixXvaR!7ki*iuAw4(;yZ#PAmq@qTa8{vr&o)nzypP}ids5|K`_wEwc|Waw+v zd19#(d>i#q6sPrDcoe_^P7~dZJf!RBbavOT%Pqz8^O}1YKD6J5P2IM`r+&gfndxma9=ICtK>op}A_Z8@GAlSVKaM6tD`Z1Pu8pLM+EOMBP_s=y{y z&BRg{bTivR_NS~}DtKY8Gne!32-}5vr*c2Ni7%LK(W#hSaxxSF+=?$|>C3H`^oDSw z;Y6!)ER7s`rV?#A6YfitVzA^(dl&o8?uFZTx^F(XlEzP8)_8E26Ci8-2_qGH<7$JD zO={x0oYSC-1EQB~7AU;AdpPODs4lrR;=nIPUr)yW@DrD?b^~IXTa4SacV_||B%i?AR}>lVU8kb>{dCxy z=PUEK$EFv`(x3<(yqE-CgqWWtcelgiD}SEN;@X2i z8Qf$Dgy@=$N-%+8M`ROX@(l@|t=mw%8GSwyW$A#^Cdfh(guIT!M(nCDv4}Y+(pUP= zcB_!0YGh@d#^Wiiqe)Ez&sXPnHOOckhXiOZwNb@by^CR5pS%#mi+=0pc8i211$#Mh zm?K=4CWPTFQnS7aRVj52LuACkla|&Z{={n-TpQu3c3`3Yi zc_8EZa@)I`^MyV{OCi9dqZjuKIg!c?1~YI3tihTtkZkc_^`9#Nrg1-Nxr{P5DLHgK zWFcHCcrY8f7mSCD7OxVIeZiEq{H?)V(f9twQWi}vf_HL?j{M25nwdL-;#DU4I45~&^Z>?Ay5Z7Gr?;kR952937$6a1Uh4(C}ow?w)aB;PS1S(QIkd}1j4pndPkpvjLMSz{KqNWm;ZuQ=%m zE04hn8EFx1#xUprPURa8_{&6vxG8;2krkettK_PIOJ!k(BHF~gVf*pU*@#D4iEF|E z3-73Y^3A!3=)VXj;wDjo@ul67%gb#{_K#gv>i=JiXW9>r1n%406^5WF3vU&f&dfEH zYxJ_A2Nb@m{1;7aqn6&?!p4VWg`os!Wj8`PZV8!L%PbMtFK@kF9K<;VZpH@ok#2L} zRj4@RWqOn|YvrO&Z)h1JnNFW#8#3cGIXj)^+BAwXrCqd|oSf-DJN#~6VD7IqK>S-c zjDTU;N)(wP)NjU@>2W_2uF8cQ!lbO?tn_A;Eg`+aD?=R3ffX(vVxk8bd`)8k$6hPs z=_Oe{h2`vo)jgF;cE=~0exD(GFP39FK~T)J&AVY zzrSGq2}EieGO7?L4LCtm3%~eHmjCtS@5N^4#bk~Ce%^5}f`$y+UoWus?MBC<)-J<^ z;h5*fH7W7I(GI`$2V|^QZ*K?*vf!h;Tb$|qTL)RbT-uma9&m0c|Y zw8#)nl4X_6c4qfS8PM`SNBk@h6p!a%aZ1iy!{$#B< zY3YwxR)<2VB?4@*%NSPOyt_L?zsW`>V9{jvU|$hw$rY4@qykX_kxJdFcPv>}49?Ng-jm+Jxl`a*v`3jY;Z@lIOmx zA7uNj-R(-F@B4M}2lzVnY6-~S1Q#n*Vi)IAxSzuN)Ynhpe~RE!gr6e%6!E7>K1KQ| zvSx{0a@90IE@Aioca@EWB34)Rkyd9_Z?&6gRztRTf6!wM&6Ioh75sl?f zX>vxT@7lyHj7$z6&v}hkE}b*`4Nb{a!r1`%`qk60Xb#twI1axMw8c?6blaF47qLs` z=%LoL)@nafA=lalXYtw1b4bys(8s5ZSRXkeKkwxTRiyS?ASm~qwHQ~8q8l<_>9?M5gDgdTp@h?}M6Zcfkuv5RNSig^%eNSmHS*rC<&h^m0 zmJ-Z?E)7?BcC{5R7c2GR0>m`wH*N_r+c+dG*{Ao{y}L3N_KoNPLYewlmp^d>Bvu4n z34&AU(G6b|09YrRHdU#w8!I&tpEN$)6n=Cw=dH&Q`LJP>Ep~XWo?KFqOxNdOzO(|P zue_X-g-+BS+l`|L=TE;6q}IBBj3Va1!5q#|*ntHMVK{5R@y{H+7}`ZzKto{x&HEIQSA7xG3WP_FYb4kfS?+kcc-P4HC{jj>%bByWuAWnpgO18J| zuDD94#-Z~5iEc4sa+THU)w5OL9N)PwWX(RB3H_$80BSEhPK&PU*Ww};2!mGbXL7-{ zqz8M@1J(S9^F2xGV$#EeMa{oSp|11n*DX>%o5g37k7u#HP}}w>UU)>j&KQj!xMI-_?=U&bYPg zWPfDpg85VBNH0_U(K~ESR*Q?a=y#*o07y+;z|T0GUgIhD5$}C>&GUb zo&+^U^W2)kTAzs{z$OY@IJh4P#9N_|T%E^^LD(dU34^N@6Pr{I7psKk=H12 zre4r8ZTPe#^5j=a28Kc$^B{m3s=_F0$k^)mtx#Yu)M@AUSE!DQydu;@atRrrChdHP zUroWi0Zr%vU#ARkB%KP>7yEr5gx1kr`wjVfY+Cy=?3lfX{`LoF>l-E4Y2H??jDjt9 z4GE&*u+*{C$Z#Mh4&HH8L2~b#5Ia5xC+(>|!M70l0AeIgu|tdG4eG0?P^V>G?zVMg$&WAu$9Y+G||;i``f-k z=%DH9-wb7W%M7>w`n7i3HL1X9L*S;OoY$MsZxi`dpRiWE7O_|CznM9+h}Rq_*JAn# z%NB5NN>l*Rw*yOC>%aeVGjqdaPK#?-++XyTxFe*k9(UpM1m({P(Fo}1EP7^?49ZYu;dqptn z)3V16p*G6m=1sj?IC=CcboB4ASBgGq`@Xh@z!tPr|0R#`2#7*Q+hv-%B{B<=VpqzF z6B9bfSpNm2BgAWZ07b%?PaXWvKIU{r(0IawB4-;~lcX68XF<%0STI9*{+?mkxskS> z3nidu!=ln^!;cJ~Alhe*o>=oVN=OqmR1stRznI`4L4V&G%u7}@>m5|qxS)-6#St8M z)X(r_e6UtGONth%=dtoF+;PTA}G#X-*;e8yRLU&#&<_KiGm&iH=f$HD!~ zgb79#g;}kTn5o{(Or~&4!ld*6v#NNv$s6d zKnvcq2D9%`MNai!r*HKg$6&2lZv?86i4|vY_uo3S)SelwedgTms+{hiOF=DNpeLyA zF|gv~=K;j^pIck`&64}?L6q4vLPBONz1M{k&DR}(Y%C&iw z3}Z?Qi6q(ub2pkpKl-4-*&mGgVS5y2jyJb_Lto>x6MEV(QnU6aXdBoaq|U#_*>Id! zln!mF8JnLoq+pI${p=PHRMvsJW`UJD{&g@BeUp z(szIVEV=X9nd)?5r?rQYevoW9`jua)1O>}6k32h57~i1pSiLTbYO~meJFcP{Jd}eH zoBzpz3!K&iYL`$Coky)|X_WV2yinj~*xc8FHHfFWV|5vmqEm7DOszv8QvfSo?jsWK z#_RUGNW+AFdTR$Q&|%}10$|7%|AF|&Z6!{nSOTTO3*s@d2zS|RbgX@zZ_?BG8_y1t zQz`vCA*Gp8LiYJ1`F)~b_T5s6n$=Mp%v9w&{%Q`wzi(hQy&pq6r=AexHIr6!T?go4 z+zMF-xqYE+pYvH?<9iuhQLEA1WbUfl@mU2%Gk-`1>YaXw?nPmmt-B0uQ7IU9#`BUHYT7DnAqz#Y!efDq@$&*wGldJkFhnzX%BT^_LC^qZ{{}?}E`b;tH%QO`J zG+3=9`~Lu|Kvch|FCiNce>qNf@^j24q`qX8mn@tuQFA?#;AV;PD^E06M(~{aIhWq+ zelBl}6w(|mGY-ACZ}IDA^Q+3$8)=zV3Wc{M>!mhHnNqU8>FW)1{5dA>zV1G4DxI}500 zPm&8pi*oV3U($RrmE};$YKSUy&Vh_h?9p2EvOjwu(edyle9i2r#D;o(h~hdRn~vul zLm$)IbP>|Wa&NwJe}x^7!Gc8-(y^1XXhmzzORkLE1-(7AdM`hwH>kJZidk#S066}- zzp@C0PMK4+u2i!})gub3{1Dyoo7lBi>#6_fAhk-<4m9=f^x?9tiNm3ef9fNC0w)Tw5N4P@0T`02W%c>-Gvp*DXUD! z&>_}c&}yTN@EtpG`(umU#T5b_Pf&dqdnubhyCy9qgojc*-tJ0rt-yiXU8*-2Ua34& zf)Xg5O`0{mf0AZ7#_GLjqh&>djIo9%pYjnFR%1BpHNcG~wrO4)sla2EIEuD*f3JZ` z6|^e3txsXfEB2^L0EAze@-FS2R-t#y_--Z~gk#_>h@QVIdutB~FHxDib$o!@{^4a> zYkN`ze7$uzF<`u+@sn;!r+J`$O`J%ETArS|?~LqDe*^Z031giajrgvk%|V16W3Az1 z)_m4k082Y1et<)jhrPLXN_BcA^`Q43TNZv{C|7Ci)`=Ny*(hJnbB&-#d9c)m3L?l7 z-^12XHID_i#ny$PJSP)en`xKWeIr@1pB=0$PQ&|=cFqi^H7{)o*bF+sb)WEdWa?trEJ4i-Fcq_I} z%-ikY9kQN^%JU?*h2`htGM}^$COq^^9TFRR#VD7idUitQ^Bw zVBC2lv#2khLDUUXM~k{)heR#jT>eXS!W9Q#f14r{7r$fR4thW(n96DSSvERah7R87 zXxZ7E3R}|eT^DzdA{Bgct8y~DjLWu}ESQi&xd8`v zPy#AUHAWUC;MJ=1vgET4%8Qmgpq9@=bR%!mtDYYMPM_0G_+>Hg+eEH3M!(9sLBDqp ze>s)V3N79fd49ewJ_+|AaSLY1pXs^$sK94A0raM z7i5aLrKs4JlMdWDk&txF4M^TMe~*y1UtmP|;b{bG8K9}OJu^FG5h_Qh?R-lX zp_+J2^Zk+t`x`E*jyBvCRxb}RQcq9iwk9F(b-L(z0fr$1?7F#N^ zrkdiO@8goiI9jHK5at1bOX*rZP?Fn|#cxgqO@-~?t=WGMd@)=tkxhHxi)m_`f9I@K zIK=wdvCmg?l=A-rtSOZxUv9=XZTpSzRhvo=}uhxqQrH)u?1N1@oiy zgYaa-vjq5o<1?xhpxec)1e0Rce+9sYK1UE@TGKOqhsOwF(5iY`-Fs8azK<4Y$>@DY zx~IJD(Sl`fx)bfWdI5#2lIS+AC@FPuhiWUW$?Rz9>Z01J;EN{pc-#MWAeRhCOMM%V zIbqhe4vX;fu4PrFs=CAJ$g--ah_dJE4rNs_Q#;U<)7s;z-!r>eHh)_H$xwZhG_N76DVEfrJuHZ&hwybZE& zWZ4I^@N$=03T-sgpvuc7>h(>D>IHPB+GSYY8uJhXTlp9bw?{l91fCh^gzdQrwd$4E z6Bh25sZ4I$4)BV#`PiF zhl{cf_@lQ|g!gXRqxf4Cf5e_iFHU-nP;T4VOpc5kX!?E1a<#Ke(Gy#rsT{3k>fjos zmYwc(cGq7>X6ClE-GJB~WKNHFmDihmimJ3VOGnFl#Z0z^!3*=1f5&F?i(i&EW8@dW z^z0jpAJPy5BC@o)awV#uC(BH5Y*#Eva{BBQjHb<4$|dM-;FsxQx~7BuRo8IOr1Ji= z)L=FI99)9ca1%85%}n3NtFM+sR7*T>$8y+KJe|kGo$6J18{Zd7}585M5PZOA)tNr&#Nu#8rY-LNUPRHJ~c_H~o z&Gp3Q#X!#=wf&NwiXX^e+kPN962Q$s>-psl&&7`{!sDy|B*jNKOT_~;SJFelS~;_; z=1M7;;+`VBPVPRv|4wenJfZgtR%msY21_k5Rt5Rtk;E4O6c~9$lP_1^O;$3v>+j$G z@_#?`MVBE}GZVKSp(H}*m+Y7o4S&U4&64A|4Zi0o`~uAoAi&cKX}*(_jBVCo3F*ML2!`I4Kg&5S^Z!P{xrveSiDUH!0EZ@ydsmQhzBvEWdaB zO3zOUEMEaHe8BUQ)ySU|@PW%Ke(-Tl?_C-r-sirh(P+6EUzYdr3dx6g{_ppHGLNv~ zQG*f6lMB;a*aKz{m?fZi!{5J`DN5l@cpF~YPk*knH9WqP+MKikp&TkaA)oT3{OQO0 z>ErZkJ5mjyW%i^oq z#|H?Dtnk*!-WX`N2#kWAd%ay?RH}> zjp@zP);K?8-iSu9E?B)oeqWup(t^m6{Z!VV9_AvD*z=+{16zPc&)aA*G|hu)KOwRq zcbemjCtzzu&gY9?27k``F<7mx-GE^G>F?%FtreiPv>l}|`vt0p%-CxYyt?W5INm@@ z6ef7Qp44ltA&)VFt7~tVIebxoLZJx=J5rx1_{~1HRiy(02~xtMGX3CJ7s#=92`0a~u|B)Kb1xSlImOZJOSWue z65GK>8B&Nk(1n4BeNtc`+nMJlBQY<(mlP*KdgatmpJPmtuF{;;P`-k5K(fmf6vAN0 zSJ6v4YolLJXMaJL?`0a_E@~g{)^@A@BS0!3YeYt_^vcA$hp3C$loqb z*2RE=Gj!{>y1Smrut4?F5 zF~WDS+P{6J369T&G9D^>U8~oJFYjWLV^5W^Z{2 z4Qiw*htEEh6$VJJGrwKuJ$oOX$j+JEScw>z7mgUN>p7boL5OGvMpiy9zXm1H5sff9 zJi$f~)@#+z7~j=a(wy(JcTgN8EVie7{BgxyS%1elyod5QLhW_BJ0#{v7{ZXMv}EE^ zm1{s4eapv@P650y?8seDyImv`%ED)e|Avdw+fPh;N&=~;z5w{(s_beq8*WBv-HrL^ zK$&_cc_HTc5;o%`>ys z-&)n#)5?m$fC0*0bq-9-s`}bh9&Z@D6yMsx_tow~pf*tF$Ak?jc5?&q9UdkIH^RAp zFNNT!f}@1@Pns-tG^U_q8MC^SrUFRL?+rs+D%NpJH3DJ#*Ke%FJlg4mlRf=QdJvE87H~;;B?9LEi{$+-q*IG6ic${qsuYI z&21|oy5^*aa?{Xd?B(JzJ_{`lh?Nv5p`GEkRj{NJnr7`<>w}}OcIqN$2|lcVmW4Qd zlPq2>)Z81Bcg7SYOP}-iiT&7VMQcCQ6&Rn`dP@$lO&gM4Q>=f&XX?3%BGd`C^FHxS zws=x7v__M!TRfR-wp3c**y9iK26{?V8a2yxvEfM7%YJu*W<8A|Sd*wY zPV?CkH>eaMdq#h&*{FsaGCj#%Xb|KT-EdckOvubj!7c^$SY~$Zw~Xu8?3YKy;t+_r z8EeVGqft#`^h)IFj5V(g10ne2)hdwR=P8E`sZk-5k%~%cO9!&q`qre9978yzyj^#w zzEyq4dqJvaHNH95~g~$w+J~Sg4 zbeDe>^h*f0!CL$cmH@C%hfC*PZU(qUWQhADz_5e|TYy(0lTNiBZpic`cSr&NY{Ok4 zvfrr^f^fV5e4n_zUyp<-yT^@S^qiPb;~g>_h(HT#fo z6E9~E={BK*S=R^$2v4ltW^7+x(@zqar0##`SigtOI?xu)S_TReo(eY@TW@k}?iQezpstJxjoJ5PFiznE^l}XH+ifXhG z$CJDnDZI7Y`ru09LVd8hbI9G)24ONFz=pS*vgdmG_6@@1wP5j6c_itdZP6rHeNlg0 z!Ao;Q_w*xvN}GD4me~u>V~&0T!heLZ2C*tLYcCwAD;sxr_Z5`q5WFZk?^Y7>Lx9Ws z;_vdSA--p03;p^Ow)Bp?jrQwSb^qp3-XXumG~iReC#6XyERS$ODO0$Xyb(!L>8&8e&z3 z34!yokm#-wc}l^X4uY44lqT6Ipvf(%*=)}ClCH5fLZsa@REbo}L~4@l^e~YW`6<7P zM9O4P_lJI)kcCsf0+TIw@UCSa(Xy0?Dcy^_s$|srf2I`4NKn~()w ztq6}fDnlN7-oHSjKUF^J%$Y&gUkmRUX&sxww}_KV2JnDW6|#Vnlgvqw_I><6H2w(@ zQ@VdwdG!oiU76pTNK+CA{fL6lD z)K?Pm-MKdTnqY}9@lrQlTtbfqk_Omvz|xV|msonfcyc~=cUp@ZX1Mb0w3d45o(-)B zU#BOu6pmt?TMu{K z>UMRf1fd!3hZyW&h?F^N74J&_&L_|-*Ria zf2*JO_o-J&4?h0q=^r#E)r|=h3KOi4)7polsCyOYc})%e{#2(VMZowrz8pXO(Pn2+ z1g+>D7$uC?MsFk}7=*C>eB0i)-;O9<%79eb z5^RyEh9p>l+IwG+EX^86KFRQ@E27rh?SD-3jDUc~Z9g_ZCp0*(S?Pbbe?@k#_l18n zeQ>ce6zGAF`@sv1z+h45zFNB|k9e}KYsgFcmb0S>j&L{TFp46f?`x!CL1?Qz^+QZr zi>k0sYbV5IK&udCTz7F5MV+&>J}rFYv3s91&vs6b zn2a*9sQMW<8Mmiwgq3m8QCBFmGoZ_qq**L290Y~EeQCvgZ)f8*ZF#QIEhd{xoURPPjW zEzBND@2c_1-ic3j2hjs-pxe&_!)7wX zYY`aj1u-OT4@?!Z0t|(bsI>Wi0mEi8#A^{4vPNWr{6S-?kSnX6HysXe$=8uV6w-Tn zux73JQ+%CvR@e~80eq&f(-?%Id54ltMZ*yN$oJleB)?J&iyoz2*$;oo+=pYPN?-O* zAMi^wY_gC}bHAjGaHP@hPQPTN7K(D~p2%9drk^Ip$w+Ii)6dwMp-}Rwe)6VWao=`& zBr&zuN*za1gv@&-qoQAoBVbzuw=9Uy)*|Hko>`P=fx@%};S(9cwTcTVKjn741!+RA zF~ph<2e@QGVsBOkb+CURt@yeHNsOuS4ikk_LV;E#jxdBeyp*`%@xhpwx!C8lb3&iu zE|bN)h~LYi&pSr0lYv@jkG}2~U0VBt`1!Q?L=mkb*VOuY&bA`<^)eKn7|>+HOB;iE zODrp;DR##(yAxltZL@Yb7E}T(S=-vLd?#Q)brLF6_EE=gQh$Gj1zT~>SmAa1jI6Hh zvi&SJF=1m_Xjj|H3$s^Rkkbrp`ZHbb5n_xNDbmZI)CCxjj9&1r!SKqV*oo-@*fj_l zED4ThKAl9sp6@&urv#1GqzqdGOR~#cT+!09^9fleQ>=?@?*&Sqdknnqf7;;=P5Jf$ zq}~hbjA;rzC$oP;R(8macUsAjBY_BKWcQiE-ZQk>aP`?sR2x~$3Ybba+_Cofn%8>m ztzmmNS}Hn);6rE%sPglDj|Jj}bDY{uRfD+mKsKragr_1?0TLl9oTQYkg##tbxjQ^E z9)%@aQo|$6IJ+Fy+%z%Q!=m0aCM~Fwc82{)I}BaP&#QkkP-Ia717#bhIWQx3?^cG2 zrr&6*&b?3VWyF0O@E8UNn;As+pz%RzM=MG1o04Qdx+wNqClVHEVNoiQMHJ*t)ecqr z`186df%F1epsh__bI7zRIgayT%ZD_qvc1~l~fYLl2|Ffy)Xbvj@4PR zfX4w86Mr}=y8srP-E8-SuvIj-WZhZD-K{2To|Cic zVx!dBMzhE{`3LO!ICz?zh)uD;U>lON$bxgi00h^wP=ze8;6M-<`pm-a5%VET!N=xE z+cSUP3VW2EaUzT)#r)c_93`U|>`2@RX$m*u<2R!RdmW-avKEQQKf9R`tw3OL>u&+9UL$*25@AH2= zzl@L}?Th@HJ;Dw>zg5TrzuKq$F@KKf%3`UfZzgZ&!4RB$_|h+qxH9Vv5q}BP6R^+` z1}tnb7fuOp$eJgLAv@%6ktom#oN0p|QL0u?)E z;8%SvSi7#R&C#RI1ieg?KYvQc(H(zsxJZ`WBkKcMRmcKaRtkr~h8wG@Xf3~LW7`&a z0=oD$-7eH5P~UR&Q2Kcrk$YH0tMXVpQI&|D#~Rg*TN0xu!=9y_w z4*6On#-&KPza&~kEb!vAK<~pYwdfDy=xX!;oTf;_-kL@dA=@4W+>E3RbXgze-iSpE33kVE|i>%itY!g3L{ zkRsT_P30zI0k!}FY00UteExr)e4Z0AWP6QQlqquc2diI&EL>M4QiVlOiXT{2pI3GK zy-OHV7T<+CeGcC|Z#@^fUOV6IPy24LJBD1uzHQg$`fs(g!;rhJ=r($OR_RM=I!rs< z-@ZX8XJE+lBB3fpxUMI(37KE0s8CpKER#M9Lo1sDSQLC|^7S;2Kac||!BHuAA9pdE-~PzJc|tWA-Rhz+C7dwuvmpGm{#NK6M z84*LeZ`|ZRy#Dr=KLJ?1-j@OH8xxlStS%}7GcdO;tS*HCf1;;w&M?teGMqeSY@MlO zqiFNIhP)mq+CtG}n;$58PEo#cifd&}c#QWj<#DfCnI>k+KBiXk4Q~jAL9K0t{c3ee z7^}Q1YDLJGI#&Q9ELFi#@C4U+t>_$JvKqmzUE45XnDKwE4acxXp4L3lrE)lx=L?YD z-nJ;J${iJleA|LXP(|ha!F@|3DW#wtn$@Ev_u*q6swAl&y&dCjq=qK=s~*Z<9frqu zcXI-i*`zaTPU<52Q-C6`28bLK+aRwAA>L~Se~cT}wm~z+d&mULE9J>h{8IHfu@;P3 zGg<@pup7aYi!=r9AVSK}#@^xzp|;3PgfK>NAR8f4N=WBjgQ)Ifblat-#Ll0eW=u|@I4W}x8W2``Zi`&= ze@XW0l)*z;Gg334aUE;g@b#>@GXp8wr4UpKKQsf;o>>I+gj^|`^C_U9U{Xblrwe_**L2A0}uNd1fQJywOrwHy@29b2mX%!lV7 zCg=>ygQ)4)hP61NR#!L>i!~Xiht^kWeHeY=!qTHTm$@(H9!hTs_v6t;n4xqK4~!p; zh7pju#1TMZrRbdf8vtQ4%y2r2ND$KC3XrzMHTUjsPPsdjxgs&jcX}PO+VF>De=Z#q zjTtZ>nz^*M!jf;A-7TKHSJ`H`l2K%#;aFHw+x^ZrWE~5Gk`6); z4rOb;6$SR;V`hm|?*>J?_wlqR90ukzv5ySq7|D%5+2YIW{Z7ulbBP)lJ# za8P50yAd;Ni5sWh@J@GI;)dBBe>1ocQ>cz&VrgG*)k-^Uk!#vvuTB{}6gE&31!vH% ztga2;-zGvEh*2-ASL@moI_GmIQp{sMuSyBubRSRtUi~&bi?gB3rf&*(lxRgqrP)`2 z+Io_#%kfs9v=T*?^#2gBXsBAl7-xu(w$MuF>!-EQ) zR#ipgdjo0axg?)<{OyaOf7*@lz*LHSR2A^16xryR0xwHL8#T)H6b~xR*&{-;W5;^u=i%WIcebwlyT^nQ?Wg!ilZ39Sb6*7riS?6+1b%w}2h@f1lZz?0^dIceDO> z4}O^+cJga%*J!8VDh)mPIl||@ubTATuZGozY)O_W=!eBqE~Y$WhoDauEfiIW(=K>1 z=W8rxwaiRAMi@`|%gUPmTTc^KixeFwfXD7l&4U6D#&MQf1=Bn-oXIEMwI^d#siVbS z`kZ8IINC|{v@(O8f0~pL-?bgJp{hR3ldb*9s;Ty@*mAUc?fuH`i)@acNqVQ*pOhbm zk@u^TfT1)=+hMtB*;r2xG^hOK{nzu{LD ziD>_ef3**h4!y^+-t~GjWc>?0P`Yps*(jLoD#I= z=?Vq+o33ton{sgKuI`asH4EG$MA_}3dIrB54gloF@qdgejft|d zm>HAz_VW6`ypFRlYu9-W8R%1L7dZ^OZ$5BXl`L==i~#hgKbN3~mLNvNl0J#FXw;UX@Tt9!t+_Rey3LPm@=jHtzRuSs!Y;Vmh0_yxm_;V32R=)nkA|hBBe=fED}OHCxyuCzH}AIR zu0jFOJYzZC*$rSUX~z!wzIX2 zg990o+ECc(y?-?29Y9zB@I%gfeY}|T4m4Uqz<#eOO7kfkyOs9Ns&w`z?d;%-pR2E?SJ6El!!=w6LRHEAQy3?l1*@VcB{T+A;_bH6)^^oo_xN<5StF-VEcTh&Y~2{b zG$jisPg=*BPIHj^alGIA5zixiW{sRevDjxLg{9kp=c?q^oMcs}4P0_@qBL*m>0oQ> zX&yNj&8&wYmK2+I|%-$;M`)9mMRsF)zg`vV&;e^ zfMI>P;L(-HSegeGwf}i55qY`PndpynqoX}ueDMisdde{5T108&pod$7p4aRicU4cf zgE~l#sTtc*bS%7rMMwv7EdpDIQnHKhQ`T#CQhS3V^nc-Z%?kXv>l5$l6wgKEbP8Mg zh`Z@nFx5sQ&Hvy!7dEydM4v?SxQJ{otPrE2#Ikt%Wc1URTV3U7$to0 z_K!fM^we5)i$ zzQtup?ANVj=QmHDPW_uhK?*hEpiX{%+uJUaX#spI@62S>X1KS ze1G|x*47YTA*1sy~CFypDR8ff2A?_ zczh4|X`i2r@|Z*6uSz{XdC)b#(fBBQzoqXfU-(i>+w!Y^DeqaT#K%4V=j%VPPHLzV zC?`y`AvLR1N1=Fyg_X?({{EGkr0`R*&)<8CjPb&`;Nb#B2@|x@7acJz80Rm4yk6ce zzfid*Pl}M<@NbfZ)d=?Tzb+Gue^A~ib@}ZA&I=7bXqNil%fC?O16fW;2R;eIW;&%T z3S)^z7_W`1vU<6sPeQPMD9BUCl4omSy-3_lwP+efS-AswBuhGHA?6Mgg|<4N91uvd zv5hkM`6x-B*BOO$Suf+~-`4^4XzDOITL`8-U%XX zibON2eFrf^hG~HEY$&DWf7<{m$-&Q9OC~*@a)nMvhaMlt=)7^cxicW)3I?P8h$M#V zin=|Lq7*7R?+21d!+DZ|6H!L#J`LYT3?E}*Mf4t}N-CkObt9*w;ykD5CIsiBubd{^ zlsj}9EVkOI)X7s@zdb)GEuosbJW^~mPB3NfhEbJ*bu>6WHh`Hpe_O|2mI&P-=Cm$N z4${JD@Ht*9PBzh3S||l}M8E4e55JN@1dYC1Gko0YhXPA)Fq@Z%iElhZqc5W;E0TnF z%1ahY6N>bf>}a-(L#b>DtF?u|C%o1J#!7BjIgaC!tW8?95z-q7BQ2z4gBDy|c&v** zIs^o~I{@$aRPhc#f5RZi9luQA6 z-{;WZ14CAKGc(}{)!#A|Jz1w*KNy=y7Io>j@0Ud_s4hX~{ahVi&hyI%S<=4AFBG3Q zj{K664SqohkIUU~f3OsbQeEF``Mv-r6i~*&kxXJMKM#%$f9e5P7zhLAB^uW48e#ge zuJc4OWS9JH5@m~TJP}1oHi)uXIHyzUU8`0n4SQuh+mDX!M1VOyj6l`h=sqFcw{}BW zTb*@X3A&ypKb|Lxp}XX8lPp(!SKN!b)wii!mRH+aSZ7tpPR(_2^YLUg zh_?%w8-FI2)X5Lq`fh++Ne8_HOy@4=+I-mP7^~&F4@|oC1n42 z8ctQi1}nh|YoczXy!DQmY)1CMZr!>u7mq{Q9G6rCe;Rzvji~Dv)eLCOlf}2$=dFF7 z2eY?-0r4i5F*~(EjbJtn8)!x+AflZ6(}=3ix3Yhe_QBf@V#)Rf>+6Rr=uSjQb{U$5r|Jxp73fFLjF(%B)b6*srv&^KJZ9OS^Qp`-twf z_iTTG_5;$WwPly~G@*=vCC{6Ln(W=$iBM9qF;I0B#zXiVs2>}sjEE)Oo4i7Hgkj>9 zlsx3sNntgFL@Y>QjPcD6NbYU#*tDXEWqQg7e*~{>IY}d7$aYwD_H2QzPi{wP?PQ3Z z7u|~RM|#csdRsPEB#*lo=SgI!FS*?$(Pp>Un2|(M@{mO9g!X8hk|-r~)Q(6DcZqx{ z8#e<4*N&8B**KtOAwt=F&2}x%ER7NAj|>r!W}C=XJy>l=ohOnZzvOq5NLM`RiAYki ze_>^v#y4fnrE7hk7oQ$RUP;LYuiglp!@;oaUOHK=zRYT&HJxa0tT=hy zmk4b_5sIHaK|xA3pa>w8iv}7L+;zIU>uuYiwO?+NaI*l%UFz->YB_A91_r;GmtuEk zjKR&6ufwUu#Mqq;-RrWBr@3WhEGggQe>N6Zed3msY;YT`P&#N>tb(iK{$Q73!U_rl zNA&LD2Nwl<{NzpAoU7dzV)b8mF|W|C5q;;$(TzWd%>wq{kD3z+vLY*k4K= zWgX*+qszkaWB$ftmVFR51$nTTW#vRP4*O^gS)N3_)1iY179CEMifalJCB3Te_n4uDD6x<7SFMbLmlg>*|d|k!r`5OZ~z?F7HMPP zg2nY-2;rmg;1bI#Lvwfw2&d%Di0~BmBom}VFg8jH%FyB6IwqVI9g@egr)!czeVhz& zs!3CF-kPRpe(*-MIEdsy#h3%4TKK4B%b*sfl{QXaapsBraJJ>iz88MFe-id~)-LfT zErHuaD8=un=qH3o$>W`Jk2#gY@d+ATKD3YRbhK}U^lcA0B%f|GtK<@j%{GG)&Ido; zSZF#n4hH~@6OQ;8`5eoeU3TF=(&S#pB@nwU2H~8CiRGr_y#dKeuBx{+_atEW zwdn4nZP7n&vO&in-|Y%xC+NwW7k|(Qs1W3Mf?$zx75nzk`nC!yIwX%}PuBzorvewv zRFkG;;}Vi~*zKa$Y_iF*2Vo4_ra+N?harxOAPUd=v6B#Q>JrdRf8@}bC>%x;a-?L# zB3t9pQ$Sx~o`h~Eo|g)B`)=yN!1+*g-jXF=o4{C|U&kG-u4D%obQ`_*^8W=4YsnI? zU0^Ia!NyKKhLpTF>RHic1-GWOBn=0xpRE}szdxmA%FG3qOVK;+hP$kog!7oByNDW| zpA3XAY>WBY1Ix-Uf7v2jdz2DgM+?h4sxn2+V4EDptr%Z}cp0_Y#yW)stW2KM#-ui{ zjl!)-9w{2JC-e_-sp?F-Tx574YTYu=Ti5a#y+{h93&paPlsw_yN~8p6+b-()6i>9A zCCAF(@)sHy`sP_3>e^Qw%+sp;u$^wfj%lbmw z#HY4)5}Lj{cR#8=svCV%RC2!i*4}MtHTVJZ=~80-h3?Bes~lA#2^Eq``o<3Qq$E1& z=q~7VTR}vNjI7u1X%B+6#Td)lQop^_9V!MF+8gKj9Nth2CZy~hy({N|MBH>Ri!z$Fz+Kq*OXq;ISz z^_0}QbVukuBDQ%Ni^$)6EJ27F>f@Pjd8GNl@G2MaEA8KFa{{`yI)xWKIlvM)5yqoo zt15?sy2%QaTmKXXI(t)7cx}mD_w%j$~V2^*Dy6{D0_CLC+ee6uz$)z4r4@+W;f zZ$OiwHxrj8%`Pf`H9kHHb98cLVQmU{+U;CBb0fJC&iyMG-Ufux02+@f)dsGzugZ?j z-pqC&QPL*f;5M;;z8h~~1|kO(IZAX_Tv9^}8tAXl{dEJw!|w+;aQYt(MjQ+{=KOz$ z(+|4#onF7D*Z0Gpz8(Jf7d#kd5sZMtx7UM2W;NpBXqnW17VY8N^FJRr7n)vA^irHl zNiRd6ExqH{qXa`OfW8IzdNfL;_EOLb=<~_{?c3RhbT`It#bf*&dgb)eU;q8>uQVp; z#-uCpOV#o+*T50Cym-0QRM9*0GyQCPcS9HYC*>u@97`tFxq)`YWvjJ(ERP3){iaxu&aHCQq`n>PS5 zC8Zf4g8L3cNamE#V#7d&w_66zjMm3KmIYEX!_k@#H!X!sfHLsmh@xahNK_wg<61C^ zI~#JJV#F1Dx@(PC~XfNEfxOLsR?X#}&@ zX}yvpS2L#zlx6T!)qpni4~2P%V(Xtj&ogxrO6!cAc$yT+LPsJf5kbpZlqgZ7( zfSj0{TlMY-jibq21?4cf0|VpydR>TClqea0bsL>|ry#)GNoR}R_te=!v{dg(Xn-dk}d>@wu%BSkwr;>Njd}LepE{a!< zDeZjjd6nWL|I%yR{KCK8f{FCVu2m39I=(<;ZsTa2B0*etjz%QM@|;`&i9-{ePH;kh zTbzvrCY?oCN!Y>JgzU>F4GYme$c0J3Eycwg#jV8+;sJGt^skqZK4y5_7#`q$GOpAH zm5Z7~yid8w4n&@=@+e!Un#d1~1be7Hq9A0}gSmlQi%Wt&uRDLgUyCIqH&EjyzZPpq zQmk*k*+NNWB0T{5`K}h0>q71xCiXUeDG@kO=2O3(u4D~^j$hs%855@vTa5pVBOG`w z{*EapqJei=HMy>1wk(@D&odd2Yq=l74vbZ{3CSS@ix{~uh2xM1s2b656Mx}?hC(Q< z<=j6oCj-I39F0!{;#_Vg4-Iq1@`1cSZTR&@8R^+Ti3;9tlZNJ|K*GBBy(>b0#xa4k z`UfLwHZ&i|OX00%T3Ew3Fl)hYo%F4@sW;LlaNpVkW zsRyQVgA7pmng>|!w)mXk{m8(Gk@tL8Et)<_(4thGV{|1?)b5i^l8H63F|qAr!ijC$ zwmY^t@x-=m+qN~ab@PAUb=SK0Lx1Z&U2E5=eNNSW_U{>=7fsHEOp3Q`B6)j=WPozj zmnadXS~PH3P7GxgXiI+Iq@8X}Xg+s0T&c7ot*ozo)!B7srdSIaTYKCMa8|T4?t1I+ z+v6Q5DPU{D%{Cvon8mlL-hx5}PJ-yK*Im6I6tu^0^h z<5)Doh^8tSxl4euoJ;CD?S@Q%qjkfV2x-XsDXypT_}Llxx9(1!I%zeO{x@-W*PC@H z9A;tCk5VbxQyJcVXm{EKz)}OA3r?|HC<~;r5J%}I4L7S;we2LCPop7I)yCdJl16~a z#5~uSEXq`4GHnr`D(81XiS zIG#-_BzoTRF5{6{tR@fOJ1x<;&|1zMLE%z}e9uv3bKE@g=2b{*%Satj9dK-C=Rqfb zS3X+fD{OPDD(J{|295=W&@xwxu!h)nB9jqfRtl&qg8I2(avP#f7!e=PuX=?9J*;@{=BM?o$y$S z@WQhkRrpr*T-uaX=U{O`oit$uRbE?^xR5FkRJb4Y8BQ6u0FhdOK>ftuk{H?KAf&ux zn{{_LQRYbAAg8Xs@AZ4^j`|y03nB~4o(3H&6be)5`w0>^GOP)YykPA;Rhu5|bE?kM zPzKQV&oTm3_F_LzPlvdJoTVfxm=QQ_r!#AV84+*ec1X}478 zFmM8wr&T#pJ)Ue0d-stu?1iy>a1+_2C=5kBpZP-oH)_7Ebg~2LAFXq6^^E?lmQ@mv zg9@Wao@K5carxLR?-d&dADa^-@`L=>Who>hf-jq*z}d_t-*bI(JYH^$54bzd;q8Kz z2)w-+sFg2fFK-yN#vtu3*b=c3n5xn^hwZ->FFal1N;y(YDhO6fGk59zge=g&EhrG( zESbxgAaM+ti%S}wgL%7=VBVi}n^&ut=xux&hx%=K(-`t*^K9UzC=eILup&FBLrCe+ zs4PrE0Oc5Vkdukh_w3aBfH3hCFt3ACaaq1h_sBIWQlTpkNh6YJs5KKICW4zOt+Lpd zVKqf+P5F`++h((2*;bk{&A`YNbSc7xVi&0Gp9;y$Qx_OwXhc86utq^C+Y+;VuBiBz zK^Ox)QB;q@0{APg3_~BlD;JUMRn?vfrII^F0p;GFJrbx&HdMpvR`F2w#a$uY=;f^O z6nyt35*O2CdaxNYo6s*yv~UzhauD=is6;=0aeVF(DwGH?QWP~gFG@F4#qu=4GermG z1fy1Yts&`T=aVWY%X%BARkof2-o&bVdTc>HvC;#tC^QxLA!gFOU>|ylH23^$l5gZ6!74z8rjVG&16e0Udpj;lN&S(@?@mit=o? zYNZX)HCT!Gir3JFV!m%}lVCXTaQ8eVa#+s?f;nHe3Q}&67=qy{fqUS$IG{AnR2Iv4 z{8bF~fM4AUYxy%NP5(mWvwi>WorKj4n2cEA?CrUD;rt4&mfbBQc3j}?6d4BZOthr9 z;K;gWaGw)iWcv4u)1{t6utIWSm`CMQqQ*N?1%4%YtjHiiKr6NZuUNEB=#9*;S4<1z z*H`d=nv+$@6kA<%8y=_=Mg)O7ftgvpTj&6!kmg!c+Qt9|Pnf~g|Nl;oDzr?U@ zAY6&vtFY;^jV+CModG^6{Ll(g36%;mNtiIoUv|r8H-TVi7gkg{9xOuhpftOn)InSD zIsJP~L_#BBY1Q(Zs*Y=bbtqXQ(8EQfu%?)(k|NYkmQxegL-&_bknC?wn)s~GN|jA< zz0=9xtL=5w0E>%)w6e-1P&e?D{qm)e%#)wPQh3F zB{KB|C0R@jVDgt7%frI1=3q8vnos5lF>ZPWliSpkz~hC{dC$}W%|m~X$1BfvXv4axC@E^9IiXE zKtyB&NG?BAzWZ?)UoNmuMxapX4DN+T7GY5kluNV0;;F>~lw~1m&7GfIn5Y+bLdV8P z+ZLVqm8TK(a);$11h$$Uiu4Bp3-KVV*_-!Nml^_?puAzl&|W%1i00^wpe1qRSWeP2 zO;(EJA50Q;=%(OgwUaLUBo|VrJ&+dBu)L^PKf6n$GmecZ5Sxe7-`i;c_uxf#r7<;JzMw{S9P{YutpN(|Y zjt$+7P^sOEM0GOQm_}V^8};&G`jTD}JRZ$^?VIYf`68XhI4Kq$(z>nsh($TdR)f{@ zFG#DLaID~>bguzQ%EK;j4L~ziQ1H~Tqx7Bm*F*zfGYu7}b=Ryy^rP8dAN_4=cfqg< z!w1j#fH?)VvVDDC$CbMz=akI(=eMJv4>=_?rW_LeR7Ndte1wk42b{0|$f@1%`5+hA zHG08GTz(tdufBmfu~T_#Bf%N4(-`HYF>l*4p|yy|t&b}ps6`9){|XGg8g#y-1_@Q{ z5Gl;-|8?##|NlGTk?60TaK|h4&39o(U0*>wxaDt8Y%W`H1V5F{>9YFn2D&b{(czdV zDN97Z@y)~4k{Xj??R!QB3Dh?7v(?x?=~~Iy$bh5o0&DlK&5t-*U5RH+7xY_={GSt6 z(e5M}sB2AYg>bive=hb@Yd4>Oi?yMyO^y`wN?5Hl$AWE#tBt-QcYey9ZFo@GAUA$a z+Ob!OUefJX){p4R=O%^K{i2(Ut|ARit%vumtq%li6z%l-YAJ|4!zKqua3%V`)pjM_ zx?TDy9I$LYQ3QKc{2G@u^Or4+=_>w|^hxVK*I`71E?$pZ)_m|Rb7MIHGyJB-<5HiG z*}xmq=JQ8&ji3ja|Bu&02_(~8j!Y4QITmw=bAL1G8MlHj^Y*Qy-pt@0vy2UB41=Ez z8axc<%~x%^9#*el>!ZoQj)m^O6c&a`Bew=!!c6-r@^^*bFLqI?D30+843q&OY2a{L zdqQ{-vQ)b-JoYjBnwyCA+&uSX~WpYpimV6;!D)4nS!J zogq#(I`?N(plosoL{~epl!bLy#=%57V#A!E%ej3^;P^kBp*MpsBOwI|4)h1_iOax5 z$-f^h)T|oOOjDu4_FAyG66-Qq7AB7$oAH%;{v^9Fa=#lQLoI?X2&BwDdO;^z!=Cq-RGm0@kQpx7}AWDYVP6nrbL(^-;#|R@YrTfjF*q@Yw|KI z*wNjM8$C%{Ocw>OrgM7p$)E(gNbD9V1TiNf;y6haB!ZO!L`-w)>vc`8NSVd{SN{^W z1OND~isDNEW1R}iuvIJ{MMc7G5k;voc0?iS)h-m#LN`cX5=mJofmp@POzF^*i!P6c ztBfignMFDJ$6{eZxX`mgbaTP1m2*sy7|KD>2R*FX-yUkjOBNhPov@eV5F}Ire1Mch z!c%%34N$ld&@JXMFiPun^OEq_CP9{XTm1g%#?JEk)ua{ROmP>5`ocjAK18V*QO^Nd zM{N6DLv9$1c9EH!5Mgr&8tsYW5Sp2Nchx)S5K4_Pg98EcWCwLfq}wanK?o5OMjZss zByn-@c~-moCAuiiqNK?iEI#*;Bo%ILs$B=i4*>V0oQ&`d#??je&5ecl^-W5zz*Rr~ z+sWQ=X51CH_DbX(xMG~W^zk)H%bkfwG3-V6#n4$VK6ozE(5f5XBt4Ol#4C0eL%iZX z*HwgI^euIZ-XJ#)zS^Jo0P(p{$q!!8p{YcY7v%AsC(pnCd>8Qa)4HK9GL3D_57Fg{^xGSblP_w<=>WcMtW^Nt<~%%dm>LiteIvrp1cj0l30yL zNnrU?`qo4Cv{>!Ftd$i=6=|qEOG`r`3iAzu4F?ai1Q$Th#Fs5hMpgt5E8e2F_$8Y) z&z`-`3v}Xt`|INV%7OQn-?X2_9%rV)-~<#Ytj?MVdi2O5HDYeFkA7YTF6Uxgd84>Fa!?|GYE+;QdodjQm9 z5i#j-t3D7)7|-3zXjVOxT5bPbxwxEOnx@r+kfzirAhTThy*G38w}S zlAaa*GQv+K5{Y8Z!#MS!D$X_VLLQ{_-EV#Yv@pJM)u5by%OJqD++=ETxxx4KFD8 zZ^Zk`2gg3!XhAfv&}5BA7gjN}y04%m zWDn-ycbB%xLM%JQN6=>T&A_yvTRy`LFrksQ#8UFBvdTeb#uShGfO^r7l?pw$Nal@eH&;j#ZinFR!%K~W)ULTb?k3C;-%`nHeJPRW1Minf+@IG9W>7sc$2Q$ae&C4PSL3ED#UwgKa{jJ;?_5%*7?$DS1vd0sZ*}jPQ_Vbm7L_NjrBz0g3q$XhRtI`)NA8h=#SgEpV$Vq zfA$9YAa}G=Tj!CdV%3!Q@+D`c+zk3Hq%u1sui3Uv(0J1wOqL%tMw1FG7b$Mx9t- zK+nG0tR246oxNyVmD^Z`A{*FR4(qDSN^5@+f1C;>z{wn=Y{>@hoL_v6DKqmM!?^N+ zqWpzk^w4UNgoY6s)xCNmM8qB3Ithsu0(?^QjRqDxk+GI1kL^gfJdYxqaK0ulZyyIE zs3fjpl>J)NY_FksG(jtEY@Pw9h0S<$VHGe5P9CHa`8=c0g~L?n$wBGqc_eNqZ&uXe z-w=~V<09zwLnRa+7Enh-c&)8HztkuJsXEK5%)zwMF=%Rj=uoyhB`GT zNniX)qr?}Zr7jGQoRA#vDl+MDDZcla5z2r+cMh)jfe+JC@VY~W51?MA5I2#1m`rnO4d5p#O_7D0ollOa;0NV8AyiyExG-uk9Q zW>j($!MJ0N6E7*+m0$0qg~s<;n59d zYS}~FIMkCTBiIzDTo;ae)3B{vS#(7qIpyevC4sLJOafr%zxv93zX^*P!dKskGF4tiKWt`B!+PI< zSBiL5)iR|$jru1!UULpYdJvpUaQhE^`~1Q7qvAMT`vI+NNklMiEwj<@m4+tppKdMj zaT_ae*kLMi%M$#Ws#u?tE3{kh;O#-DKzK488mI`f6&Z6 z@2X!zzA?6kcuNC``$G}3&f3&FD>g2kT6V+^XkW zkp_t}QQ+E7RW^LI=6KN{B&C(zffPHG--*59>>9y}Ri=_xX`HRGd-EKoWyTDVT(0q? zizh>iMNowN=>$M+<$Z=`mqT&1td%BA26_LJ{g~p}dKt%Jz~y@SeWQ=AWuV;@`Phb( zz7j+fkYyCf(_ka|*JpgT6t;^4bbPePqIA9a1E(;>h_+B7lD0rljSvRFU`#=QBF~wU2^T@(xFY_ALf9tI4qIEj_OP-~ zLzdp|6aJXnZxfLTK0JO0=cG|lSepO2S0I+u{@z|9J^N|l=;25eiuAcg$A7%+y85Bj zc)3QP)426HVk6^LmZ7pXc4Sh1Wp?qfA0%M={&4frWUFA2e-XtN3(R7!;$C>Z)KAHZ za#H0Ss}^Ks;~pz)nysQ<=e8Iot{4f6i`{WPIaU|q` z9 zA%N9Y1MnnUiX2XRzz<3R6}?Cgxn1=nDOahqm^v6HzDd8}HONC+FoED}v$(z+FQOa@ zjS9w4GGgbObCDkS0xHGjG@)Z(s&-&II?bEPzIF7%jB^8x|vo991lT|hR^n8l=fX`1RJXig@^Dm~)XDybgK z;Mfrg)`P^i+(C&Z`uzG;7%Lm?go@m`COg|HoytQF4N{|f7qRbDtDvCk!8r{D!v)e7 z`NzQEv3wAy;$uxWrARTpja|65>+EsVf(5&%9QXT#z2Tcu%v9;cB1GquTdkvY7?|_U zE#Q*o%`p{T!Y$GaHMS4s{=JM--M1i&08=5Ey1{yoQ04+yPnY@<3HNZLHM~_hf<>=6MzIcjm5%i z!sDE~2A?qZUVb}bdu4f0&&4b%|6WtA7o@uyMaXiM^~|>SmuQU}zS-08pQ^4WZz}A5 zUQN$xJD6Js_k)aR^-~C2x$=R8C8}{i5`r%bh!V8 z`j%6N-~6rkYbd}{558*IK0KQYjgB6=Xy7P@E60jfpY73XV7%tf#1v?-L4~5&Y_I~8 z(H5-Ft5*|-C+)yy?Lf{Se)zaDKI1kh`GV%kwnzag# zA+}S@ckVv9FwwYmPakC^T%Qth#%M)YHP|ANIm9c%#UjsMtqt3(!>8W1We3-B7XQ~rd(awe%Qri(@=SwT3e5;&%VjKIu{tRS6+#n;(w{vX!1SCx>oqF z#nE-i(L)#%ee5DU4aRp5L=jVHvrNYHq~hpn2XIR-m)Xc+ttv3^1^SG@yu4PKHT9RT z`^(ql%Pgn%q7naU{Jc)Ph$dO>Su_&4l&I)Vt+<6tJyxubfYU~p0$kzJ6Ci>y1D8a5 z453;rp$rHMn=x8ma5LB9EFEjR7bJIhqG%hotm`)Ib1M14xgJu*Be02d$kx`}Gnb>J z4>ac~_d(o>6dh~-D$4cx!9B=-UY35s^`kygsnVN4g=lwu^($DaR_14Ob#yDLD%4Hq zvQ{9Sg);{+>fH9_0S(@K8m0CYS+%AVWVcy#4P+Msq|Vrk0t?8FZhQ*{`6|Q^arc@& z9Pw+HW<;XO_W9oe?)4?;19;IYmP<(f@~h#$4S?4tvW2#5b?v&%*HfC`HhD&Jd1{!r zqTjL`Z=R|Fds$~fIYg~e_9R_h=oQa-kBO+1hT-`oU)g3C$aCS1&(M;!VrSwD`q8r* z{Iqy*&_2GFqFTq~C?oQo>_dH4b^w)ay6kNtPHh}c|6msHpS8IEtuR@DV9RyOEv+!Y z|HYbXeU1ff!UIm>yJjtmYoX2EAnI?8G+JIPmfi&QjQkPbPEsRTeGaI^>s-IHU_D+O4%)<;Fl!4E=41c8c-2s`QEV`?IUFC*dq_mX;rN!n-jty2i)&i)m-+V--}@YSb9n zS4GhMRCW-<{p&%HaN_g79iId3p52$;rB}I$qOitbkuAW+h=1a0(MUMZ?t7Kp?%VAr zRYQLhge!3Q^tDpF%wrB+G4U@6jfkaID1j~!Iku2~Zn=pOFbe9RKE1v@(mc7T;f`yq{H<1XtXdqb*NIpny@h z-g~8{tql6dFW>rJ;^N;9x84Ae?|)&~FICt-6|LMD>D7e#AD+P;ZD2tY5{Dn% zk><9iGH!LV;#KG?DxMp|OUvT_R^92AsrXDa-mPIY9;SB?zkslLtg5sT_ZB zE&j(GmP}$?7_j?thn1B0;X!s%9=_=P!wRV$MXCy^>QenQI zf9$e+fo<+sCT_I7(w$rGE{Qn#j7#L5iqa;EltQ7vt#fp*!vrn)57sMV-OVOcbOXbm zhAO)*^$z)HsjG!@r~{^>Lf`yklkJ~wDogH`W*jQ4c;w+#HaYZ}Cd%$EY1Mf_Nh;V; zI2!i9VF6g)^5`0SMic~n_Ieq_R9Q1Gllh@>3^52idlp^Y9iLl>vJB9z@f4BQ1zp#4 zB{hAM;~^>RjvG`fOsQ4X<}bnwnkOY|!r^qkJUYMfCmHe=Nq_nKNI4`*kFt)>@VIS> zm>8?#x*-)9ULyNuB-g3rdKJmEjJ_aV*YmsQ8=$kQZ*um%0_HDI+ZyKhA}dS-C&}&% zCE#jbYak|vj7u^k_@AFFLd<-l8xuF~I4Cg+~tKCD&wA z035s*{LOtsFFH220B=Aa-`HZY$|VQC-Eu@6BxY)-pU?qW6zQ?+KaXtl76EB9P2#mh zI)Rqsk!dr{!C#noITS^;;P%?geG~4W`Ke$_hH)$`M`l-|s?PfD{>*jp#S_E+seD~6 ze+Vd)#@7JCk^tug!uo0RPg=ambCgfdIg zc2uG4Q>xY*Ps-Y4Q}gXgE;02su0Tw8%^3I$og2r2b01TeXzJ+i!urdJF^Az6QmlNH zqk5pGJ_i+obbBRB3jr4461x(-CCrM>Wfn}8be`KS35LKFT8QO8A3AilShiG4Kn2>o zf8IL9S-@bd57XjQYTVDNkakchuAN;QbFEmbL4-Q}%%_#pw6t4n)Xc$NnXr;OuWTGT z22L7Q2;}g}5TWe!EOG&p_bjbGxi|4|x#q`5pUrW^FIMX8LC0O#WLm>WmCfHvJXB5E zQjGGw4iE62MGw+#WN+;Apzi;^u_zzy!$*&qY>ZlNlkgtvN!A3qPheD}B zoi%sSM4=Fdl`x-?l-7ju>)-ut_b~pvFEM)?M%|$E`V<69S*Lj=nRGLv)_U}+g!hv{ zs&Ahqn=dNa<|b?t#cY!`CC14NEWpXR8o*lfqW=o}!F2h@%+P$RE^Q(ONz9~r_ZfK}K^L&`rIvE|hkz>*Lv(&eq=I|Lx+n{6D zvGU4$8)Qs*yBQPQ3uCin4wy(24RgCZ+=QpEB0&xfo6*TkV-6k~P!@+}8rh8R5{bR0 zDM-2;;LL{!oZ#$7qmEPh9vFLT&oI=DnI|rzaI2XHfyuo#R%y)42$I7yTj-T{vEdlt zbuKn#(EJ8>ekA*}3VU=Vvw=Z4}rDJ){ zqCKU(p#+MXnW4cmRw|QPm(_D{+V++cCrLAfC&kFO28fITnd~1=?a!nL_A{J8sC#yy zu#w1q4RW&f?D-m|^qe%G(pj2aY%x)WupHI#am?vaf3SUP2HJ4U>s=8$(105U7D9Bo-3?eYh2hX~0233phh`ldz=@Mb6V)ND3LEi-o4A-qOot0@({XgB_R^uBw| zZdj8t^l5v|Hg;71>)kr(F)UDCV88c)JFH%P(?kB|g_=kmr8E9Dwohdrh9jI#@F6e( zi4m1W;fzWn;w}vuN2QOg_HgI-t=^NxQ}4)nz(P5|{5@mo%c<{Quo;vKi3ZjRDCUaT zf-5Nc#{gsh`SOWbGfh-{SUb4NnL=M8m~2XF4jV}k2ipXbHQw=*7ys{3h;; z7B+|0X_NoMJWkI2TR}y_<)JP`wLz!O0XEicKqfAO(;LNg+cd)FzV1W4Ta*?wC`ROY z7|0wj_?r&>b|!qQvB-#(p}rJ+=;&eJu3PZp3UnYxuyLd0GNsVms?AI_!(hpEAY09u z{_s%<6Hr^*1@misKLvLkTA+G%x?UaSzKCRUS%q&*=1hQJoMNN?l6?xLyc>V_p6Tk? zaYL^-Bg46j(VAtX`JN?3?3~wHx*^%q*O>+s6PQ2PkwptX4#j*hBoBKVa?Na>V)B$# z5`^XcxNOTjn6cp{i0e96fu~1Dz-id6oNskcbIGf6YOrxDUx$rJ@w_kQ;>|(K{VRez z+xR}B;Qi|=13o}z0EYz2;Hd@nhW2(Eg%dB$Dc(~Z&XhZ)^{nOoMu2}oTt{Y?lg0$F zp7MI?n@fzn=?^l?G+a-Vdpb5iC8ILTeUF7d|_4tmlqAInT%mE z9Y9X1om1p5AOi$V6_fR~CX5A-J+e*5QdcJC+6Q*+tJJqMc<5=X#X$Y8U+=YO^hpr4w5%`5n9Ssk3xxi>% zHWp?E^zA1pm~a{i{dqFj(0{D|M?&3wVry_ml7&6wSYJU&5P;_^yZ0-5)Bd!{I~yPK z%HYPP_T+-%oX#X#d6&?iAkqUzst-A#hoAfNgJl@MY}|B4jd#rC;P4_6x9irj{>Wov zt_RW@4Hk*0gVGYMKxlZeA14jL#ge4h>*J~I6BPDE-Z2F^gdR2IM4G1~@ zpqWCIVJR&oZyUGX&AYopo!gh0ul-b^qyMex`sn{LGNRcr(@9f?PRr6HWk#`P*P424 zWqNiGwzb;WPp_PDtEmyA5R~?>ruwwg8f*M{o8V<9?TrwPAo$y9n1 zt9~7*UALXzV2{s?wcIyv;Z1m2deuf}8nWLj=4nJgfoJSeT%kF$>k-p!=549|wr-0% zS4o4iV?e*;p~UdDtCNY4aNTMPAg=3I&ZMry0GoaO0!bsT<~cc~5D7D*hV%$|X8Z#x?1eSbKMexaY}q!|90s5^0$)$FhU7HD3oaTNJC z78C=Ny9oo%@7$h|dAZ_$<$>#lrF(|BwEz)6KzzY4q?!XN;)hl|`}zHEB~Ozwis5yR z-u1+Z)J&&ZKTS`+4#!#cA70MdD$(?m1bH8R-Gxq=p6(by!QzS7Tn^JwB+hStKtW| zDp~Hb*Zod<;wwa&ZYWO*oWd~H@mop#M##O1?B3OGJi93ZER z2*f+UDIMKebwFUD#5tRtsyJ#ixVt4!(F(G7>Nv;D$`ilxpjHn~VrbresHHGkb8B2_ z?>BEtBf+J8aiC(!g#Ng$tqS?&qzzb8I!!OONISH0rHVD=$7UYAAA^K2X-UK`r)DoV zi&sY1$?81}IO)&^xX~86#FPH=(Sb1+e>xvynEFCJ8l9pJ^jc`gn`a8U)0gp!;LTZ) z5pZi&BcF?`>vM{(N4a{g%m|=lOf@B{(vC#6LuqCehQx9?oj1m@O1G5|E&|WYec2jd z1o~_-6-|a|yBh1lQ!@jxuiqIf!-g=4ws!g&7|sJ|x`>Aq?6^75Ssu{W$pV#H3`n>@ z>4|AgW;nie^sBIcCTBpEULLrnXY(Jh-lH&L!!XU^?ncIY@8E`AJ&~#H3KMoU+vIiw{^j|7Y={ys$ z!dNF?jaDe@Ck?%yfw?Y2;Q7r=FnpzzB?Hci#}`gjSLDDN$@yqzkvvb#k1VmrWYQ=Q<<(L>5xD54{=V3>S|J!cg*FHmh)~V1N>?SHvUG9% zT&#Q!#%NYk?d>AEd*F!?5`nH6H-^-wLL(l9K|)Z0!y&oZB$L2e6pu*54{ ziY`ih>Q4!Na={%O{YTdtz%aZVxNx@(zXIaDO96wws~=K!uq zuO~{FefC<6Bawc%D6&k&-DZZ+J6J6It+{?fT0%$yTAh5@k9)hoAIp1Y4 zt4_aNAKVrhHj6F}KBM9-&TJa3{cX{p83?xzRTA4R8P_z1JdESxKAKHRb+@qqpfaO; z=fR0)oof4Lq2dO;1QSZP9?%@jX=r1o9T?f{{)>{^zW@bKitV$0*6`JZ=&#PODCXe? zt~mkZ5gv}cE-<*}wUK-k!TBZ#H!##wF@0>n2U$7eXmg0ZE;0<#jN+1nu!(9nQ^6aK zEcg8Jcag%W1|J;lP;1k_6$T3wtz1bKVeA9Ru?1Ao7Xjjh2mU6a`$+S2->^gH;d5C3 z=Gh#duQ6e^VUMSttrPZ|Fqwn=4n8>|7MUh4Q4P#%6A%EPc4${LK-k<>F^*(g@wZ{( z=>7$Oq;uZ4p?}3ePoW~@zc}ET2VrU&UTSB?kSiOi2cg!v1}!PdMA*yd@K*{^3Gy*$ zCV^`IfxO;M#ePDM5g8tKAT07KX7jsv(h&-l48MbS-9GK;J&`X3CMrG^A3hZuW*92{ zs;`01JytDv0gPh-;f--PU2p-@|ye^vP^mdw&JCQ;z` za^ue8*oD~|neL4+^MGq)v>{uW%aBHxRu42Q&l-W6%7)8t%X2$PJLq!BPuPpR9Hmv> zLhIVISy~(`*9Pg5%Iwj_)mD&kRhN$07agGYK(op`drtTT|B{c^l^+d@?t5nH7Jb(o zNpA`jn*Q3z*u!~4NB8GZ+l^-P>Y@9(yArP}Qf=h?7@gvF;a~spd}+lJ`LHfCe#IvK z&kOpFFfcjn1~=&)S4+}4Jmqz;m62zj;}Y&-Wyt5{8_z9^ouyI#PhgD07%e4gGPyuO4snrx;gLmK~o zvqD~4Y&8Il=usw)?2s`Sr<6(@Dj!hWB7253OV%ZLfyvyg1wA2zUWfOMB8y7BY zfs*o1ikSegh;`#RXze%kNd`f>310Onp}6k1x?GgorsQ;Vj{y# zj|wbxM462p!15U1K96O8AWD7JZ~yx@g%;8&!`##k6DsZAFi@p35!!kKYs$h2^c9tj1PXQWe$;g;7ARAxq{i z$vM>D5y@l75oh}EE}cH4*L-HqiX7e@Ue=brtoM4zZNUP5b9j66Bc~IN7ZvG=frZQg zOHH3%HRvK$svQ{(!XEDL_;(4}*--6#pdJ|8&m-J4Q$J22Ufwf&ijI0yX46C3o|wF* z@-#a3pSyHFOBi~<$i5p;IEb0SZ~Mw1u0l_?e0lEC$@}w3L`$Qh(gjS9F_VXCx%oIG z+S$Q0%;{qdqC-^HAEO0d{_}2r%E%gJA;}0KPaWNm^9Y`ui;=CJ?B>|aG!dr_kN2eY zcJs)}M(%{Gpi3ry=2T>w!W@mPjI^VhO5xpQ!3H)`2k)uZsUj!$c$~YS{lnOP2HEBp z`t&r*5z#mC@`C;uZtXRuWR|!*(8ub*O*Ye;g44oGrqFd?_V4Y_h;}5%R>Rz6yFw2D zjTYDHC(LgIpDH_m_a4B`?xcGqi*u-?dG431+*XT2>G>kF&qYFVp6V8<67s#D6)Dd> zf&nqQ-QT){mq)OPHT&-~gtfYc1og4h_5K=rkTIHfUIsUU+XrV+&&0yd3!r(x`4tD5 z{O#FTCax79-Y!~J7*IWu7>7Xw3(c zY0jM3eluD<6Sqq4FIDbRajj((w-7R|JF2{fGMn$Dz=`~GCE0*qB_6G3%6VfY>;+X+ zgb5e=8z>+o_58C^WRla*RYSq}=XD$#h>#Om;Pj&@|FtGrYQU0PJuqeedEGzyxB%1% zT7t~9NT4=`EsDfpsy|u31&iaXgq@s_h}tqrJ1*abfPrkL7MCBITtZjYSiywKdj)ij zG_rOyX|gB2SK$1X#f$x*xFw6+U%EOs+jat_wCR4Dsr}>Awh}OzxMsBKPlXJD#;w#k z){N|tB`x^nas`cR6tys~wt#wNZ39q3O8L`iAZ@YgP5vVp@n$9)WH#WLj)c(6tt7Xz z5Jn?;+*@Wmu&yqhQ>niA$!nBJB$xxg{OL}EmEcg3joa@{i`7Z5>YnI?Yj~J4JNZ>d z^)X*$^sh7+f;Po6*&-}Rkfx2^eeP*Y${2-8a2SbdTu6Wh?cXrbOzB`>Qvr52tjpMU zLAVJUYKa|_jYlqNaKZSamsjcZY3)gs{0hO6-<5y zkEUb(daHJjS?QOmlXoGbNfn0oo|ZcFtoJ(8Y=d!#vG{#a{`9AJFbLErgyA-X!8Nd; z89yDW-nI>~B!&m1%k9Vz^ECD7`S_=ei`=E}a+wngPp*u^9U}@?rGSn$Ts>Hso6YIJ zGHa-4l&&z zdJ>oMAy8aabY#MWD*zujUU-XFdJh+Y>AG~+|plfR+w{!&?GnF=~O zjFN#Hi4sqpVt~fUXYUp5?4=woT{^$rav0Q9TFBUWlztewYt(yXo8lT-HG|&-+)ky;9kM6_{VPe@ z`#8;^bz4e{t!ai1B#HdDb%tZ#os>1fXM_wgpn@p}Aggh7=;2*%~NVd_3mSCcVL?1o(hq{ zjqcL=ggtM!ug1nAzeF1{izXI;C3xX$9bN*{J&z}E&bL|>v!g?;mkyyVVG<%IGf0~X z*(yBTk>bx3ujPefTg_!V^i{M~h60MqBXp<15)l4y&9oiFgJhF`KO@^>r8eLdmX>%! zjV7)_;>%Oh-{Xz`aPq+c!FoA1SkOgE=ZZ2LmI@PGIc&!JC8OvFw71bf16AFWqRdAp zEva%PP*gzzt8C9~TC?<5p7M@x(ju5Yu`aE}oPA*fuD$Nm=69EhGy6Mi2;T0G7StUz zn3$Y6!+`DHik}WM9AT6J^Ca@fO_|Nr%|&=*>k7Qc;}KU57Es}ba9q{L05mGCCD{MwyedQAMY|MXD&%Lb|iO1 zFmLA(modI>Om;U6yyG>ko*O>o@fF<;2P_CNPvo5Dh+Ln(<2SXzINJOTGSF0^yr$GV z*0VqOm*8C-z7I#u)gBzOWmAYkW&>W|*+))~Q=I6+bWFdLgW|OYz&b+qWkJ&$`fTAE zM8P9)%~!ZU;_0t4aQ+*0;f1hoH}6AIjOGnNzId@=w8qSo_wJtFsp`0cUr}0sGJox} zxQK4Bp0wD``obXS{?|itK-Y~*j)0U`el`fL$J+157ndENgk9GZo zOM2%#8{Q^H@~X8S(CkhNqMYlExs+VKoAuK>Z#@G*mIa8O-RhbSaj~9#4=C>jerjoXD6y=i7KA6gQ<%71Mkih-VwK z@qnsgz|T6&U?&9W8xo6{TOB6c zNVadv!1i^+$bMB-^1rnj;vd7+9tbr;l6>g#IfD{zAlzlQMwrM?A$q0|{ca1SUL^d6 zo8_2Bx((4r@anZYh^l8oxM}RXd|Ax#F~QGQj@%dod5erKHkh2a+v|F(e8SkPUtmK@ zcKrs@%m7J5AgPKZxhBkL2K>mAN4F!zz|_jI{nUUSgo7Vl(|LV3;Zpp#rK#f~2UoNN zyhwoD=60_NKNDWWu1UjG0!wfxN2m-JX6@CIUdEd}Dz^i$a%jjr9NxF!evCr?rvh1J zL06V~X>v8DoaEB!UUhweEKM1D<#A_yqW?hlqF3+@*ibgrGs#-v#uAy#hklzGDYotV zp-fcBRTz7_Yx}L%QKN)mnxpsMkN`}a{uWrY&^C;gYvM3_XlG~?%zw}`4O>rU;cwZyY+p`nys!t zhm0}%07Sdsm@b|nJGJ5}w9*}W_DJR2!SLmCJ1CRWyA|k;ZFtw^b3gseiU4g9C&S$A zD2=CwZra$}W%z;6?Wn_daQzFl9naVT6vm1N$`x-^{t!T9HV7P<5EWvJGVY$VJcRg0 zJ5B+9;sqX!3`9oZ<#`i{JKTBC!PWmb(OIe8&-?Wz!giFDKaAs1OHVRc=~!k8Qw6Jdk%wR-vvOIx+->A> zPhxpr>g@HOyOZDXF1xb%z@$$C1IRyp!!R$lKbeWu9`96 z=eV});aXGLSYuq84oNhNcqg#Fm-D3#CsCv%WaZ_@&3Su{@~Xm_nF-+i;z zJn+GnTRIel;nLZb3Z>{yv&FQ%N-t3XbQBe)x~_`eH(Z-ZEIp4Hs80A@47B1_pMDp~ z`cp2cl1nsG%U<_OZHg&#fMn@WR;zOf;!Sc_&mK!D>Ed-<_iK@80&S9wC$}|nwHEB( zB0pOuNLMPjUIMp4C8X=B#*tk{XgRGeb>UVYZ%fyno~UfN*m0FhKE4;4a#`!ybc1R0 z`NBLcU6?+0WZX@h4s*x!t&&K2Vj#=dU$soK`^PE@czQleX5mfL=6dRy%(Z6wVF+-THT`+O@k#qfdUHB39}AutyS?O0g49F+i&Qj3>6y&M8ODgSF1 ztgWLCd+{Fn^;ZvH$nHL;d%9QVE!|Gks$#`aP|a7zSF~$jh#a;Ag}qMNN*VmkO&^}% zD15JuymG>TavN;v+iIz&+X_@^SAifk;za&{pkv~^)ys!r8_v#hpj4#hiX1Z5W#O<= zFANEoB?;x3g$6%h`u9O13ysYyB->rr5pC!?cI|&dluS)6EAS`)u@ z=crnJQpb=2e{R)nP~BJUT6|;+`F3lVc;&Uk-?BOAMG^?8)1!8mu@^zM=?L9eFXA93 z0+x?G57mghq>`oOx1Q+~i=pWFWsYT^K?0A7GxCayD;R@4jWSKV`09IJ%N}T$L~ETs zVWz<|F%-%fsF`SMqKGMEKC6{xYw?O8juO>ynrpj0RN!*T6}x z`?X-UF|%#f*v=6eS>S=?X!cTyNE!XBr)b}A&IHWrqR!^a`-OxCd~<=LOk$HFCRMgF zsHtJTuEFpXJ7gMf@Q)3qF$OP2^<+)w3=13y8i}njQ@bN2ktWGjv&i}Uj}TGC@l+{Miw?uHja933ELJ718Kh4;=*m)8 z(vM5@4Rj+N3sbKXGNsEslZ5ls7{<(%F+>6@ZG5(~+!XEkxG}zRa2sJN;Cfc%x?Kb& z%cuh|Ulf^UD&u%QEWw>+6<`|41;Is6PJ1xWj3k7UM$)eG%yiKF%ZPV%qQJ+<4kEnk z2h-SZjc!(8rKSHuHocZ-^a(&)M)669g}&oz z1*ADH6wY;5#g1Q-gh_*DOa?YjXd%H(%Fr7yGLBWZ+8>sULO^#}jZS%l zr@17Kk1SMf(h2raSr6<$chl@%?zg#~q1|nk5Fc4$p>V&zvPbavqoLaYSoWDFFfSf} zn{qBtWlf7-frZ$tZ9R$(Hne{Sd4$u<-UcBxKN>?g z{(^ye3}Rlmutv7W2@v^g%r(Iwd&` zNn$p-oKUc0@HSL)revMP27$LpzP$OQ37*mFG~2o4t%3BXcC3B&`gOKF*k z(X@&|#5s;KVsqFQe+P(`N@>6-Fid7ww2&l*Its-?4tJt9mk;1mv-ySE#s%}8fh|k4 z2frHn{1$Vq0bUrbL3n8M9uCxc3X_8S)T73vBQ24BhNRXrcNjs3Bo3y(pOm5PRW1tWS z8F++7u5q|i7AC=rV@7*IXjk=o*Y1;M13j)DMJ9yJmrxGlhoE&m2Y~E_uc6}zybDgiy3A- z5`6!m;m!J_9`3N)pN$d_?uB(i1zd$S;(I%x9D{Y!kj9Cy(61vF8l8FPHm!ry?zNTw zyM&6Ev1Y)M+BAV$d8I3Lc*2q;df5_<)eL2l>x5?v2%R}UZ-2g>HM0AJ>fI?hBWZE+ zitydKa4FT~4|3Nu;#m|J-VPXt>hJ)I1cETdY-8%tD&x(Tr5q<9vZR_T+GvEPnrVVX zB33a9HDy2?*|xAqCTxM-s|gSG)|wZ)F&(>UHm<#E>!5S;EF?8UsL;GUISRyx5(SA7R_sD1exg# zi*OS&x~j}_C9DH}QBX2u^&C7;k3fAkg-#4RyXz3d?10n^&tu}5skKS8NSQ{Z+M z=$gY2b!mJ4onUnL+a?eY+ue(qYXR)HyY9D?N(T>rcpI&~^W!rTG=^gzUo?_ZcQG_b zzk`M=h66G9K3aAB4qIk@e5OWEk8|ZG<-bdYp~Vf*XyjK#6CFY=JRO8^#O*xa9=;Kj zs0K&V5t5Xw0em$2+St=6lLhk1S+ zpYd0rxNs3+=JU2QR29M3c^Du$gwuaql*2>4z)rtDyNXD86E!o#SRrmuR-@l+iDWpu z-gW7u=3ZDAb5rWH9rWf?uMEuJjc$-x0jYt|^wJtyR4G_wTWJAwzeas~7E+NG^5C*> zDd2uNn#&fVZ&2Af>0fvY=7@;5c-Pxr?($TCX(E-F6^h2sJ)>QY-swmhL;5xm(4$h0 zei8;%vm9e3=He4X!ItEE?))L!OPz&gQ8FCOb(@n4>RRA%GpLf(mH$AT$R9{i%G&`Ps)fv^vXU6YLQYWeT=2ihM%R9v z@wG#X>d5hT;ThsewoIS!r0*FU^&IBra#LNn^o`GR?2B6tx2*8q5O*YTb!AR)Hm8uy3|vShyj?dLc7rcdjJqLe zw-GKQMtrS5I){h$lA%YK8`XLSG~?8>Ypa zrmEw?f${fzSwS#}SRx~!t@|tD;aA2%i7Wix0|kBs9_vA$yWLGd(-p^6K;dl!M1paPp0?5c;k*So6p{_nQX3Z z1mbITMSzptYA`25I`4<-C73g&Cb++n7gC79wEf2Gw{);&?r1~U@qPwQPB z;R1>3NNiComgc}?XAw53+4U7Oh}J}oDbMS+b<(yJw@#Y-_~LM~*9?`U=r@rd*&3!R zf@Hjdwb=@Wc!w<5z+5V^9-PfoHQO!$WHVWQa&bnyJb(;w#MEmerhdEAM(1CTOyvZV zvC<{vum~^PcXYBeW;0iBY%Lj0)vYqB0e2lKG04DRizi zs!(IY^}~bpam2^ZdY-|zh2*1HpwM?~$n_!>@c42)dUcw*nXl>G_spZ|b`fFM={O=I z#ttY*yw6$q9+mF#l^#rKp~$8;>z7A7!ybm2MSex z^j0i>Lr<`m7&zZZ)g};U0@c4b?M#g)5Jv~-&p#wF5wU7=V+Qz`Zz^Mh#j|oN+UI~T z?PDw$Ai9`fGh7XFac6`I@a~H6#|v;A1>gBSFuQ@KIJ|EQTIPJ*5X!)E*KhiG_Eq6W zJ+kxjTIgM7yt^Y5^5EE>XZz?%Rd zS83?v2pK~z9m|F6rWNkb75XWEV|yLyh=Z)Mu1O3u@M%1%B~Kx7S91Np#H8I23G2_s0ZJK{baiSLg$>*0*Wf$JuBJa z1~DrrbxU}-ud4vC=L7HUoyNNb#voBaf}!Bu?Vq@&ubSI(Wu;-+5q;s{Po#qe4^`-#i1^W)?s>F=x*c=r%XKgXWF7EuS)=&Vv`lE>=d3G~Cc`HKzRv>?PgSk+DS9R@nwGdnP_FC_P%m%QoC*celE|~(WV<*$3 zv{_^bXHLd>@%UwGsO7nj!d3(ow~i}w-BYFX1i^MV?`DabmQ{ILsSx{u{Dqjthi?y2 zGMldsTl0EDd1x_TX0G!^J0hCLmsiHADwQ(rRbQ}uDu+q@ePIP)rW4kjBk3;579Hhu zOD|Lf9qrW25XtYIL|I>$dC|Nb(HvG9KFE=efy_CMKl*#0fd3>c&s)O7olwqBzhx#w75FTrYO8n4>5hS+|WF%pRqX4-7=risOUp)ZltW2kg%B@K^ONp<k1?86p7xuzP)2MtTaFv2Ck&#W7Zj@^z3+G6hI19z(L{>7=6@A}uBA5(^_v9k}VofC$kZZ+# z71lYohyV3@i&4@igPP|EO&r1!&eV4M2;JVV&;JC4*@NTw&GnZZJ6TYql?W58KX4lt zLviSG^Yqg5eNMZ1rwRHD<2%>Oh#1)Rd$W)7a?Uvwlq&Gi?p+tPKy_Z&Vbgw-zik#u zYZidAID<68!&uwJ4Btjljho=+>esi2925+TDcTbj#$AdMHPrZXs+mVA&Hy4!m3leo z7=y@3eg)j~1ysc-%QJ^%25eNcOvJ;09BxzdVm*=D)?z1manH z^1(`=D^d^ssQOT2m%u9Secy__mQP(z>XzJ!xFA!}?Y1y`u23^r3t zBpWIn5FZXS!w<|}7%l2oidL{TNa&Xretq7ke@wO>S!uaB_DH^;AV?~Oj3^&kSC{P8|!1PFEpGb^a*!RKY|}Qn&s)ec})*5R3rY%K%2t%mmFAPT`ig%fa{p*Ls|NX4<mjg;z$OvBtL`D&B-MyvtwsWgAbC zqfLbK2VDayYsWZwO;nkWcn{%7GE=6YexoM%#@BpO+qI5sjv$D9eSQuo+Ls{5rR>*$ zRP)YAA{|8p+d}LqVEm}c;&9L_nW2Z3KQygNP?moTGJtWypZ%dk>@Nl2*R?>Rb?Y4G z)93^cDY<}n=bRw8-JZ&xZ<6yKx?e%xU0W}HoUR{4ckSFWBm3Nv7tqr=FpMXHtOXK8 zwcrOnb2Xjm2Heq2FziDZhCAf-IpS|R!HdgRnJPbW^EmV}K(||>6aMOX8QyZ~vKW0C z^T|)10-9jdSC?-Ii)GrPdq{d*fswUQU{tkcB_Uc5(+p@=dTZ1H-3&`atSJ94K_V|+ zad##Ae+3(nj=$GksB$)UWT1$s@glsXHV9is)BQEFGY!16&Qy$KX&urYL-F5&d?GJ| zvj!7~HxDkH0i3MUS>DK|wyo5&<$S4$3k%G#xRd+j+Lc@r=eEcQioz1|+_mwni)19! z>cnQq8^^#ur1s*_xS^aY{NU|=e2FarlzD@?w>d-JhrxTr3{U>VctIui^UyNu_bu)< zc=0>%A$h*xbAl9I#@}ck@DY4tNEAF}E-z>Lp#!@9fWR1GA`5+D7sQCZi9aEBd|B8* zxB-FBV~j>!ze0L{f#HV<&Gm@+K5Zi+WTh&+Q=m3a*UQq(ImiWujRqW|_?CAUtEc>0j|pU$JC12o)$B3@b)AU9G0 zka)qs5g|K*^AMcCA&*qQD(#>`0P+-|m(s!TLILZ*8(86dBS@qkk%z)VP~i+jw=O_X z0NilFH{{$P0fiQT8F&GlBPc}FgmGMtk6FN`0f(J9*gmyGOhF$%ZD_Vh6A@k8;eS>% zVe|NMX6waJiw)DL0~|RLL+M+p>jVG+og7L0GWi9a{YK5BlAqFKc%K8k&r=68Jrs~_ zw%CdZK?IL-UUq&G_p9sVk?EVqf$K>58Y!+0wCF_>D>I`lM{Dla{qgH;sd!;qKR_9# zo5-F)M&^W&pNX!YxR`8aHiy+;zFbpGG!&OTSEJ7{WTg%xtA&=54g^)?%pOpl)EWg; zjTU{sGhZ5E>#w+EDZ%@+z_w%GP^ZWmI_7+CQdGJmZJUYT?rWWlzetv=t!npJ8_nK0 zg# zM*Mp#qOEpCnA+;u_Z8;XzZ1Y4>t`qRmZp6=0l&`ix+zKbXT#^4e2*_zV&{A=Q3~&l zG@@{y8KpVGH3^!kR4OM(P?T5S+siK(dM7y9$hrH^`tiM-90Uvso!J-R&-YQ`1x(T4 zDkW$9r^hOonkl&OyuH7`Pmn3bO~AW-|CHHK+vlSGtf}JJ@UyN926_DWZ*woelDHZ zVddRV!Dot%C-rmXk2z;C*>dsAO4>~_^1Nn-QcEni;1_HMAvQ#Ey>cm+mJI#NTD-Sx z@h|NqgTa*b;FGA*XITK!M5!}BxlE#}{rN?m9A!7DOWd4u-i5NQ7!gRC`C8Dc8}Hzy`*>}~gSb}(r!?8} zDWv=U7MP^_xKVVew7xt^U&cEQr6Ekdcf2z+{-QccrNh@VRtmuWcyyRGR_->2D#P$s zCl$!Rdqq+gLwHa3_=1O&yi0EiE3^>yhlx}>+CSyHHUbcNT1?$hTP0y3$JUKU*|H{` z_&ieHBs4e25pKY7X*}#If(^EKC*ML|lMnn6xd?4%naQG`%ro=WvAeL&v<7*_aDeTK zbz5NJLbj34aiG zz1Q_K6^|g+<+P#)vbpgJrKF#4;x5y+8|+yH8Lhrex*0!d64=%kY3Tu&JKr<*!QV#T z80Fo$kNR+pni7!FRAYH*h2jr&`o5tIdEKtoiMSC;A$ts1PsOGb>R)LsQ-_6ob5|#5 zd!9R~vygz!Pr=^zF`~r%%}g@Czxo3R-5(6V-4C&K-a2*`!%w{UdD@yy3xkD4Xr*6T z4gO`iu@H?r^t44_Vy^)b@;Y$^{^mLPC|ofH^amW|cGo;oE-1uyQfn!NrvGwh->GRp z6|pjV+P0kMBIcZ#x2GR}0#d6l#VYG82unH%)_q%x~JIfCSVk%C14J|SO3m;4Z*Fy z*z@c8xt9dOXiorYuxOPIGX4)tm!t=eN!Nbut~d}Vt^dLl4g;4vG6i)}6|Peisowlp zs!-38c3T9*M42%4k@9itYVklq*#J*=? zZkBLjIo5^LFYj7AO~7chY4 zl=@4&z4l8flq5&AfC|aZ_Moq9%&e$T54@t2h^7}dD6VYUfaOYum-+a)ASZrMD1BPbLt)vgFo z#bPQwG{;R6rQb#a{-O3E}BLPL}Z z#^NHC&DiHl<9FAq%2rWyTO@WdY69DM;lZM#r=xm^!fKk8hlRC)$je!Nzx3J<3s4T_ z$3JkJX9x*h4HkpNgn#eX<7#dM6&C&wcwsjdqC#-aelZYD2;8mm*oXqD2m?$MrTPP~ zBGJ9Yc`C2|(VuL>-RHTpi(fcdqL*mk<&0d7bBxfo0-u6W1-kVZyg%*Lqir#RO=K~* zO-424=VBrC7YR6Q9=~vo5H{>DTU|2@|8SS?l{VmVmw zg%fM51Bn{H3X#aiV890jQcP?7U_`_+z|>Y!^7m*%z))knZdL^?xq~cOVV={$G%DFG zcNz)91%Jwb)8wT^egVXTn5T;-o?8yf|968R+|2FDcX?`t1lx8j9nsvG98#-;Oh;~B4i-YtgVEyjl62j+3zx3Ad(lY# z00_GRt7bcUdoe}#-?Civ-(V8p;3_-a?2H_OsHD0_Tf8rx@awOa<7W+M|9-QH;e3~$YW+mByNuS^ za<q>-rWenIo%G%WSdSj<& zsTpfDYN>x?cIX=+hjuvZ#dmZHDyEvu-#we4eq@GuwmKN_d086vmMvtk79=fiTDdkKZlM61VW7+n1F$>qH^Y~s$i4fdD2Mjt;3pBkzv9q7xgL77%CoizCKtnY84 z2(qC3cCHRLZcQucT#VOdFdwJQeuSnqY`&a+7YC(bK^_JFR&c6AeBVAOP7D%QBBnA5 zi8oDAN`xgqR+FlYhpqtLyXCJ4#UH*N;)0o5DpoA{h%({xco_1lreQ?fUN!*-3IgLu zAl*FXj7$j3L*#LkmKP$*;Nf% z3?pgF+z_d;WTghI(FU4`PhD(v<@yvH=nXEu&cJrRNuDH6x$=L)qT0x~BlW)07oOpkJ^6=2u#J+Ng}S|{1+4Ll#88D z{~9DN4AhB>?U!Uka9%v?K}sViDl$6Pd72C;dS^4X?%;X_sYdEZqgXk`6 zF9&G9E&t(lAP|wsAH+|JSL?q`Ucf$n(oBu$AO8~pBM3t!!i+f$H|Lq`2 z*E^aK27GWis)y4=r8~DpG}!7};x^K0$=W@=c(~9c2vkW{wVB|qE+!5okI9BRLK(>3 zsCXobYu8w_DWBIgbc<-UtPrQTRNyF;!fPh~#5k6TfYoTbZUdL6Mhw{@k?N#*L97j5 zle)kVQX)z5Co%g@dqTy$LD2v4XGpbLcx%kO2i*22NpGNr{+l@jp*hy_@i^uv!UHE= zh>Qy~(t~0Z)C#W>fDXi>)vif*_ewQhuis!DS?W+3Q#0tKs15Qm*Bd4N(5`cJO0b|C z2=!YG1Dk==CTjrB1T_O~S~g6pxt>-R8Pju4N&G`%!JWd|0Yef1Nz~2XR~=|9;qxm!Wqmb#$f9x*>5-9&`LIY%;=(r)s_DH+UmA-?$gFRg|gd?KF!u z%6cs?KmDCN^BjLltHVtw(T3s3I*udXrbbM?IAT$fl?t|Y^Ur|Ng__92!{$`k*mrO- zK>jy3U#3MuIef9=ypOpuey(P)&B$;DCE$9FkWn9W^>;6SfOdG5zcrllgrM&Osc;K) z1(85Bp&HH0v8OAlEx z@f{IVVH*xfeby>uA{TxGo@4ua&Md~1PhvKx2b|=zu>=FwtB?`cSlm8~7|mhX0|0X; z)ExDh<2=fE%r8UP;U8(~oNln<5MqA>(5RFVkoYujqAQTL8hGc_DdfKNm+FoV7Ao#M zT6n4)x$X@7osXXn*nFg1ecea@jmAy|K5pYLf&;gk%Yv&VKi>#S?10{h5u*R=Uj2Cf2V#45M%O$K7Q6qHr=xu5c zK;M#_{EaIOsf6@7;qtGDh*28^LNi)UBYIDTIP$9OI>y8+nR~o15HG9->D2_Gs5jZ< z29eyhSAr>|5|RDtvT4%T{(ffO9OnxhY_W}}Oy0fM?9y`_rCNIRHuh8O>R}?~!7hGZ zRTtL~#QVDk!TZCP;DKAdEa~9o3!&8;LE1BCCMqavZE)!_XYFGjTJPd6UX60``Eq2mNNY}(VPa86; zDh9n8eLvj#h+g$Ms<>!8_6PY#FV*qi2Uf#;d^x{9ZeJGlrwv1x4bX52^bu@>NsMD4 z$XPfKV`6gwU#}F!#65a1LX^!XlXtr@*C%I!LC5TSBN#lq8Y;18ypI#B%)NyJ-XG7j zvxlx8P~~T5y9D1OxP5&_r^k-xN0INva{5o2HO)%a6iQHJD&}UjV@h_kd z{lFs(1P;)woE{%A#-*q~OfeFOKuIO~p*tYz3@4%h@;4i*n_v5dRD>cIUr8|`H%(y} zG;3H@kui%2L1Q}1wD+>mYo7AOeBg!EEH^`zmRUzhTeSRFY>g@&Z;gYyeo7{Q)&kcL zVAoG5^pqd~87D^A5C|@?f=^wZF`qp!(FIm(7=O{{nm~8E1u9oc$O)t#ZUdg`*G{&W zxkcnu0yz=8rAoXC0!s)vnX{5j95qpbh$pp!^Y7_8W~0-)M!bjAxb1qL42)pYdEs< z-!PHK!^NJP1r6gaXsVJ&ZeO*CTOS#%L;&4h1?)OqS<^4pz#=A(b$&2`=8FMC5AfB1 zf28^colr$^mVHO*RN;7-w9w$9s(5fl5O|+S+ib2Q{~!{drzOSrUZJe>aqg=X05D7$ z1_`=BcIp~>elxx7T|Q{OP}jd>=zaqy@|i(%GjNeaJz3$1vKT{0KDi6kL-q8zp@=snP{j=pZ$OPp z8G}fXRqthq4{Uzjc20e&FdYpT0|x1zkm(J#K^2B|LYICSkTj$>K2Fl6?;OdE2KUMQ z$HdNT#a(mgmBlW)0jK{IjO_e+m98d6E_j3V{K;f8Jq)7uIrbI9|CMn|n^|qs4jL0m|Y3LUZi^|D8{sl!(!pP2I?zhlqu_9VR!(0cP{z5`92&Z#>%QUX>h2{8_v>)6;Z3K(u4+!G%9x= zLX=8{E?1!f(pUe;uKqf5juxB1laA8mLe;)oxgsqJ;Tv6y4FinmXt$aN&n$CGxYp7kwE9!x?tpZl{{z*))qzClG!V84%5TveFk!j)(V^&<; z?=XSZhO2PlM9){Vz*YqLMR2ENIc*IJ4M5i>(~4W>V_-}2q#h$v?W>oaPdO7E;|und zsXY~+{&|!gD+1(RG-@)M4AAuIGYkfcm*fn(46T*;T3)mFDCO3Eodf&UjuaP1yMDGN zC*LXzV~IB|hoOvUE3sr$g8=0S_XdT#KkNYvGO@ z@Euo@tWYdg38R)B4GseuVFIdhuKtPnOkNhi^!G>8h>8OJkX(>Seh-h!A*~RQb}hr} zddx#M%m5%Va1RwnOFra#X#xxnfkdzV?$8t{nWrtKRe5hsJ-17X=vTaA)RL3885)19 zGdO^eA?mE(H0x;PsZ~t=OL(d)_c9c4#`bjT_>#;luztkB*oh!Dc8pLyCf28h?iT73 zB8r%_=_f00j;|=>?SEW)W*!&{m;dj4F%B`SKTSrk<%k zYr=UwRhpE2SB0v(_dS0oPB$&!Ohb&)I5m9vi$Os_N6uEId%}&ByY}4CaHgnH*69Jh z89qKbj`|z1kTkr_fDOJjELgLBp=O^?&+5MbF!5`9gTtq<5W^X|d?XqU&dJmB!W<)pfkflX6G-_&PsV zBhPpiFvEy)Dptq#)|Uwb63Uds)R_{UncN7(UbYNA=;A$e4U?4oh!#2VZ5B4wF4sgN z{XV+J@4VTR?<5@B_KQDG@!*?KwHhvXodF6uK35+-_Le#eA+;swbLcS23DNO^LU8CM z!YF)Y;&<`AFb_j5r4kTkc;KvI1VJAWNhn3p3+76N6J(FQ1j0S*L80~>W9@SyIh<*T zz4V|IZd_8-to4xt1MvH8mi;OxCUCIFP< zKE`JE0WArw^j2(&&m}*P4DWQ5YK{a+en+Kn8y~0&9_n7TVne0bF(HzE-S4tSV++cs z8lO;z?(CyVksYCq%nlQWN>wy9<{eM|GkLtPC$;3CRl0y)vdZn03j5@I9U$#-?*+qG!ou16Z04JUY|k?1Dtu?P^oHnJ%;dyv z7*E|nL%DKVT&Sd8Eq>8zC?=R*a)+f2L1U=ErR=$ry+9$oXN~043!)kW9Cwux`R_gp z!S1G-D;!i^X^AREX)+l-ovopEg(9^N>1E?evbRI3T-8~6hQ=JxKgG|42rvn5NA}H$ z-eBJ>FY8k<;pwtkM2$Ck{|x-PtxfkaH5V<-pnwpS^+4b4eBNNnaS4PLMl%ZHxV}i~ZnFkYwhHRG z%8ow37}x5^f7X6PX$jW@>`dGuJ*&BWHwu9FVbwi3w8a+sZ@-Ix)NGz6_cAz>yPvz$ z;S*KLwwi3JBd*>XlrMtru?~KH7;_7t&d%20zym*>!rLkJlmI^l7hak%rbK-?E7vah z*>hLOaaZjAwP2h63r8J0QJ%@UyovP>0&Hw&E=0@jsZH2^bOuLTwzQJlurKpreG#~{RTRX-|PKS@Zm2o^>IoMmNwyFNY zc$t`W8}K#w4di?k;h5S_D2duSGnZfQfSJ!{L`6Hw}I zPs8B}Jmb{g$qqlg`O0~(SYz%vGIVy%5~;adlm~TMRMx@GBr0?x+x@(J@Zy z26tCEL_aqIgz#FS8=(1azfKva<{<<#;blB+5}m|ZIr#AC`o`f)@tE?|bayMKXRN&d zC%@R6Xj+Vw%_5}+W*J;Mt4f582FQBk`DFg2v}JS1ZYxQL5)Q;kB04O_tHzYP7h<=N z6$%fg2w3^M(`|^yS>RB5{}D5Q@_8regD>n!=bK^;LxpVOp~VMAx7Pt*P?vCigpE+S zKuz~WKqqz#QfKXe2J`O7NU_3(i>Q8Vh;V>OM_wW^$V4AOqYittQ;K}~p@G&B;Bsj4y^17{JlNlFRmt^`5HhBfVZ0GRZ8`~H@LGC5Vm)|N(02+QKmMADLHuDsJ-%|_ zof|4PaDPt{99>9+$htZL&0~|)Bf`cw6QJ}IO-80Z8VvwggV`X^V3kutq*GM-yd?Tw zs3v1WZu&gMaDV?T6X4PWDz|?6(_m`)YCQ^nfRv@p>?si zcKN7ruZwby!J1pv8LCCWG9;b@VO;_p{E}*`^}mfy|DQ%~?FUTpQhfw24d4L>u@~hN&+q=x$_SFfCuljlXqbo^D3a&QA?$ z$?3rCY<8%{(W*n9OQvs`iSo&{F>ADs9{|pUt zA{d3Y;6moDt#C#_eT@nMq^b6?38O# zlgJZU-K`ckPp=;c3%#8dfGT;A0{3u3s?+j#UfMd1F(+n|<+<3HL|MYW&SF(d=|0+C z&6538!{JoVJ>|S1!Bm6%xJj9wQBDCPk6|a@iP?5s78d@+>e|NY4;vft+*O71SI5IO z04nlGyZB>0C5bUj#tK|c29>N9>dy%eZ@JlnM$1%<3VD4|%-SZ}M8;msTDO_f?&9hS z$}42&u!TG_{__<)J}JtOGl(hIZ4zVXy6j+w)Oy6@`ks06lXI8<^!*dN+^rzeDlYtA z>pW*8C$W0e7It=pRcnxNJ88=ZF`5Aiz_s{=uU+J*wVCPlDpT4=p#W!T302|o>cAJxLEg$c%()qxzc?&18faq3Dypi(JNkNMtkJH1Z;jSY3x0`04 z0ndQ}uK2SqpNt&d>INWv(;WbfYp!{6`Zsht*i1`9l7uP!bfTT5>zSoelUt&m(r1U< zeD_ic8?Q#f9H*t;UTY-34nSLuvSKNyB)Rz8W%~S|spn3~ENs{Gis$lbJztlOWWXv@ zd)H7%e;U;-r@~BN=w`Z(G|>13!S&?j>JOP?P%}@&3E+Hjt!m1AwB`v-vERcXv@P zNyESA@TpvNYS&b(V2nHNB`zC}(kPg3+n%u$Erpu5?d$b%MZulR_#wM+V)9>nF^x_} zLuOgQId`%kKp?V-$;A?c?zdzu+Yj*J+{f<0p@9h~Xi%D@lSwBoyJ6{c@*D#S{$A;e3qXH*%Nx$_JDWzb&VfBy zGH6r(%Cy;4yZr)q`1^vlQoOyYsrG>gfYUJLL2~(*L;o4F>b)+C^DWfTqLSU>jpY(**o)S}$?U`+M`#=b-#I5XHZV!2fI)&{|n3 zCBG5@lXhEdsN2uf4Rads>7NH@d)tZ9{!%c&JU({0hLAnd;1^8tBAF9qNIMblr+OajUF|lpinAo=MN+<$B|$nN@H7KsS_ey726h?& zhcGLEx|S{&*bNar90ziCl4%WL5Rt%=b58@@cr{}9oaJT@$L1610@(Slu^Kub{cc^> zaZquw1R{mNmaq+X z0}itf%TBIT__g0>KuV<1!Sqi3=wl2C?l=~J05{ovl>%$o0bS}}rf!Y*TpOF4!@o0L z?sJ6yuxyiXC$o|DE{|Gi?l3Bz>b0jH=&&xXF2$qf?sfSYZhDT^PUj*F2_Vy*ejXM@ zm9LwOaJO9i{UgegGnHDJiOln-h1a@6bKMxKKc(G9l2gta2Awr226?#rr943%kL^Jd zK!KbzLcq zEnzx47$z1b>Bsic?3TMHb3`@Wl_gDTL(3`)jyrxMzGID}iEPH|{q>=pevGqjGIwpg zx^dxw%*lGzJ=3vmY9BpK7N1~CXY8FE;3P}o`E*j>p2Q2KA%AosB;|esGai}=-cFL$b#p@HRYCJtz6X=t^pNmk5+?~{hlroDGssiO&>}?}?0FkXj0s65KsHqF zqb;5u(oSz&24q5W)mipYdGvau!NnhK-$b(kk%BADGvcVoR4~=HzUpHXEmdWnBjj+)#tKNeGHZrbe)aY_QG3jwQ z7LJ$slO%9mxoA3$afMU7Y7S!JXLXDH*i8pPq7Fn~(SzX9aC7@h8b#A7gSaXEm8@+G z*A=JjB0q4a^34uh!G$&- z83oGP?Q~*By?elBiFkE!-=ZH=moWTfq_8D11)%Iu#KxpJYVp!q0Yu>FIC%w&3E&*Wm_lJ?xUO9LgP)z8g zS-3r}=WpLeHrR{&EN=%9K-YdMZ|w#^}pA;*5vLQBt%ghrSqOP>!C zArjGq7!CG9aiFckaNM?!i;&`eJR4vfpHzvGl((|IDk;sqHFkK|e58 z+(nQxJp7mkOD%I{C+aAOx;|RnN+q-C95Ah+vywroGczXDFG0Ig20*Bojrsy=! zh)+k0#p?V>?%_Rc!>~QzgimChF3!+XjZiBY_|`+9ah-{NtigH&a-5@77Y>q+A4 zN_?%o<3DFdt5&=&0r=KxiW_#e4E0I+u;m-}A>Wi#MW4Zs~`(}MNybtX5e?Kz_aE5sP&-1Lbm2hOlaJB*IZ)Coa{YDPR zHXz@d0LH`(d{$Keg9VJ}Oezu}o}eHE=KAtW){tnp{l+9=WjvKafdje!n=R2&kgJY( zHLd%BG*h-OSaabqqKVYQIxx&5=8DRLLE4ab)%^>D<&4|YL$sK(c|isn%U9MG!`TEn zo%37J;`WE^IgCMS<=S>-1E`o>MNv9ji;@Wa<53*f+)2lAh7o{hybe+j(&1ulW44*n zb7`It5DcVSLz_xG&qNP*(;xP|M?UEWFv%yc$SmC@4=?Op zoay51lM=Q3h{&un>TxT`j=r0pxK^!vP)}Frg>M0K(-(jsi9wCU7fi!AIWgCtTrzte z?q5g?v%~V1b@C{!JBje!4Zv+uW2M&is-;)Lxo8g=!pluw7&99V7Zk-2N*c%AxK)mA04zbZ(9Wuun9Hbj;#U) zC?Jo0VDWO9o%~#FHEV9AblzTC#PFakhjU`yc4hMVqyz_ZI~<~bJb4apg=z3QSLrd@ zKB^zuOi$D!fk_ys)-MASYX6aKKSLL567K^Rd5V5lX-+4Ntbe72&|o=OTyHAd z*mX*AoSqv+qQEIli3L2VhlbtJn1tQi!S2^9`RA45pHPRN(-R$?w6q7K8caQL=eFU6 z8VgQ8_$GQ|zJ9rl<4B9jrXS)zhpLWv{a_hra|eqK?&Su0W$Hd$T%2$Ln5Hy_`(xhR z|9NKOnbWL^R$V3Lv%!y0H8hBAX^iC^Wq&8^glbI-Yl7@}KLcn?Z?43W)?LeX$>ps> zK|`RG;=LD6JCA`I+p$AX+9>{8ieHraBaX2(e3i!WE^vlp{wf%S7pI%6eJaNxbIUoX z6jVuaTPQ#Yw4R+)IsB}2=Bf{V(U3xgnZcVwf8vbf0(jAxF`ss#52-bYOIbfvJg45j zpI(1n;wJJK>jYL zpO<{rMXhy{@{K0ZK{hwNM6ZkgM1d`o&?xju#BU-hMv(V+{~$|c}LO)jz#%p%#( z!}Q_>Ty3$)c-k%}cFq6%2}H@ssFtiWLga2Clf#JPZ3yp=5$`QV=Rn0j_w_5+yj474GU z;=Q13Nn;cICeFDrq!am;z$fqgLg_~+G;J{lcsM$4R8T!*qK^KM)9Q^D+J18}KULr~ zWE>bC<`(-l5Qsykq}TH&3gQOODrM`1%rJ_g0D=xs{9LAvghZEuUDH+>q9;i9@otsB zxze{PP@!D`;(}exRQbt@HG)Urc9xnhI$JbMfp7V*`!JM~mCUVKQ?XFAuh^tzhm&jo zlA6N!|9CWEk~Aj7yK$;|EAYmv&!)?DFl&eE#)S|I8`f>(|14;UP8$?pnQ>>KCfXPu z$R|}P2tDahbUYG5*vlPMyYdo_vcX_s&JZpTGSP*?3`=^HUiCzEaa%QjTh&Lc^C6z2 z=z`gOaXZ8`b%kT0fy%zvWnl|TR}88IydV^T17R{iHShxA?6!B8Oc-C#RX+eADFsY} z-l(dptf}rA)o>Z0DeJ-DNy0JUd^}I4eFaV+1yDIne~WDu-Z_Mm<0_r?#IIR$5dugi zlRPu|zwhq9m-)6xR{JpD$F`^k{z#zuvrx#q452;`V(mIYLFZSMh`A7l{%Jm-SI?tS zk#tFnWlWM~&;~XAl>)qV7E~pK4{}&j*jz$C1a}BUk&t$!bYIqxs63J$IyLw*G(qx% zW@W|8mrZn%qVLY9Vm?qMWHLbXufaq<(r!BCZn{0%pB>Gxi`}|81m-LV%F8o}4rZ0m z$pExurR525u4h;-PIG>)TTV2qQP`$Q%aaznAnbTmxMm#v3wu9mOr1~EA)fDi*7{&{jm$wym$ ze3aWpmvRs*@Nr6A$6MEG9TTactunJCEu(BV<~73<3^Y!^7 zVbsZ@ocXw!b4#}pFcF2&*4-U%(Q;D1*}z#kP-?)l|37CzvBi<^I(P@>+)q=eUnimA zAYLm9cr8=8%P3d=dQSMA_G@cvNc{fxH1_t!-mih9l~N>F z`pxf&!|@(8lNZk)WQ4t5Q=V)bbRF0}fMTk|7Z_82>m8~J#U%$QOGN#Iy$+=NmYL;{ zIpKdllPFOQ+aL9hhTiB7;MIR(|IFz*I%xmNqYj!7{Z*<O?*{3i2fMQ|w7>og zHJvG#a%%A{zSK1dk(r|`uV!FZ#J&O>dhogP8Q6)MgTwgMm={$((7}23`H=S)y!)4> z`hO23n(hktL}1KJK=%}dX;}M}N1!60rzq*H_Dl~tef%Ed;SJC6!1jFmn%MaZ!PNpz_unb><|)X*Cs9=*rr}g7u!8>i_DEBZ0YA|f zNXx8L5CfFnnY>-aiQw5(&T2-1<0uUmCa}`3V6P$xb|VuF)K1i!!%V9J{yt6IkH@|1 zUmPN1{}}Q#d3z^i-hnM&*DgVkHWOBYFeeQgPt4C)W28IGXNO&yy!XnSrp|@88Dr$0 z!{LtygRddbi!wALp85&n?9^nX`o$dQjkd%_bO4AsvdOa+swL*?g<@u^4tNn8)I18A z+5CyRq#+n2hl~#?&ha~yvG4AJIohH$=;58pJ7-hOkmoT{jhL63aG))d6;ppxipW}d zS_@D6-EhcPm>?OO;&hC14{9M~uJq&34d_*uU&XOE$!Ev{ePaa%FStg|H=vESharwP zCj^*vcu`sn+*R@-s=~=VjHdTa^J>okZHHUJ8-igF#TcGS+yu=`*DV-omzh~pY?3IH ztxcK!D0*NUqrd;@A2*YJGj@2U)=&Gy+{&x2VApNTOPU2su-(~_@`N_}Pg*Z@&C9#nGL5x%p+R?sWKJ(gHE(gd}K>bm| z67}D6DfgT_F(rohv(t-&*!g&4_ZGlF;glYEV#H1vr)XR`A91kp$SJS8(v6b$DDwei z)_0wS1X7@+FvX@H5{;hAd!bQd%vzF`$M{1N!?;?$TsMsjPeS+k8j5YmbrIA`MfZ^> zB?y*QT3H2sYp762Y1zk>;F7SVUau!I65DvYF$DPI2nfZhHYzV%U;?9qRRjPrX0zmL zX5yfgmJj3~)*Q2j6@`tZl2%h9ph6L?HxaJ@JN^~O^y4{C>Lqoje#rSFgfwNKbs%9$ zyzL{(NyX687rqPecl(S^=&~CjAYUZiMBZc|y!nFT=h1M*;xVLWW@3mhfFYj0roi;wxdHo5d0Sw6`+y)`?j=j(HFD zV?+b0HFyb87Tjsh^6eAL0KblY*ryul6(09xv{SM&Br5iLks@L)`3J}9#d?#?G#(Z` zv8!j}!C;)f%*L+a#(iB`5}cG1zbUNI78_Uum>v^9LXTyjr}j*o^d|uI;Oc;#vQO}$ z6>}$P2T2x4l@Tt%=zo_0cISpNO5-_#Ge{+*>P>TsW7==trFpC9M#+xgZd?o&tJtKzGD)Hd;r)oOLB& z`dqr)QIKGft2LIHGBG2j(magOV$1Zy^bU9SQ(%1UZfj;XOg6i@9G-yZWZ`5lT*oZ9(n*q)d*i@!^o&-DE`=M5|LdZ{nIZ!P0tUGSYA2T{Ge5;C-=dux2R`leh+sW( z|DI9Sd_BnEFw*8MB8o@u&uWn{PP9&(psa__m%{@U>Y3ptP_+$PBl<*`mBby+^Ge6J zWyXwhz!0D_exVka{7Jrq{;ziMD7`hA@;dy>i&Wcrd<|#Adg-*)S!ka1u8(Zhcn!9J z8+tN^DS^%nv-YRhx z@1%gJ1M*^(?u(kr&JxvSo%{_(&@`=4e4p2X4;;YlbD;XJ7-9v)3*dP>pY4+nG?MiZ z<*^C&*{?d4Z> zH36UwRu<|s)J&Li6M|WJ<&yI#0)FY34_kQ+4Dp~g-0t06>eZUCy{Ibm!RcDB$Sqx@ zJ>ylvq!sQ;>k04`dD7}p4l|3CjkmAR7?=7y9*k`Ll*sthG)f^ddUYymB}fPttR#u~ zHGF&ff#Rnb4N1Rszu^wdkILIRce~FOzb@tH8v#aH=qO8mg!fvOnaD!f;-vcQu4^mWQs8?0~81FOtKku8Q&6YXg|i zq|Hd`OlSV0%>Oq}^UQMe`vgNBVJ56+sw0U^5pHeutfKv%`QQARj5NtZlF>hU{(};2 zG5x^2C+o-II|V%~(WGyW+{q2ik+IojyB7jCinxrk^zOD~pI4lJGcTJ(79;#R+z>T4 zxOW*hJmjaL4x04Y496;cNg_)KsX##GlxNy=C7#5z6RK1;Sx{}^TioNV4QL3G4b+^N zYWw&M%$VVzJV%0&$$&_WHsfFf66R#?w~6Xt^d;Z*r<`QY{>Pk@jU#eVA z>KR%s1(w6ca2S-Mjjw|DNPReHIzZIn$`TsnXgDP&v+Ljo@vpf!nv*2ul}hymi_Z1{ zvw?_=sIxPw2o9%i;%6Y>$S0d+WpTX*I3pF~b$mL@9btogAW! zZGAz32B)Nr`AFvY`{aK%u--@D=K#ll48YLz0Vz4Gj?FddRC|Z!p^jW=L2{@Rmdr8G z8t$DhIkDKk?NBnUkJwi99-GdVfeE_uR5f-2jKOk5iPAVZxywK0W%CDYD`iezMnj^p zjhF@}w{zBKq$mG=@1ZrvrYimMkLIfRDD~evI&VXYR{3j!f zUBSl3w<(|vNp{&-Bt;*Kxi}UtHc=+bj7rFbQI1{Z*}W1S8>)ourGPW~Vt6dLjj_n`T0m(`lQ6Tio=XGi!zT;5|AFZ(j*ej%~O`$UaafE^eUWs)`vbfOw8ArEvuqHpfukD*w|o1!NX4 zATy?!rJLkSro}65eU5XOW=|-CCpPh6;qg&(!#~Q_waxo;^{;r#jy43Wo2I#WfRq=(xAFP~8D6xP6dO@OtvG(m;ZBl&ral8128vGbm@W(iPus3KhBa~7QU)42 zocos=56|rUZa4PZzLc_l-HawG2E5!mi{#Zzn$THhomVP)Z7Qk57AqAWZ|gPHnl(TR zZOwH^BNJ`$dP)O-_%+m-B1GSEr8n0}A+=`H8M3oZ9_{l>-C^$~s5z9EmdlzKv)3gJ7~cY3D)DI1X!+- z+oakQE480Ug#8?(H>D@XILlf;~wX~P!=iqkgsa$x2%0rIRB z5fQ*6PtsZTjntQaJ>DSg%*P7bGX*7_!zi{|f6X)c)A0=-2t&;es|9rnza4iQdHTJL<|98$H`G-d$o5j? zVZEI+imx)h?C;QsmGtEXoN(~>Bds1*sFeMUZaWnU_s8i6hxE9o4)BezPM`K05Mf!L zyca)r@}e{>3$>WDcaJUA#%P>}%T0-5#372;Z})qk$m+!co zw48d)2|@7iv9j&v*zH&eJyIimqqy1VMV>|vjKpS1J6St_ei#w_god~HN+UtBLj#r{ zsR+^lz)L|$aAnG~_A2yKsjtdBo6oUn{A%6Xe2u59b7_-Y9yVPG;94uMi<7ZJlCurg z9P9)PKE^XTOFb{E8lw1;kAveYmo<;Oq^;TBvo%x?=Z=x@tPt43qc=Y5^rxxgOPRG` zL#4;m@_3tK$+_o<=R9e zM)T|a^~W+q_hwF2$q-K9=C`YFxyeKTsfChQm4&R0I;)b&ABg21N{i@uy;$#Cv=bpynL0^8VJ&{|OGc&1$cq zWreUb3?UJ<#$#W`5&P`q-;ut06iepy~gViL>ihtgoJ%WUpIl!3zq7+wZk z?@26ARJfv~hbs5~sS)2eSK16W^e7Dhy!06}j!v;EAR~y(B5Q6@_#o&LYhqJ1D-uc) ziqmZK8OymjD~IX-ZHQ3BZ#wsI9~p)B@o7DITPml%^Ic*9KN zJvK1pKE)y7pAwAxu=Gn7Rny9cswOe}v0ag^m--fbW`?Em&p#cl9{48{Ct;f5)jn#u z(T5v7um<3^Efam8|CrRlsxxIa?LytVXjEMtXTOh)W|aAK!11&rGAFvOTBpo z*g{2+P7MvBoRHEE&ro#2+6ErzagOIeJ;vpk5Py;ef_O8_@#gUW{vj0QYW#Sf*K@!o z^=Ct~?0vkn4-f^3QR+QO;yvFO*RzrZ{S<0fxp+;Y8~d)x9J1-ivNV!AUB5)6HYHwT zGMGCQWn9^kPqx?v8-ZoC1V0LWF#_v%I;A1_!|k54__u}nr@4@B5*<)K(TGL)x!;VW z(Rl>8cZ+X0It3sAZtOvx)*2kI9-?{{tYz#Uc;ugut)aOC!!Z!FA|ci`Pi&MMvdq9x z2P_7kEthuht#9@C@C6~`lD+;5IBfWZzkYJZ42dDJndiYkm|M$(SmxftihhS<2bxtF ztd@XT2iF`c=gnsZS>E75+iM`rFK2&mGpE(T~zH%FS~6=$E!i)vS?`G z`&Q=?If4ZTx^cGAlOe4tTakyeTCU=)h(@PSN+O?4AEb%|o1GZ}d6y#{MdbemX1R5sFy!Bi?^QQO}U$}I2+XLPjzTO;KAu;A4Y+4u@@$w@H zoqT@7`3|=FdA+YtR#%r^$fPac20+ya0VLmt(`+?W=>g57IJLw^lQLH^%w($}bPb)i zD~x(1qB~)J|Ck@^VO1fR++7UO#o*l=rOX(td;EO1^;>q{eX0ejjsHdoxaciL|K0#d z<{%}*8csfc9Q!IQhgxc#0a^gcIX8<(DbEat<5Kbt2+C$vDCiLI-OKFT6ZcI~*dHtHfHbJCnOVs1`$Tx^{x-0&6)yeN5X%1z6g)s`VKI`4%1 zrz(q*?AO86(H=Yehv-B}cPr{Kr{vp`n&Wsn64ApX&nMFrz2lHotiY~39xikoqJ!Uwl+8Sw>V&EtIE=@h-Q`D(lU?L_>0f*WwGa-iM!wetMYp) zXdYBIyWWii)i${r!dh-1m42E(&QK{{&jSX>3iKBu8@QHF)z%_Pdf)jvBx76R!)|(s zY_5o79rPG@D}xxeuBY3C1ia1(zFF*WNgKdTZ}bhsB>Pt&pIv7ZQwvh)zLND0*D|0s z-OqRG>GVPXTmR*B{ieL4JLkp?$~Z!26ywFyXLmhRDhyuxsB3DdBQ5Yd&F+7-t@1u4 z1`S>YjhhU!T;H=X|TU2f&dj9Vnl?W^7s zxjxB=W@1pVojNRP^bZV?2IEMi6W8U?e`rGmuR+x)#x&F-Y^*~R!a>YlN2qFSGY}0C z@?%%gx5_vD9ju^b_t#~4Hd<^kvVRR89V?F`=Z2EMrb zUSZwGBk1bkK{pa#Jb6J0MMB;PYVFr7jV|)ZkUcH+u$%>Y8ab$8YU0RRf*i|{N)PX9 zXDZgvA3oo~Gz=r8M+Z_oZ;<%fQN|n{wLyhW3E%CfIi_y3TQE!6mg9s)#%K_ouPi>0 zCwmsFTB1XFr~ySfA6*Y#;F5I^^kk9bo8XgT9VoEB*v2U?xaWrH6)z(frYT&nB;2zQ zFZ{cVyJ+e=5+6p>V`URXO#P9spiT9DLu3Hi1Q10Y#t^|`rTaTy-;GR9NU>KOq<{UU zy(HP3YHde>tpSPDEw^cP9_LTRnx==TQT}225e>m0_o9-4q5wo^#v0I$P__ zZg5WDE;W~bicL>N6%2VpkCat=G$xe%g+m%0>9WR^a5J7#01t~?vK%FN-GNX3jI`N_#l~IRV!4sp=WQH#VYXg8 z0r%wJ>f&q0|1g(%9~)S?mFC>Dp!I8&SSGXmLXwA8lG^%yx`qD6r}^29Kcs#xiPP`7 z$_7w|65#iF@KAq<_aaHNz3A` zPxYQJ)t|dF36|nh*G?KgERk{3N+*{1(^9^x5P@UAtK_-(@g{sh_MKSclwQ!w+_D8n zm(1XyFUjIZ3bV=kLTv7n@!nb^HijkFAxj$vlgWFdfZwowPUMM)A~3|+>B5eyr3e7a zooCh_LIb%-?{x-^Zj_h&()^dB5m)8C#XIBJ?Yt#1V&(%${|?%{Dyb=iy>=Bg*2FO- z%`lYmHCjD+gXsApEdFIh%(B12h2}MYdpq?iCUSO#?o*xhNoNT6;-y%mb-9Z0f)#Q4 z=@UnwWGFEOC9-&xaLi|B&Jgzi2oV-c$7EqBB)ib}KuX{f z0!RSp)DH6a2n}0(tLkU8bOJc`LL#Bg3BpF&bXu?lhooKDNGE||-=h}=04~wCg{^dO zeTU-^_Q}Ob#21`&@9{pGoz|$gnB z*OUq<8V`koRx*T|a{G^cmOOGenD8Oo^B#Gj+%SG}NlzlsqKJ2c1vo?7LO>&$~*10m%QfK0Q+m-F*NBzmU;qmgCdv zW0lauGmTWgQTs;y8;x%?ztQ?e8<=UNV=S!xe`2$b^mJTwB%S?dYPr<>*NP&8&oa*1 ziduBnnpg1b#v&%1b9HqXenXgfN(X=njeXp_e7x^E6SHJhxx|XiA)`Vcaxbv*``zS9 zq$wBb#Do3=9u(?`fPy9gDT;Nb!2$jc2lgJoua!01dgq%|fYvsBO{xoUyEEesjlpU$vLrcWUY{$`x}N5+SM9?qTNuMd!3}NgQUIxHJeq*IDXZU zvSSnj`wCsM5)KI}^^c0PLbMXn6AaEUepyR5^qbbW%`4Z{piBjl1fs6tDWF`!r$t$L z;0J?(37(b(riZaH_Hrx*CLdy&p+MiP3l63nQhbSkVma+kSC7EtkiCP&MJa+&HIb?R$IyqX32c@}gb-I0PQk%rEvgvP@@ln3F+6ar`c>)uQN_L5K|y zeGIvI_vGq-g3K<;vT<6MMDo;KTG#%afGdU-V58vH4&8~tjECT~{uVt$+Cx_DwT8Q< z&db77fJk8>9;9`|?M7l81G9a6qe>oS(x_s;eb@yYR_?!CBF@85d2bP9BPKEF$?rTj+gbY1@O&fJ zBTSs=fahR!RqSWxSY#eS2!i?zO&qGdISWtLX1ThvN0bKDUC#Mb_h_e4jF1gGmvWQew=V~&?j~CU z3t+R&PkGJ=dZr-%vj_&dAeQI=n@c~Q2i?=Bw@AL$4z>5T7WyX) zq4}ScCG1jKIe=my_3rzwMIsByA%sEdcTA@`*zb^T`(=R^Fe|oiFOAK!{zt871rZ|6 zpqrJ@!MqusDps*zC3J`y0_TLiU6j)VkBT{~S!q(4`oOx3&)DNz3Z_g89sFFpk*R`gm?>>rFf-+( zpZR5Ggdd*8T6O`zC>{$Km05Z2-o#ji2?kP~Vfs4fL z;7_^(IDjY}Sus`9I@pLeO=#W)eN)O=t~}oNwMmECp7sJ29bEOyI@Bt^oiYLb-Uo!b zSKsVycN`ll@PHnIw|$E_J{V!clNMm?n39t5=nL^&=dcIc4yy870CWMvEBE4^iziyn zcBqx@r{*lAb43;FLvo3tQj{MY!*+7RKdY)c06=ps05LbL(f94((;m1gBroVlkda8A zL3ZPVl^V1ZN0diULW(LsX#1C2_6S_Hcxkb*j{L01jPJbq&ovCLc1Q7;5HPU7akCkO z4Ib`{y3rXGnmMq6aCpEdag{!d|L}BgjMbA9_ORrsFBg1ZFH_Mc%r~c3i+7^siqj9o z53u=&o^J%t?T4KLi&14-JagO;3bWz{_LFzwQEMsrP)-Unk%5jb+>FXid32J_Of!UO zP?Hcz6h%QuBWQs|tN2{f1!Vfw+n}r@da?nAzeCjvSk%Vmul-VgzndQDP4V*l)R(|< z53$xoVq&t8k+R0rgC_fKc{^2c$8QN~(unej|JeA*JM$XjR0q-y z9tGDP#|`Gf5=hEs_G-0x2ZMEoQ#fsjqK!h&f&5w(=sOu7ZP zdQk<_F}J@rJ94(&GUGi1a*{o!UPTR4Z45@=o!@j@tq}>e3VeoHRKf<-npMO34PX-F z6=EnP4xQ9TieEo)J!YEq0gw^2xRHVsl7hoY`k~_%m}zl>)GDer*>Qo zc{jJFJ8W<6FsOG#9a#grdxHU8fL3jN14fR|t-Uy%&!>HF15yts?w+uKCdI zjMSge&JfkESrcsWL{ls_h9#wOk$1RN5}NuZX)oE|_Mi1?6>kz&9+NDhfTMpR#k|I& zvjeBo>Oljl`8SNJbr2_5de*NU@IEisdW<1dl5#LPwbsw6q3R5i*TAT$=oLZthwkU+ zk*%w#fS}#jyLsy#b4;0!+xpZ_txdY)jUh;lzdcntnU6*gsjwSG+**vNG$v_(!$JY2c?ZEj3zqXu4uQ-rs7XtFg`kahB9 z;Q&b(Q*;dUGdxQyHHMH6hy&WdWuJQc0z>EL7G`j^BJfrf z6Z#YAA$(n!wX;xZb6~&#f1(-Kqlh$PFuvtDFZ`D3^g15_zl2M1yDa|2UdkH6hjTCy zHuJczaaHZ+Gf!*W0_aR&uByz*HOnd_;sGqpL&r#nJuykgoyx)g^y30Bx~+pk(xGnS z&x0*m+1x^(MVkAWZG=rVjPiCuE4?v`6k=mUkorW-Mej|2%#-wFf&HFiz*~#af$?vN z+czt`v)?r5GMYz~YoI~ptNLKteL1z39>K6YSVF+@f{atq1w_a4_ZWxxnjvQnPxN$# z4QyUO$IWgsxIc7Ey-%6@`*i4bW%xaZAIQI54f(pc)qC>xvZ(@N!k!_=PO@3p`g z)GI)GVxyvV04#h#@MW)R*X5fI_Aoj|(F-y5tW=rsWsyE;I(3Hy4_TNF0xo-pjeKS! zvgb;`bD)_EbO}0C2!v>-xHu{@!PxwiaAq};%)1&M6s-`7KuX-$Dm$%Mj*N&{KC0F% zhpb^&E2GI@QA<1jJ$mB5Qm?v+?~EYP8V%KfV-)$318k$sWSsem!h}#pL_ygXA1@=J z^5(S#ax3ouh{U34J3_n;X^pi8pCc0v`V0nnPr_7d6=vun6B-wV=d1nkQ=lScDp2!O zm7aDqN49D1)C)!T$5r=)b0Jjq@q(iZZQ=Pe)0DAnf3K#b=Q^kS1{)BTCBtz14%gn;? z3>Lb)z?}Y;`ED&VgwVC&nvT9qwrKrPCFoEDTbvQhe5ILX2vUkxSapx=Qp=!U54}Rb z)fEu71!;F3GZ^p0%f6)1f+#2=aoI-!n}@_*M5G#L?@{I9(WGYdd|UZWiSY^XX5aKC zK;MFO^NVniXt$@=vWPV!9vf>`t>jw1VHRr1RpLk{kGq=%zZ&{)%I)LgK$N|MG0F(N za=10TdGJq6O>}C)IUS?0B?EcLoMvc4Npp8}d3U4Sn0aEX-t)XywXHZIm(tWM=-BD^ z_yRm%k&BgW72PoTEWh+7k#*L?VMa|VfI3A&lU5xCyZ$PD9+@)0;?`=H*l+^E-YJPzohQPb3|S&SBGECajFv&3;azXC5%M@auAU!X zLwke!2olf#h`;?E0V7+SjZgpFpL|=D^$9K+JkGJrX)bI~UwbNL8?EW1$6%6y2z%e8 z4vU*46UIFcRqYV<9E<&_a{+Skc4dJ>*q>z5&;$DJo|*PbUk@#Oq(uif(xQu~4B-Ah zmX}w0dJd)|PJT1BtpNtvAeUzq*A>@D2qZ1|+;G@J@yV2ZOs%>#&G*)Ad(M#DJpw0- zj^@|qPz~Z+dueZVrid>J8Xj(Ler{@8EbWS3G=(qHO(@t&+K^19G}UNSNzx#0)+sXx zS?$oX6k}aKa9_ItE#=4Al+>xPV`O0`ASu$?asQg7hu_;c$`|3J?u*vJ=cOy5R4Jdv zZz2`fy@iAZYeD;6RiO)*Q;gxH>Z8}A;}wRW^9GcPJ5Zc!VhX7U6R<-UW>Nn|6;%9S z6kLaa33exjh5#EJ(WQ|x8vJF;A{P~}80Lj?o|JLlmPzRXK$fDg$=NC6SsVR?N<9js zGI^^>;kq4=J*cwI+a$|p_NojKQXpa`OkFpPZ%?7(Jz^t6B*`Ix!i4oH{J7jjLkUGT3@58~3MQ$OXQuL0B^xO_R7t?b z%%=GhV*?>9W*rURGW3u3gcChqhcCdXFR%!VLnApGYIdxtPm=VNs1m}#kg1uFSYoyW z^xj4jSJ<~2WGpkT2wj2TB*0hEHl4OtV%#tYBpl*5fLoP>$fyP+C3?`P=sq8Gu(dfB z8}vY3!x+3)){c)Voul{q6PH6Zy0rX$)wr*StOT(R3XX}B>;D0WKzF~j1=x8GM?4Ff zSr=jh>j*fVD8P&2WQCZXxOC1JY%d-}#kv3nYhzsigSQ3zF5Y=?L3o1J(j+KZ zdF)G267!d4q`H5A1EsZ?B$yk!5_ABwOB*psaJzI3`hwolOW}OM`O+&7vw+v7TObC* zN^d;QJeSf(9B-Th91c1hSBm1iclq zjN>|FQI?nvMpQ@@QpY>MLgB(?D^4pBU}jIUu_EQQMimn-ma6*w)5A4Ck4in#{}c?onx0coT7Grxv?R9!C<-&M7sIw+v( zLG=-$*NGTwRfyLBF>VQIj?n?u8X!g}7IVO9(b8fLU{}T3F)oM%a8QJRND$;)06@z0 z!Z|3;kk)^?eik#U!JeQDz(!IlH9;NNJ%AX&NI8HQ!ITS9ss%HN2QY&9`dQ2jQZ_&g zW@G&TW(GM+#5f%4>H#Vh%LtG<#@7#Encm3NpbWrHkxdF{3zC3H0C`X<S|AGpF|-6VR)8260+cB5S$n1k0_gxMcOHMF16V>6;S6cF8XzXwW4l2*fP)+b zdQCbg1OQ@$5!|QH7dqmQfpil^6hSbBg3b5<&X7XC2dLDb!c|bmXC797(2ZGRW=0ij z!nNVF6vzb50rM}A=Nth)3WRVWh`}T@DF_OXllskXR$u@1-Nov+Z{J>CufF>5;+mgM zU%!9-%j$QRS1&KFzR55*@*h|KvHE=V={K_e@LPQCtJNPazrI}k{@3p>&aYozzWtYE zRsZ>uPgY;z^EX9C;`Ugx)PieDs?^K9CXnQhpM3I93!sLa19#zQ)B%nKzm%4DQy4ix z4nwi$M4qkgi9#QeHNo&$XbRiaQ{U}ymy&-%oMG8H^s%L|tcoV^*bVM~|MB_{UtOPF zU%)t`RrlrU)5|xPS6{t5JHMD}{Nc09x7T>`GgvP-e}H|m2B;y|5Oq&qgS4)cAZGH# z)#dqD7uVmczWDuTtFJG9yk33&{n?){K3)I%-TK$(x1a-L@gy5M{P&li^WU$(y}o~b z_x@j3t3SWK{`SL*bbk5$>bno$zdLz(@x$srKm6Ah>AN?p7jG_KtX?!&U$0DFw2N2c zrPh~O&o4$Bug)&cUyk~!c+O+wyn26izWV;`{Oa=k>fe4iyLx^0;>`s{`PHePoI){g zi4BDc;^Gjs2Ht`mFi9h+V?lm`wbWdkmXmM+4Vn&}(Km!_-DvQ-%!(MW0|-J?w41 z`R1=qTdpUkt>nF}B@0*C9U4k1d)SLQzkK`t`s(cU+w1qSHi%w>NPzdaw>p2A8d%m& zCcs2Uu(}>O@7^J;-@bYGr;8uoT?L`x4xgNkwom4!i6-TS${oL&E=}Z}!n?JW`(<;P z?ec+XJ&_GRd-ZC!;ZUh3r*=Tsn)fiOHal+6y*s1o`CR>c83z9dGE9A+){fIf&u~L) z$MGuqz-9EtuDDs1milj!Tf5S;Nr#==p&zsCp+enNsl|e$%QG|w%I2$|$ z?~9`@JAnx&Fu@<&qAp%iL{4sv`aXHqWnfp~o$o7zn&>KT6+%g+^*fLbcn}V+-8_rG z74!SGBxii5nqf&YHUf^v-WM8@aQ0om@qKxRRNKBi#M8y-z8f~CF?xTK;5#1`cg1n5 z46NL&+u$Wd6y(Sz}hqrw&gKX z8DOM39`@?qU4e(zu9#=IV$Jp$sE@?^qb&oCo_b$i70&!5&=>m2c}0*IwpaZ2b?iUY zwzy34?z7klTr=lo366gWuWStd^jN!U;^Ua86$}$MQza+ffGMWZdEGnwi;x(y@=&TreS~k>f-7Z zD6;59+!^4%Ol}sukg9O9Wdpb;&~U)(nk5Lk0YeNGg;Sr*9wDn z`<}Nz{?y%hmC}C_9J(j1gLFm(Y$?+fjJk)(0ag;Pq^-dS%ZnRbeawum0#v*|C+f=E zUi@aZ3{ZQQV_sNQs5{trQ-#sx40+T_9R=eH>aW{T@5igD#4NHISGerRtu;-ZD z*w(6-mhyk7%d5v(IK*;_EXoeWz|=Q`n-ocZV6DY{bK6~sE7r&)*&DBW%*5# zI=N$q$KrQ@-NwxKg9Daziy4wD*}{k=OJSOK@n&%JJ61PyKAE!E!%hpHrbp1jOsl>W zekOn0XE@hAdv(jD&61IIcw!|3tbUv(CX#pf-`I)*&dkgE-EBXA5w2OPWtYF`VvK-4 z&VZz=(a+ouNS0b)iO-_YhSghtOgUEq=~c^qP!d*(mEEmpZ`|f*yYzNC0(=3x^pLOK z9lrUF%oXN;^YMI*f7^_S%A;Bj9MzxBYkPlcSwi=?1C3dn{Xp)wL546CyG^8kmg=|4 z2D(rF8sp^D=2z^SlMEd@qS*50B$uADm&cMOB9fV1CkOUTG^a5$VSw!7}$j*#* zKaeQL3lWX-+#BZcOv7z)BY756Elm>8!i34tKtw5VS5qo$>6X71>a&Cl2m;o&6v=4RkKMB>@bvC2wEd}g?KG}x(X zIJUx`C5cT^9KzD_;_`Wz%u=YKeL8)1c(<8J3XoYHCbY70!S6yoTd~9@EgJ!C%pABI z32orN#uEFrgpT~Vu6H4!VOvIF+eSiL?z76ahklAj6iV-#kJLLo&+?3+cgBD674cnW z@vll>uTF94V{r#x+4LhWed@E~xvleK$^tz*5XOK|Ds|^vSH{JZpvx)(%GDD3Tm(ZnC?|;=?qrw z6IG#c*<5EUGocnsvAZ}=(r|y2nOt&nprjX)_gQG(a*I38jmd#%7%UoVvuGGILYJ=w z>1KPCs8w2urc$gBjJ`3>EnmJ6Wu6RS$)YpX4Qlp*U`FVXP|vQKnUhe9Z&4R3Q6P9M z)U(U5VlY6WQPvuDRk+}#{sPqZ#>az&7()+;Du~@WYk5&6SzkV3OZR`cxVKbT-+IHu zWT{LQwbAshFN@pw$PoJGWOM}(Sj(AY^>;+i5-|`;&?{>EZ&KbL-7S?M=CqiNR z+*G_LS3l;eS%wg8?QVZi*Jvl=cY#`qCue`!+8|3LN`D$VG#LKgj)_@-i4he>zAL*f zW{r3fL*G{Am|I|H=#1v^^%=1x<8WgEzSAl6gpr(Q0X{4vwKZwdQkKT z*BEn4u0c?;A^Z zH`^38Sr~W0R+86V^@goP=3e!)Zur|(A1}TmeSf&PX^qP6&Ifu5RON-utW=GCHKZR= zfF8bJesX{GfB)^-yKU#zlhZ?8TiLs6R!L{2rS3-%+HJpUD?}!PJ8anE3|F#y%417f zmmH$=K#3x>Vwp8omO3Cy`V%w?paQXN_~*5kVOHjCWQ|E?yHvY%bDp|zs-5&vZFCVR z5?8f0Z*XCmtpK+fcPgHsaE_I6chEYyF^o29`OPheHKE|A#-wwx~9nf8B>f&UcWLj*^kS-J;$5J$;xn+XfDQhPL= z;k(mFu6M{h56dSM7t_plgLcRsvoX)z)FLStEMX+RFIah*#w^{Qe6d6wxS~0WL)_=4 zkiKKgPI6y|^%(15>u@H|u#5)o;DW8gMTg|v;T*u#%)`3Onx|=Vs4Ce`p+viW{{??j zcmPh52#Y91`hh;od;`L)`5>DS_PgP=cwGgMPK=A{(dq787?1~p9U0~_B;d?eJfSQiV>N9$YEg~@Eu9QwAX@AX0~ zZYmCSyA(LV&1dl+u{83NE}foNeAH?TcfpQFtiqz@eo`S zhYTEDw+tL!odOrvrm{h@ zfiCJy51^sv9OcSNf1qJM>_I~#ISRoYXb2-m`no@8$jd=?p#S{!m;CQHf7@=~fB2Wp z=C4=VzkPh^UfsOgeE;#?`?J@VKWzTv<9~kTzJI%U`S#}J<|Q~z-k7}1mv8E8jjz4F zx`fU5=Hl|z>l)ucm-|}1-+Z`zwfW)V_Uhv0+shC5^M5?geC)_9)3A)`Sss)MdQ9@SS{NkW;$J1*i^m^^S7-{-7W2 zMkQBVDb%{3-6`-(HM6_YOzPF?Z2$J-_Kz>N7u(B$R zadW-JH@~pKf2I#$u#XFxR%Kk`zOZ*&(m>=2&+*mm&8rue+iy2t{o#wvHtID3qOmwi59O zvgWCG0(uX663{Dw&ediDdIx$ZpjQG7Q+Xz!cc6CyfBOEQAB~-1r<|SFPVemnbgYgp z>L~F6h~LoJ$2sxFtK>nq(L+4NnZyiZS-Z!Cqg zbIWtCfye9^=iA}mU`9hTEiRQqm`UXrLDt3)3hcV(b|kDwbP56Lt}y04fu>?;zSzA%Kb{bdMIfqTf1Q(4JC*IJiP~;?6`yKnC5PlPBXSWU zG7T^&Twp{-0z~BUMslb#GKS89ea@fRF$5>oV4sII4=r#B;2!KjYk;rI5b#={50MBFmJJ1Hi^TyW!U3?cn0m8{Sd(gDzW~Y8OseUOpOQ7K)cEqIe)wMwT&ZLsUsKery ze{3>W4#hhkBIE0h>6%z@`8h7H97-2c8BLKr=mZ&JtAQ?ZP>Gu0>oYVxfeu+HkG-MPH?2hWD5|_loWjXVvCbg=|jyPpkxm^ zh==WwRs-EJ(ayHmgNDRp3g9m2XG!@>e@QzTtY}Hc%;;p!%E9ol48uold38AFssIa~ zDNywVrWZ>g@F;0zp;sAmpFqbfFbZTX&^^LK73d2f z81A=0NJl&Zb9vAaE-kMgdW6SPoG@@Tfi@MV5MwKW?oUm>C1u9U@Y6$RM+k9de;Pt| zIWBGsRDZBFBPbl)wg*jZ2n?(T`k;^*Y-dHm4zyL6z1h|Rovqg!abzxmuNs+Arh|wl zF{qccylsD=vOwN4+e3yigx|wjpsRLQ4ZJe*zXNS_>rB@IeV4!if+;lEUb#S$MCfg0 zQXf~YvSyGNy1AWt2Rgza(pEXJe-3Et<>)B9_MmBjvZ7!e&^?(&ILgWrmkG4NrDXlY z{XsvVMR4e=cvoySm<9-oAmY)NBJ#)Y*B7HV<%uvWeJzfDoJOxTeBv?Ti#Kn+yZrI}?I`|4ApU~P zuu8L>#hw#VYlM#ymL}XoN@q{Pk5dR@Srh9go+khAj~A~G zXA4=+@PGLM>%|@~+Vy`58}Yq1fnCiK-&Rb-o*2>QIHv5;zXYUD|3DaP#Q1Wf;o zZ613)4dt2r@-dJj1*u|qbJ=^RqL$#gW+gLr3t*(l2g$q0Oxw(?q z+QQS02@~(vOi8iNAx$4k9#WdVtu_=$v+?tU&!_EF*;6@v4mQQ#jO&8$q$lYfzkUDR zyNm7Z)sNr3zSv$gv89DI0dwuEnq4`VSQ;22UcQL8bm2m;e`5g6GZ)VEJXn^k#=?kY zT9a~~a(y7~{KMt-hpX+?4_Dj2>r`EPc77ze352*DyYQ2N21|uv2ul$c)Xuw5k+23a$0AnpnZrgy@T{*IX833q|3SR#vJA3{(>fnf0E zASjehczK8m4Hc4so%GX%MppUANrme)<3{yJu{e9Ae@Z;uD82o4%Wu zFaZ_seB_W3ak}rQIaO)#7zs5i{_NapI8r+-Ebi=ThvDcg@6@NR&NRX|Q5x#(qO5hW zMqey{j4p=d+Yq`4VRLWcMY128lW^$XhBl!HZtn8!H2tXsR!m~2A-lpjdn8B4aX_pM zi$&H1f6Z{5XOAPqBL_V(tdLl}%yQGPCcatO$}t(i~BXOP)4#H+4PVsS^x?<70 zdaq8Y$FkG1LGb51&-gRn6gxYOmAbaPot9-je~5!dk|*=T>^M=1Kh>WUR;zKmNjaXj zt@%#c)k zf28*Z{Ww)Y1>6JgbS@iw;DC{XY!G#IvDsZI2{s4*VoLBval!QtW;ukEfkRGO42;Qh z091h&rYogXEyse0nL*$#iU{{AKk3m=xy+kjQ`DBPg_qzsDKr5cIfhdbkikMZRngUsFqp>9jtMk_Y$`tm{cOAba`G}((n|7k`?d969)xoY$_|the>+}g zyEDRFoc$6n-7;}VrgiR4aF&3c3yHFz)0_Sd9jkJdc zmJ3^j+e!DVeB$=;&CBmexj$S^mu4D zop?`|+%8^e0i~BlFJ3o)Lll)gMytZljC<*tjxv+-oGe^8-i2@Nfi=MQ8u0T^+$Fny z`~Hxe7ml`GGRFU<2KLPyAKle_sn$Kh)JKA;AmlH+KuM8^;K$km%1Y5Caa;#S6 zdoZMxiu$~2NdnC1%J$k?ov<1LC-spL!UDr%dA8~&%Ym)1kCy_AbDRh_26H)CXt7mxbcH26K}>AiMqfiCkG zkM2P4=J?zn^dr72a?0o*nX@W<$NkeP9yZ!60LluQRvcB;*#T3AGtS{|l`lvWb`R5L^?7+A&_Y+A&{wK>;+E z0YPCMf6k?DL11j+tg{ZZSi^FjjKH8M%BCZUT8c94{q_5OHMgd_TQtP$4_z4Sco#opxPQC1@ev}fBB%R{@eQ)+`* zpJtAOrPv`IEGuzjAFSjKrNLU`tTG1BKIdEpUt`Pon7QCouo*S+cbr} zVljZykUVqtSRlUNp*o~0glfc=r4GrErT-N_viDJ{4>>7Esd>mbcc=`xR_+0oTB7ny zfAFzLpG%XWSms}`gpy*1(ojm@@m7XX8&}!tP@`~d*v=}BQF4qpHGVfo8LG7o*-#UY zJL6Dl&K=4_t(Y31GPH;vfZEWMbIF1uxBgcwuq8YU$c9$9e_4EJ)%#y@<}oHB5gdB# zYtMpHkJb@lG>JTDfC8`-K8rs|Y#pZ>e`(4(h`~hq;b6N&EOxL0Onq&NaV7K2vSD1o z;t66fjb;Q%)>1l{NZ~E7Pg>N4h=E5mr~WmJtA(_bLFuBkaSp%(ynPQy?I61jlE|I3 zm`UYE-T;VkL2n$46mRS81Qp{X`r1JA;uww~26OFG2eXKKy>3}K(n?V!>BVc+R z#0dD&L5z@_cQBKMYX`9)P#&iaLYLyHgBYRYzI`}z0Y&oJinZ0)i3F1t&?L_SbPvMF z{n<)^&{t6@8?q7v!3%beThcf}f9qrfDI`r}2QfnPPEo)kEp-|OaZ4+Fwt(!VHI7?A z6dEHJUqJZyKIE5E9Dzt`2O(l&!ruTEfLST~uo;jOPEaVT8kwko{1x=sK@0|h=np_# z;S4K53?|$ofEWQw?qCDhI%3cgc#4ZB^C+Gu1TijXtAiL<6RD(N(yAqKe*|!VYTs0z zje;gSh;gk8iGnXEWMKy}t~pt~fEm=tUjQ*l$V%=5I6y(39mKdU9WjUv;xFAo?3>2oRD~E!8(WGRN0{M@n@vsUNK=M8Z zY5)juK1&sls&x=3Qdcykf2)Jo=Rkb`#_tbQDv9;87#DoPXQ2o*cZp0^RM0377AV1O z)z-_qBmnsfhSBY_itai2$-itMs)&Cum&{ z25!;1rYKN?Rvx++aEoGq4q^nzI}V1KYE!a*!2)$HTnq3(Sas?He|=~x>t~_vV(brq zMW7A)1Ng2%Vsc!th=G(lm;q9L0i@=v>j$7ZW9y`WA4ZV~jfXE7q*x`0!5|(IK@28c z8dY$MNu^Y-z;4oV2QjX8p->}LGMHre{qI*_{q*``^@mrlu5MOO-aftIr^lDC{=WL- z)%CNB>#rj$j`+9Le}Aq%Uw!(utUvq#Uwg9p^VL^Zt3Unr&Bgi6<<+Zy3pn?G{p6F? zm-zg(WDSWMpL1y3>MVi#RdRqj_}eF+{L7M&nWx8L2|ynge$)#}^JoA2H}4d+)cSKq&V`TEhbiyu~he|h^~Uxe>pte(EOdb)ZF zGL`2^o|cQ}?V0+ssOJ~0wC86R=g*oyH|TtbzPNgGeZG2mc7A>JX7%sqSFhgOT%TRO zy1_WVc?{|H=yCDU_Ns+MYWEi0sZS&{>&zHn#VozQ5E^^b9s>@x#y~9z=^AJ|)D}R7 z$GN$!J$hUve@!+QB#Or87dKz8zWCE;tFJD8yjgwz z^6cA-PuKtaasAKd2iWeLi|cUt5}W+u^6bA~-|V)1f44bSEHo?#226m~qN5RnPKR57 zx>}s_lI=OWwa`^F4g{JHE>i7ELb{Fp8=fo*62ZkGr@8f>(1Q=YYjS~wvSvzF1X##FV5avKD~T#dGpgZ=ignN z{~g+wJ1!a2EK_2JF6e&umY7QlRoii{v4CS+f1O&iFf4VnM!>=Ew8lAxO>q0%@PGDd zEy0Kxi45p;dT3H2EFAj7X}#Mtbz50z2ARP>%h^3T99$qBsX>Seh9M+17}t!hmS7A$ z<%*dtZ{QT27&zh*7-NtY7=4ozLz0vJeOF??dVO>G^74N#uD^k;b8-C~JF_PCLv ze;FTxw(DL4Lw6*7*lXN;^EZ#HLQGYg$|-N)AVvbWawL_3yc8P2M@PM0NAZ@X1F ze(gtdR!%23&B3MejTeRJ{S>$MGL4eSFuXet$8`_w$L z!g7K|vXm9ppd75h`~q>tXwgUUjvWJ=2IoBi95`NO(lAMF8Q)@Sbj*7hAG;}{f6iF) zH29JurN^G0vsC>4fz$Kz%NG~lJioerd3N)rFOR`o5uNc>D-7E*@>L5g+p@SgZh2}` zHyG3X&T(y2Ys6HNpRDS4J>+dPVtvAjqkHsNea7%i$pf#0cZO#+D9EMavjT$x4q+}S z6$nj*s@+e)81CT(wx+<#Q^v_Fe@?;8L3iy#OhFsyjkka;Q4tNsa2}@+J$QTIjC}R< zd-Bi^Yat~BJptiM`0Msu%gSTUtu2A_Ls0$ z^F%E_C<{B+5sL|LV=!mo#RRh$JTSc^!=!D}mN)MAo(&aPO*_n9D({IFf5vQ58I(#< zK|wV~QUCeHFQ_AA@F1QFOeIU0NWGK8_-iMCUv-h166IXay}^V)U|B-;#c$zmMK&1e zX3`$KW#+XhY$Ihd47_Fcda_F2RRHa80@or)Dr4PJ+f)Q4l~DE`e6kp7TmIr^nzLe- z0~1OW1~IeR%)xSUERmk#f5K4X)TgUXgLk)|&9L~g^j(cGuXiiwv6U&`%N@=yGj<)t zi(oOjR>%|xH|BwP4Xxl~<8AxHKJqu;oxR>@^2{@zM!_7iI@Wy(3zded9(F?;qd=e| za4*yN5~hNUHL!1sdNey)W&U~!f}aVTyTFJR_;d$IxEe*#a)IgPe}lvvm`UprgXW%A z4IPzF#_xMaL}CQ@$TS88x(z+Me5-3ZG#S7n_DfDCkD?Y?K&_(Q_?Hj3pFe zxoVO;nt_^xp5RTh*4LIa)0|3ZZK*UeuNI?ZmYWn+X3~y0y23l=b#H@7-)PFiVP7Yd zV_wTS>`fv>aAVa(e{88r+H*EjQekE8reM6^XHxd9DV#X_&YUgEECW`AOnJN2;CZha zK_MYW{UC(TOi8A}gVY%o#Hl;WI%)|qEk*jE`sx+5$MT(0o9ZYiYT_YEuR#jEYRY&) z)Jr+QgmR>Z4MOK(XPddsSQ{hz>x{86a;yyY|0H)z9h>YLe^`s5isM%sGPc95F78vc zedJEHbxPZzZm|>l-BCXXN^7Jv*MD>=SblaXSeB1X*lmluL6gExtgJAK5?CHb?b7n{ zF{wCGU^GdIa*NtqkIxZ!Hdqok_1Pt)QOXIJ zC+E7f&psP>f0fE&*Ix?Q-d{kr$%ObB6J(X9ng>?gF(z1=9$7GqiP}=9_Z}w9CEnkA zm@=1mc|Sf)H%)Jo&<~*ueN;QX4kBW-2gNk5MO%*-lgN$;p zj8&GWe-Q6o^BaoANBB8c7v@mxGRhR9JMqxVDSy7YlCZiOXR@CQR##<|Cj&ClQ(e{_ zH@cc|qw`FqLsniF?(f%Nm&qm(IWa(1||xx6dt66ty~~ zA+r){+grfqg*T`tZoRV`9TNnj#5$AXEU`z8f5zShEVW}>U#m=Vw&|?~ucKvj;jad- zefdB^PH_~7gHcbNBS6iBeO7s}C5dJjz{`gp>;9hBiwCv`YrRBtNZEt4Trx6o{Q#J6 zH$h<@AY>%l?x{OII%Q;*Q)2fWlYTA2;y1O~d-&d|aC8r!A9?}N?X|f={JZCwgc3;m ze-XoiYvg3`-*uN+8IUy3RHU}vMP*-+$}}%MrnRL4p`YiB{S2KJ_pXfO7SvBPbjN+p znZ9|OvGr35t?l>OGkkT+hg5KzlxuAk)~x|!0Cf+nHL2yGTHV=5Y~5KeRIm$E&Da{x zvGjIK$Ehq**EAIgxr9-;4jQKD2e??ff4_WyI%(mSN(|PtTQ6*-nMw=EJ_uR$>$=)@ zgvIN+s`aQ!lxT#j&iHe+g_6cyaVq?~ddL*feVz+bL)iwFy$*Xr&fxK6kpB8CdiW6Q zLeiP6Q23DS=ee^b;6pZ(gC_87^gscZ2s_~_j700ba$54^OrmkN?D9H|JBh+4e;;*~ z605;$`h+DoJJ)ZMm-4IbU|3#_}PY-VxGCT#d0)vXxcdNE42WYSmdM&2ghF|AXX z8H`&9tQJ?JEU#p?2fAyl<84>EN zbxr#V5?E<)UefYyQe+gxFK|+rS;&|iB$d}-ECq@cPE7qEti?8m{f!r;C&sfXie=s` z%z>f3yoN5fdUo**Ib!&?Ip1>8OEEx+p_m_Z<7)~^eHk4a&F(4euECoe3-BC2gtB5{ zSdyX9pXqP^328 z+$jAb>Q;QFtwHVOyfn$J!dl|>|MD`Xjr)CXR_%-zMC8)-QgTWNdKiQdKtpIV9?>)lZ{<@3l&$N0bw# z*7Aj2+l_8 zo8kv19_Rty-x6(7{IEm4DSkK*>N@J^uq}SrqTYrV4}=<~#H9FPi+Wr9a2xf>hy9g4 zY-4!<-&i?wvAedYcR7BCv8cypWtUle@uD`kpU6@Sj<&Z5T?x)2O=m;yD$+y!|Sy3~32S))}*Ao%F z>n6Xx-o5H7gL<&vhRcg#lhQ zeT069G-)_5f5CrhwUk@YlW||H$ZT`$g0*#DEI(4?yhVNVc&`41Z?{TWZoSA3zI=Ih{nMJkDt6mvI~?TEd)nAOaIxFUk`rtrz6H6uWO%lttP}4Q z|LeFr8(Sn}_AH$g&~`i-PVdcMl`XjD`nysCCaJeHe_&2a-S=p!u@=k_j)EkJ?on`w zu2_GmJq$R;HtIUPHo<YZlj^HpN$yZqm zw%PTdSBhJ2Xp<1am!vP44D!!ejxP}0<}<n&xm7c|=@1Dl> ze=F|+!+^jzmvhE54%XBe zio^AT$l~ZsS6}MhRdsTcIK&}0NrPku@}MRJ%8;XfQiqxxu)#_q(1vCefW|>2W5T;hGe-WyK zw(g&`A;siS9}>_3!a9;Rt|7~ivd=H;kcy9&(~xTATrk~ajo;06NIi1S83V-Z5T>D( z-zZo@^5+T$Es;354>b`7r)G`gl{%Cd{W%+os6W?+qQ#%4%NZ3 zV>6y4m({SHR*kc_KA8EeaAYki{}-ExQ{>1^2kbgW#!|6M4i%6=^l#YExQT$;&|~GS zu!OFSczYar7LM0t=v6s`u0wCW&pi#joBuE9B}#V?WD;}a+Is_7vV$F9f92{sC{rTm z3{Xgf7zQAyP(VurL57k^w;co^Qc0X0rz3&|69oN9CwX?v4c}4+Nyp0Nb+Uw(=paT= zQwK4EcAiBCKL|*U*s!Ytnj=V_0MT(~ikT&+l1~0ePF>v@Bv$_v<7Of8bTURx-A8ET zAaxMq=E|MzSc>4(`8A9vf4Tc4LDEu$q}#zL0utxU5;-qBHp~=LtPTQ2vF;-PMUB2T zaEnw)4r1J@BGkA(Z2Si9iG71d^bD5IISM@L3UJ#||ju3%`cxDOk!Mfc%NI z`=lDa>OadB`wSg?_bIhBBb6zlY74IuvyAW(2L zf)JIeiC@F?2ssE8f0~_kFelZzdI009`JUmwK-9hgdyLB9@ST+nZ%0K>S6 z=LV4CxPrC|SEZ0%aV6n2^%aP5Glecdqrip$0*JwK=>#E_G;?hLDbcw$fEdg-5g_JU zu&o3!F6ftoVPCZ5;$OqKpkMzQ<_r4e%rGYf29AKGXpM=Je+0j26$;e|egg?Kj;mA~ zKt~YcLiRgoR3<)kpwvoI0Elrdc8)+@WF$m@n6D+{1Jps-Q-1*SHCsJ^agDkNAjX9l z<<#*v)KKGmF+FW5a=zF&$QR{cAXmtY!kq+XX(ML=EL3hjNpO}zX8E%i7m|S}z}MQ# zYA}ooHsBmEe~f}$`2aRfd-JmZziB5`0ED`W)F%L|YfT3YU^X9ty0mm30m?L*p9T00 zDmil%SXF`m=3r2u2_lhS1HUCmu`>MO4~u_)fB)yN@6Yd-(7+Xj#aD~ZZm)0ezJ7Cl zu^h60@cHe{J)Zm=UtNEId9DD8>=gv`kZcYb#U8;=e?D1!d3Ss9_45AP#g~8jeDTfl z{r%#L*XQ3aKU@9!e*%VYetNT9e0pC*Ui|s?o7=^oeh*m*?f?xK%pZtm9Buq(OyaBM#r?PV z&w$UNf3$0;nWRzzzd5^H{| zyH}tN4D`Df)%5HIjGA$qHHAXcFsC43K#0shod@+8lJuFj`7Kag-QN65u%1WMRRfGO zvRa^J200e0^F1e$CM|JxZiItSKFJ**$e2oeb$i}60PA4>qrk^r`hQ@^@(uofd)A= zaG=p6%>u*~^=ZJgX6M=|QFRS8d^f0J>jbUkSg2t(j9i;afPFHeHVZAv@lcOvtxX}j zbVS{$8}bLBenbNP@%--U{N?rXth}Ez;ndW z!Uik}yU~t`dZP*9l7{9kRSfhtOR53h!0hZiF>(YNu+zL zc-o+8nAv+Y4Wkb7X_U@VQ-JgJtf{)DJ<_V8fiX3ncZHi#72DBucGAkDrpS^4e*+OT zn8jmU8B@`r!pPFuEcl6%s(XhI-wCL3=&;EFh0s%XIucXr_3+Trb`EHF}Md-E6~r$TBwQ9 zDp=k5nADynht&EObH=%6`x)jBf8+TBj6M+r&&1^23f5d;^p;ZgI4h+d#N(YSv6^xV zaM9;CdegqqD=<^UBZwd?hVI~ym-$6m9F>Vej?~pH$_h1@NGu%dbK14(em*F>o+7$8&V)er6FDQn?h{w;n3(`!!VZ6}b+nZcrzzw)y@2Ls374kZKW}t?e_i))<(MusK_; z9qv?}eS^F1=>>sXRonoeVPAQh9;(&(^}=X*(bg!u(cYl$HDumT9|?6I?aht3vq23% zCnR2&9|v`9BQqtlz?_f`>I~+}Oeokv{aXP2*Q!T}2K6YqZ*3K;e<0~mJr?+^IFY&B z1gGca}2T5FFfPVA2on8%Va6-dn?bsoA6If34q&CgvEp$!k+n8^?eG%{A-TJX#f zIJ3FTZyeZu;1MgtDw$Hz1DG4D$3f^5zvH~Py?J|ocMgfY32YmKfZ7jut5C&E!rIzh zR8FENw!Re88Gr8IfAA@&v`@5AhS%~KBnu-K^pdtDD`+;&Gs0qnLDHdbL!T-nLCVQZ6~y=e-C7@!+Qm+4Q!`ADR`v-- zEx}D535JOTJwI`G_~!b}%Kfbk?r+;qd9fU%k9K-XaFp_ihmw9Z*;cxyWi*W$90PCJoRWyrRCAPayO!7Yv!GB1LAu8*P(;cG~mXhXH2 zb|M>EBP2kTeUB=~5G?0Xd^ z=W@jBkdL-DRbKVz{#8$|EyQW|yg|lGJBhqz5#D_tysE5ScCIR0dg90R>gsy=-K*QX z*XQe)S;FFSIS^rCrfZ)>SeWYCj}~G1Xm)E$lVD+PfrWqt)_e6rxEOM5Zt*p(rxgsX zOxdXQe}MhEPT$>HdJj(D{V0j7qMer`X+OrBEbRnz5>wLSsVvNJT(&Pb6{jVWlyk*t zC7nO&FqPSBySy{uS+)tW6bUgtaryRkxh8)tUW{@eg}((aZ{B$3&`Y&FKe=W$3FfvE zgr$~-69olHNb9@9{>0-fZ+|#{v%M7s+aE|^e=cwuA;b0%wv0#;yjKR(w_80aQ?Z`CNc-9;d(y@v$g0f7wxe!p zWCW54ITAAKohzoG^mXz3#5PqZ^>qIpN1HHLW>h0x;7sdds1ZpP3S*%gJp%vTp86Hi ze^!rB>}cG#kEQQibHFMIGE;>2Y1zj)PV#-AF{}+$agqk1qk)|lYRciMmwWGAUe(U% zRzHx;9O1&LPCW1$dYzq1cJ7u^4OzTBNbqhV9aE@fRhSd?bksBJ=B3Mlh#{$D8Zi`R zL>#jiVVelplV{;=>mVW|QY%L-Mp)NDe{50HxuT759Mo-cKfzpd7x8Pq z--p|~?-$FP#gDRheSY)q{Ce^B{-^8Z+4t`Nkw9+0t}d60tDDQ^`|!j4>+9cr`s3}@ z<$oFRp1rxcJHPnpOeXacB^Yl*i@UPjGYWZsW+#?vRx90g>5oXCPqmh|j3S7}yVpjq zJHjv_n9YYyp&`uA1KBmvl5U5>OgZFalQ0uLH=92&S@!clatZ8xwZ16z%C~-6+uFr1 z2=;9+RSPo7u2C39T7Jvvd$5QqFvt!R?0@m*#k&b^6SNF8l}{|w_ZO~Ya)akSVa;NU z+#I#r%ckZQHl{}J@Q3a7tAmv7sLfu0k(~!Om>DVd@WruEPnx~t4iVT!)a%;BBcX27 z3e4JoN=DSM9$1d>aMT~q%1y#_{FL_70%{K<6&vjOe9SWDgLm)GPCo900EF3Hhkq`S z=tV`#le#rtRL@^yGBGT)LyaqY-v+kD#aY0}*MV|b=9gWQ+^-Bz5q8-IF+19@dFu}1 zV-TDI<>q5(e6~PY!Po=*y@Kn&mYW~d#>JsnGw)-`?wqaGHn{~zEm#^0;FGrxnYsR5 zvgTNd*4SH1t+DIy7>;9fipA*E=zlD~gLlX-x=dt`vvrz~WJO|4wf6#Hi=UHH{0s%l z=DV9Iz(@_rTSCq`g~PlYo#2PSBkI zdJ60~&PHU$DX{k~%~DCB>s*YGV$qf>--1xhYTar0x1IrMz#C69xvoRO^u|q@tGRK+ zs^CKbOD+mAqiuf%hTn13Q!^Tq!Pwq&E{<$9CK%k91h~HyNV$oF*M9{vh&|b0rb+Yr zHrAA4rlFN~Oy$aQ;NtIEz=0R~1fa#}9sJ?#KK%-g$z9(sWL4Qp+-|d~nCoQ6ygUVQ zF;=<>5Nl@lk7He6OcJZ7_VvW3R-gtg{oG35G0nH;_%rbUcPr9pd$j`zC@BYsqtWz& z>}z6AJwEp4r&T&{W`D8k!Ss(bNx!B}DJK>>F7XUM4wO(7Z`3*IUn(%6p0&APlZ@@e z%=$W-3rr2;`$dk`h;5Ql%n&_f2y4W(u;nw9L#bXPp869{@OgcHad-Q6@o!^fd0o!s zg-`K7)^rOs_es_?G)U|7M_J=e4+(#5PO?=oX`_?9at_C8(tjD1Rok&abMIT!d<}rV z+UCKiAHQs)GQd@Qr6slk<*nr!HT&*XkJuj_bz-mXGOjvX zWbdq_p)Ql)Tz_JgBeUlv_*?0Sl3hx{S*e`}2T>Rn-4Bv8lXLPu2ceso({t9i(<}!8 z7h7!}3U2*q!d9?ti6Xy+E zV*c{;Ix(Dhljx1i)~K28t<0O-L4C}`gJ)j$x+b<6nrf6o5?nD4wT*W87qKtFaCl(xYc}pq)MpsU)M}gCzv!vb&EPNWgzMY zpnk+Ny?=i5-RtxFyQ}x#U7p{cZ{l5+#l^;0DZW{R-JSxV2drQ z^G#p(>i%011Z2hj?a=0YDHOwIC({^&{UytRdK|vJZ&Y+vXgNJYF=24y0;BXc5D5_QhBjBsH?Rkw}Id33h&czVFQR zbkp6oW4UKEqv%0mk?iSHb?(<<@;P_DOFq{w#K1-CqDCx=?-akp0za;m3+bxx;S#$R z8yBeyA=yKv3(|jVg*R!i-?lC!6|Ac7Le7b+(1l`etI~=0g)8kOMEh;-M2f9SC&?>U zwUZpVYQB@2xydG7^xjsni`$Ji?V==mE_E>$TV))k5eEK?xp7ymcCiX~g>Tg-oHcly zH4tv_(rNVeGwoE>R;kleY*jif)mHdy^w|pA5FCFME4*IqEdl=}$y{MWSsPdQ zwq{$^E_-jQ*5wfKu>cI`m~0igoQkca%cT;A#4fjBEA5I`Tcxf9k}62)iU4(3wXUde z6@6Dy;;w+ElIE22^jJQY?1&190G+#0LU5eMo|YlVu=@X8K5<(6R{L3P|B$&b*U*F0mXoe zWJ|mZhqEOVD_(4Gz1AVM}_vPr0o*#h3>T_-izH31f&rA zFb2o>*oV;#dKthCQTP>r8+M>j0MYmi=mbPkGeRH*nzwL?_cmH6Eb-n(9>fywZOXHO zWLO$|Mm&XgCwms}h5EH;8?7qEG(rlarwC(7TdUh8Oe_qhEn#E9lgcHGEG&O_>3;wF z)tBGjtyh1zxw+k}p1--=@VjT%H~+QzfcvSSD$_rw%_~#AA7#~ z^X-?nt3Uk~g6qLWjix7R$#74?KY#Mc>WlT&=BudLHOjRwj;38hbl&u6cHpwVfAYyc z{lYCkO1sc+;Xl84%74H8cC&xEd-&aI_09F>+c%f)>h|^OA8%gYJ$bQyyZXzUzkcri z@oIJX>h^MV32hNxrf^x-FWU>z7hbN`t+baH>#G+{Uq;&Y=Kbp7{%Upe>JA_L%`>3= z$+OmUe=3-Cm!MKrs-tE~!L>*)q_`O0;Y@RAeE^{A+naxJHRU~E$P<6QucV`+Q3Z22 zr56QsmQUK#Fk}K@v^ZVPY=j+W^tIz-R+3L&ncbnDI*B9TcKiz)$ z041ovaN^=V3U$6ngZ8GCtjmOViq>o7E*B4j!w-2j-y}G@5*xX;hHW|U; zL_c|!+LYj`&3S(rRH!DnA9*PWE{sWo!p0ZRG>3*ZA$Wv`lXBftobFxm^(@hx1#&f3 z89kaIR%s+wkgA-P;p(1$=lT2Ch6+((ZU~H8NC=ve_amc?u+OQtEFxUmYy?jTx>75! z;(2M!jmT$YG~m-#3$Wn%FqW^*Gp!V>OD!!AI!r+$N@+HEfDFb6i^KJG0#_THJx1D+ zoF$0pYkNJ0c>VQa^X-4!ZJv(&OJPm|Kd_hhOJPz0dzVX0 zVH*M4muF02LkP!Qmg6`l@57g}OkrgNv3>0qmm5uCDGuuH>xcEt!}aF+?e*q+mr_k( zK@)b{(@c-(8lBC4?TVo6r{fUpyO*X-VKM^$Fqhg*VJHH8$d?38VXuGZ83FaO9cv*L zurF3Q8*gc-EEO+5;}K`ZTEIfQXr(U^Cu@FPz9t`K3YsQPGcVwPGPWyrT&l|t^Msk2 zJQ1wb#;8lGyoiUIbNMEuX-|ei75WsmvfGrm0lCnYr*)Y2KPg9;H0~Rqlp{`Fo{CoV(eWlI`aNv+ft}*e_41&nx=aechJB|E^cWC+0MVLC zwP>*^_Fk$bW!LiZOaC341O2_G$cNYqX&ldK75Elyk3=;g0Hw^E1?qChW zX{KSgSQ4ZsK+b=eq1W=D^Gw6AAQBmTrOW^&9l&Lo>ComiPLlWho?`*SFR#$!3}`5D z4g>U%MO-@Fc2Qp&^Gh-vTd~Vz#v?hrwrKgD>+z%$`#*T2Sb_V)nRzHJ-e{&(uoFF} zVIYgt%S=Ix%rMG(FyVcGvB;^cyQT$}v@q9#NL+%P728As z*Tgn+(FRYV4;|gJQJtJuw_z>dn3?MRLQDIC0hqua6VITp275~pD z{`aTuvrg50Kl#CVbhf%3Z}{O?-K6YiE-vto2JBO6qY3+8i^Nn4>Z*w&k>1s&Btg8(`TCPkE;31RP#Yy=by=x?0n`^eWv8Jo#vm) zlpNA&{%NJ$d&@f{p1QmIQ7M0PmrpmvHf=D?p*sGx;e9(C97$C@N`59l0NAzL=V#dX zdpA`}R-BHPq0CwnhfY*sw@y@I1SJ76ms5FSF>JC-C+gag zK+{38zkZ)*Nbz2mj1j9OEvhnL>QK6zm-GHM!R{MHgK5420jFsJI5J8GM{*V7K2HO1O-edxsNLtR|?T#z_v&$9mHU&vD3%R@0s)b192XKHxiggwK_mnO=f@xk;?mKF&zGiqV$UqR2Pcz%GX#e^ zv=O8_)!IRft7LwF7*{i8p4d`#YA~oUfSrx9aIi*k&iDYAp?qQ)G+q=6fD>aY3IXjP zMgYSnf>@bRW&mO^>k6Kl8e|300b(%FhT~#a3T$-{+CGbM3ZP!`0hjK4Vn_&QwHO&3 z(*fj{K7C?4e+Q_dI0euNoKt(k`~b}TV<5D)Lea~RA#Js<3@<5)^amWE<_^MQM(eZy z9aAiQ1jt2-)jJ4-8(Zfy$VC#U$Km(CpMCrD?R@t6_4Uni_Wa$8CEuN2UH|Xw4>yaK z^Tl@&?neB}>_2DEW?y_Kt2dwHW6x)Qy!rNK_T_Kif6gzLS2x%H7HW(C`q^i*Z}9#* z2w-riYuLJAWaZ|eVr{Tm0c85iXP^DcM@|hg-pu~??#=Dl%lVJ9KV2+;`0v~0v+L!2@#^Ao9{%=v_Tu%;i`kD7l7%>XySSWP zESHO`e;4nT^SAi(Z_YK=c81rM$DJrv44H;E6KGW>OQ1%9UlPFo_t?pYk?6LCL`^wZ z=i(9?$PAeba7`X65@F8m46h!ykO&PNx^-LOP$h<3_Jl$R0Mr8h!}*0XL&tFolioWsp_Ec%<-7dNkO z7SC@n?O^>EU)@|U@#I&upsQa%cdmd&mwW{l`YQx6``3$`%jfguceAg*{A%{?{HNvY z*_(^+=U=RT{9*Ou*%9doGZCETU`5H?awt_!kd(0Kq0r@7(-M{>H1Q*%(ozd_>({7+ zf1U|&{!S2;2tY!2ao4DX8x?Z%y({P)Rt`oy#3-YcgPKE-aDrBjrbXyW-)ZQa$Q{Q( zBI2@8baWMfKv=_5bQQP(A908PncVTDpq~`c?=i_By{mjltDU z(TSHDm~r3O3oSvT9mQV628GZ@dx52xv{Ougy9Sj!CcwcSDd(fu3n(>KeAYNrf7kn^ zjX$}yfKFrQz?lEeA;+VbT>M}yXyd_SB}GpVg-^L}y77he#4)wfqMc}JrKK`zWsf12 zvUh1P9Zee?&z5rc;+=KkS^|3u=*5?O6s`PU@BZ}l25~QnMR}FwMVY^9FV$W~y_~nw zUR}&DUp9M{JjT}I3bSu6E*Cc|f2^i*cAkA(zmy!<-?Y&$)q=HpSd4-zot-DvU6%|D zvsy3UPATnRk~#Y-4I+n@(N9BN;O^{Pnrs;;?Sgbl9@u|1R`nr4MUH_})f_52+}1c{l|PD}4o(#|8q)ZQe@*mp6v0PZ zn7d@#orO7KvTZNabqGw|mKVl`IiNK;)-?ebbJdX?#J2Nf5E5|Mt&sD-Uh+V90>Mp1RJ!SPcUrIb~Uzriz38qGj-A! zv{(5WQ&dB8h+<<`X$?6aVCr$#RyFhka1B~NArpFIvl>YL6gmA`VYa$)Jmi?a0d}Sj>*&;5X0C+ z;U2ktz->}fi-}S2f2MuF;N(L{|AF>_T~lBFaB&L^1f2wKH3uH?O0ckLZBZK!S2h;+ z>OuGHEr_Sh)LA9)0M`AdKDui^`}aSeuS^S5aw*Do@YZWlV`))}gd+Bs!?!l^p3G8c zItkw*^Jo7^`1ULLT3MuaFcqBCbmu(rL~HSolkA_bCoXy-e_!*|SLi1^TMm`yiQT{n zeo}0mOu^P=hq(p)cra~aZd*i5P!F%CB*swbf3NkFAP$Nt@1LG!OHbWReW$11pZbtd zEgp;m538?W8F*a%v6VJPrmNli*^!Jl4gIk8ohOT**>(T=t4{Qnhmx3l2fI<7Al4Ng z3bq&|*2C*Be^L0gC2jPVBq-4R7j=A^r(fwW5ev$*^K1P@Dx_SW;?8@rwH4^n9Jk#~ zbHw?1j6Mw}Dzk42+b3XCh z@JFM;!SMYCku@4zocjK-Lf^d?1h_@Bu3z7-H5Q$}RCnYWYftozO^zj$EQgF~#u6fkN$y&6l_Auyy_FC@z*WFd zP~MBQ=Bk7M+fqIaN+!DTsns2sK2owwGJT|Ef7!FFJcKUf4_N@o2pT6AKn+2oo(5@^ zU4WXmvt1byQgl)uY(^jI@aVM2Lr=Crr_lz*bV!?%V8eLy^$dC6gddtCOPvn!LlN-w#{&}yKr)grJqyv_+o z@clDz8BGDjRIA_3oN5cay6*j%pS-4fS8PRjaai7t`+8N!CI|SSu)W$bTp0t!Wprgq z3J<+|?{)#Kt`tV$Igz%j?cG9YlQ^1Xf4sCWyCb~nFh_#|wg@3fHBGwAB99RwZ+4lI1TPhIXoueYDXRQZcRb<+KicpK zys27ubjw3nijP@bV!XwZwtoK<%{F(0Z6xfpK0D^XJn$P1#vB+NM)PBYf3%t_tXuz5 ziJ(j>=CX1b1);4RAxps%q_x}Ebx4c7H$OmGd`Ib$4ZqY_COq8KyUMa2a%Ki2jbC&F z1Nf=i$th_P_(e%lV_yQfT=NlB zv?L2+V>L$L253!B$67y@f2)LTsGHT9+h^xo8`f7%T207^hC(U)yE z<1Tlx3APWDyC@}Z@wdUdYyDU}tN}a?b6zIt$Ea|cw!l;I>k6l(8j>HBz1IcK^~5y# zk*5^zJMjZxsKQ%{WJkfI!q}%#V+zSz+9S+IKDLI=O*>CRD42GTmWO)k{Ze(+Ga%Ev{m+T=82#4p2Vz=jtV^Umy2P9UD zBB!dW>%FRrF_zTWCdN`5=Q0*m8jt_6a7_%l@J&wor_hvIxQLC|{@tk&iMlF{_~M(G ztZgJZT}dM;2CiHqrDU#r*87lI1EiAy!?*CS<3p)Pxc$ zSEUKH@HLNr#5=A4+(-VEzlNeK-vh!5o9RF60et(}(xmNYYlGK`Rj^G8l{*TqNjZ=P zAvURGUF9a#!cTN4M#V^f2kDt@go=&Ce8 zfIG+bYauVCT$@@eVHEI&6@4S1gPq7(3EL4HqJAh~NoK;5{FW6Bu&dZoxd*U>;LY52 z0rQFUuU0I*z6#hPq39BS(1bL`63`@*#S;+0rxY zfnrMPWbnMi;P_lHy+HW%RqP_>pw9&es0gCtDbrTb0WS-rjt>LpV^IhgtPe`-6TthB ze}x8?m&8NI6ZwQ9#4PY*mHH!t>jl)}$FM5_din<70467OAOe!3?iidPnWq;sSVeLP zLcmdH^7tfZquXACM|~ zLiiKTl1d;$GNgJvLP#>WsOrb?+)7P^C7xTkZ!Ga#Jd1S5d{`|+C#xn@Nf3Us>= zFvJP(q(aPO@$|C zVu|PaLOvsZTRC4dKSsL&l}`{5Cl{~}EQ4v-=08a~X^I8qtHv;dt%5@5-XRRw{6cR45@?ih07Aozp^83O&4e0Z13 zYMZIlp}5F>1#;rR6uJaDMNK=&=|BwP09EIJ2r+};K+MSxCDKCEHb$x$S9rXC{A2s_ zhpVpr?DBHCX^*c@HvH|`{PJ!4`EqsEt-iHzH|%%qSMAgG5q^Oee@@tThc0{FdHEl-cT&A07~ z$6vHByT5PRrx&yH?ot2a^Zv)vEsj$h!=J7f^V#FsX4bx(oh-UF=yyXmZ#^hf;WBxD z1I>wz1yi8nLUjg4Z$hlbWsc2mXP-P1cl0cjJDdT%Wne9DSOcoZz=!!2JCy#HeurN! zUoP9ne}GE_%L`eD6v7SwsCBm}<~?%x8bsZW*rHI7(5;GP=kd`L%-!) zBDmtr00AF)+G8UCotB|bBLDLNenYi?Hwc96jiqh1$*A7+)j0YF5)IVc2g7IkN+=yY zlW>RAa>CZ)4WpH4VC6>9K?B7zP)9o*G^MWjfnq1_AIq=JF zz3I+g%{Sd@wpsSa9_8p+mOJMjtTl9_x91Kg#)PqC3sD;78sQinm&mC87JdqUCeVo} z#T0sp5O#*fh|P?3@q;1tJ8WjTn*RgjzFIBMu1_~VB73@*?1*-Z&-I4xP&_6|{lEq8 zVUFNpcDhd z)-i7q5it6I_&wfQNhc;UoJ|0Kji5A?Y%~T33S#pC{MbX=kTteFUtazPwr6jT!iQos zT%;+5J0Bp@n#_bP4dM=Q6cVgq)aSEFjO~*lJ^^^t50KU27al!>M|g+Xv2(*@;*Qy2 zUErF^NEA-YPuR?~aDtAoHm8A8?2KhYY zTX941Bg{!}Q2;lBg>XC#hgLjns3IYMRD99&A#-8zFVWg`sWp+Z^q@$f>kz?4KdgT5R< zutT;cQfY57h#pEax{)z|_-8br{1(RolVSA>7Q^@iv8ML+;UJo&A{6kc@!$iNL}1Je z^T3GEfmt|ALP{$VAG-*K0*x2_-ArJF&%nyzjb+QxIPVW3g3O`OdyA2dBNMjpS_EDU zbna+MK*U)I$=4E!ApWU#nDh!6juTivfd8TviJ|@@P;zi!$_JW%ZV`ke?yhYME`r{J zz}rV-?RXA*V)fO#kOiI*B5)fA+SVH_*YIe0)D?QZ&)l05!-O&Dt#p6P@#uZo7kW7H zuDE+}w!O^)#2}`GI-0V#HF}AVA&68GD}&r7UN95r z#LFJ>vJB#72el`Elkxs9&E!N7R-7(AFneb1WBVs?3MmaFqyw<20o;Z}y4O<}3n zW@tLNSO`z+q=D&^Z@zqf^k{k3wO`G@{OWkGw88SUa{>pqXj~DP?)BCn-W)eeV8Cd5 z>=zS4cRxfeI20LyK?7T_UJ!2mm&QhIMW4QHG>>>f$0dLNr;skdq@JDRN#mB3NB+D zJINOPFi-@4NJwgu1Vf4F2)e~NpaO3SKIPb~He3CD{*KD5ot>;(XRSjp7(yO|jmd~D zH~2*FO~t|fdVGF{6n@|>7bq{kO)s(!r{I`!gW%D`=*9+(VBywxAV{z*chCGxa0rqS zDv&R786WZ>M1{k|5cLK!i`1b1RGx

Added

  • The TerminationStatusCode and ResultStatusCode enums are now exported by JuMP. Prefer termination_status(model) == OPTIMAL instead of == MOI.OPTIMAL, although the MOI. prefix way still works.
  • Copy a x::DenseAxisArray to an Array by calling Array(x).
  • NonlinearExpression is now a subtype of AbstractJuMPScalar
  • Constraints such as @constraint(model, x + 1 in MOI.Integer()) are now supported.
  • primal_feasibility_report now accepts a function as the first argument.
  • Scalar variables @variable(model, x[1:2] in MOI.Integer()) creates two variables, both of which are constrained to be in the set MOI.Integer.
  • Conic constraints can now be specified as inequalities under a different partial ordering. So @constraint(model, x - y in MOI.Nonnegatives()) can now be written as @constraint(model, x >= y, MOI.Nonnegatives()).
  • Names are now set for vectorized constraints.

Fixed

  • Fixed a performance issue when show was called on a SparseAxisArray with a large number of elements.
  • Fixed a bug displaying barrier and simplex iterations in solution_summary.
  • Fixed a bug by implementing hash for DenseAxisArray and SparseAxisArray.
  • Names are now only set if the solver supports them. Previously, this prevented solvers such as Ipopt from being used with direct_model.
  • MutableArithmetics.Zero is converted into a 0.0 before being returned to the user. Previously, some calls to @expression would return the undocumented MutableArithmetics.Zero() object. One example is summing over an empty set @expression(model, sum(x[i] for i in 1:0)). You will now get 0.0 instead.
  • AffExpr and QuadExpr can now be used with == 0 instead of iszero. This fixes a number of issues relating to Julia standard libraries such as LinearAlgebra and SparseArrays.
  • Fixed a bug when registering a user-defined function with splatting.

Other

  • The documentation is now available as a PDF.
  • The documentation now includes a full copy of the MathOptInterface documentation to make it easy to link concepts between the docs. (The MathOptInterface documentation has also been significantly improved.)
  • The documentation contains a large number of improvements and clarifications on a range of topics. Thanks to @sshin23, @DilumAluthge, and @jlwether.
  • The documentation is now built with Julia 1.6 instead of 1.0.
  • Various error messages have been improved to be more readable.

Version 0.21.10 (September 4, 2021)

Added

  • Added add_NL_expression
  • add_NL_xxx functions now support AffExpr and QuadExpr as terms

Fixed

  • Fixed a bug in solution_summary
  • Fixed a bug in relax_integrality

Other

  • Improved error message in lp_sensitivity_report

Version 0.21.9 (August 1, 2021)

Added

  • Containers now support arbitrary container types by passing the type to the container keyword and overloading Containers.container.
  • is_valid now supports nonlinear constraints
  • Added unsafe_backend for querying the inner-most optimizer of a JuMP model.
  • Nonlinear parameters now support the plural @NLparameters macro.
  • Containers (for example, DenseAxisArray) can now be used in vector-valued constraints.

Other

  • Various improvements to the documentation.

Version 0.21.8 (May 8, 2021)

Added

  • The @constraint macro is now extendable in the same way as @variable.
  • AffExpr and QuadExpr can now be used in nonlinear macros.

Fixed

  • Fixed a bug in lp_sensitivity_report.
  • Fixed an inference issue when creating empty SparseAxisArrays.

Version 0.21.7 (April 12, 2021)

Added

  • Added primal_feasibility_report, which can be used to check whether a primal point satisfies primal feasibility.
  • Added coefficient, which returns the coefficient associated with a variable in affine and quadratic expressions.
  • Added copy_conflict, which returns the IIS of an infeasible model.
  • Added solution_summary, which returns (and prints) a struct containing a summary of the solution.
  • Allow AbstractVector in vector constraints instead of just Vector.
  • Added latex_formulation(model) which returns an object representing the latex formulation of a model. Use print(latex_formulation(model)) to print the formulation as a string.
  • User-defined functions in nonlinear expressions are now automatically registered to aid quick model prototyping. However, a warning is printed to encourage the manual registration.
  • DenseAxisArray's now support broadcasting over multiple arrays.
  • Container indices can now be iterators of Base.SizeUnknown.

Fixed

  • Fixed bug in rad2deg and deg2rad in nonlinear expressions.
  • Fixed a MethodError bug in Containers when forcing container type.
  • Allow partial slicing of a DenseAxisArray, resolving an issue from 2014.
  • Fixed a bug printing variable names in IJulia.
  • Ending an IJulia cell with model now prints a summary of the model (like in the REPL) not the latex formulation. Use print(model) to print the latex formulation.
  • Fixed a bug when copying models containing nested arrays.

Other

  • Tutorials are now part of the documentation, and more refactoring has taken place.
  • Added JuliaFormatter added as a code formatter.
  • Added some precompilation statements to reduce initial latency.
  • Various improvements to error messages to make them more helpful.
  • Improved performance of value(::NonlinearExpression).
  • Improved performance of fix(::VariableRef).

Version 0.21.6 (January 29, 2021)

Added

  • Added support for skew symmetric variables via @variable(model, X[1:2, 1:2] in SkewSymmetricMatrixSpace()).
  • lp_sensitivity_report has been added which significantly improves the performance of querying the sensitivity summary of an LP. lp_objective_perturbation_range and lp_rhs_perturbation_range are deprecated.
  • Dual warm-starts are now supported with set_dual_start_value and dual_start_value.
  • (\in<tab>) can now be used in macros instead of = or in.
  • Use haskey(model::Model, key::Symbol) to check if a name key is registered in a model.
  • Added unregister(model::Model, key::Symbol) to unregister a name key from model.
  • Added callback_node_status for use in callbacks.
  • Added print_bridge_graph to visualize the bridging graph generated by MathOptInterface.
  • Improved error message for containers with duplicate indices.

Fixed

  • Various fixes to pass tests on Julia 1.6.
  • Fixed a bug in the printing of nonlinear expressions in IJulia.
  • Fixed a bug when nonlinear expressions are passed to user-defined functions.
  • Some internal functions that were previously exported are now no longer exported.
  • Fixed a bug when relaxing a fixed binary variable.
  • Fixed a StackOverflowError that occurred when SparseAxisArrays had a large number of elements.
  • Removed an unnecessary type assertion in list_of_constraint_types.
  • Fixed a bug when copying models with registered expressions.

Other

  • The documentation has been significantly overhauled. It now has distinct sections for the manual, API reference, and examples. The existing examples in /examples have now been moved to /docs/src/examples and rewritten using Literate.jl, and they are now included in the documentation.
  • JuliaFormatter has been applied to most of the codebase. This will continue to roll out over time, as we fix upstream issues in the formatter, and will eventually become compulsory.
  • The root cause of a large number of method invalidations has been resolved.
  • We switched continuous integration from Travis and Appveyor to GitHub Actions.

Version 0.21.5 (September 18, 2020)

Fixed

  • Fixed deprecation warnings
  • Throw DimensionMismatch for incompatibly sized functions and sets
  • Unify treatment of keys(x) on JuMP containers

Version 0.21.4 (September 14, 2020)

Added

  • Add debug info when adding unsupported constraints
  • Add relax_integrality for solving continuous relaxation
  • Allow querying constraint conflicts

Fixed

  • Dispatch on Real for MOI.submit
  • Implement copy for CustomSet in tests
  • Don't export private macros
  • Fix invalid assertion in nonlinear
  • Error if constraint has NaN right-hand side
  • Improve speed of tests
  • Lots of work modularizing files in /test
  • Improve line numbers in macro error messages
  • Print nonlinear subexpressions
  • Various documentation updates
  • Dependency updates:
    • Datastructures 0.18
    • MathOptFormat v0.5
    • Prep for MathOptInterface 0.9.15

Version 0.21.3 (June 18, 2020)

  • Added Special Order Sets (SOS1 and SOS2) to JuMP with default weights to ease the creation of such constraints (#2212).
  • Added functions simplex_iterations, barrier_iterations and node_count (#2201).
  • Added function reduced_cost (#2205).
  • Implemented callback_value for affine and quadratic expressions (#2231).
  • Support MutableArithmetics.Zero in objective and constraints (#2219).
  • Documentation improvements:
    • Mention tutorials in the docs (#2223).
    • Update COIN-OR links (#2242).
    • Explicit link to the documentation of MOI.FileFormats (#2253).
    • Typo fixes (#2261).
  • Containers improvements:
    • Fix Base.map for DenseAxisArray (#2235).
    • Throw BoundsError if number of indices is incorrect for DenseAxisArray and SparseAxisArray (#2240).
  • Extensibility improvements:
    • Implement a set_objective method fallback that redirects to set_objective_sense and set_objective_function (#2247).
    • Add parse_constraint method with arbitrary number of arguments (#2051).
    • Add parse_constraint_expr and parse_constraint_head (#2228).

Version 0.21.2 (April 2, 2020)

  • Added relative_gap() to access MOI.RelativeGap() attribute (#2199).
  • Documentation fixes:
    • Added link to source for docstrings in the documentation (#2207).
    • Added docstring for @variables macro (#2216).
    • Typo fixes (#2177, #2184, #2182).
  • Implementation of methods for Base functions:
    • Implemented Base.empty! for JuMP.Model (#2198).
    • Implemented Base.conj for JuMP scalar types (#2209).

Fixed

  • Fixed sum of expression with scalar product in macro (#2178).
  • Fixed writing of nonlinear models to MathOptFormat (#2181).
  • Fixed construction of empty SparseAxisArray (#2179).
  • Fixed constraint with zero function (#2188).

Version 0.21.1 (Feb 18, 2020)

  • Improved the clarity of the with_optimizer deprecation warning.

Version 0.21.0 (Feb 16, 2020)

Breaking

  • Deprecated with_optimizer (#2090, #2084, #2141). You can replace with_optimizer by either nothing, optimizer_with_attributes or a closure:

    • replace with_optimizer(Ipopt.Optimizer) by Ipopt.Optimizer.
    • replace with_optimizer(Ipopt.Optimizer, max_cpu_time=60.0) by optimizer_with_attributes(Ipopt.Optimizer, "max_cpu_time" => 60.0).
    • replace with_optimizer(Gurobi.Optimizer, env) by () -> Gurobi.Optimizer(env).
    • replace with_optimizer(Gurobi.Optimizer, env, Presolve=0) by optimizer_with_attributes(() -> Gurobi.Optimizer(env), "Presolve" => 0).

    alternatively to optimizer_with_attributes, you can also set the attributes separately with set_optimizer_attribute.

  • Renamed set_parameter and set_parameters to set_optimizer_attribute and set_optimizer_attributes (#2150).

  • Broadcast should now be explicit inside macros. @SDconstraint(model, x >= 1) and @constraint(model, x + 1 in SecondOrderCone()) now throw an error instead of broadcasting 1 along the dimension of x (#2107).

  • @SDconstraint(model, x >= 0) is now equivalent to @constraint(model, x in PSDCone()) instead of @constraint(model, (x .- 0) in PSDCone()) (#2107).

  • The macros now create the containers with map instead of for loops, as a consequence, containers created by @expression can now have any element type and containers of constraint references now have concrete element types when possible. This fixes a long-standing issue where @expression could only be used to generate a collection of linear expressions. Now it works for quadratic expressions as well (#2070).

  • Calling deepcopy(::AbstractModel) now throws an error.

  • The constraint name is now printed in the model string (#2108).

Added

  • Added support for solver-independent and solver-specific callbacks (#2101).
  • Added write_to_file and read_from_file, supported formats are CBF, LP, MathOptFormat, MPS and SDPA (#2114).
  • Added support for complementarity constraints (#2132).
  • Added support for indicator constraints (#2092).
  • Added support for querying multiple solutions with the result keyword (#2100).
  • Added support for constraining variables on creation (#2128).
  • Added method delete that deletes a vector of variables at once if it is supported by the underlying solver (#2135).
  • The arithmetic between JuMP expression has be refactored into the MutableArithmetics package (#2107).
  • Improved error on complex values in NLP (#1978).
  • Added an example of column generation (#2010).

Fixed

  • Incorrect coefficients generated when using Symmetric variables (#2102)

Version 0.20.1 (Oct 18, 2019)

  • Add sections on @variables and @constraints in the documentation (#2062).
  • Fixed product of sparse matrices for Julia v1.3 (#2063).
  • Added set_objective_coefficient to modify the coefficient of a linear term of the objective function (#2008).
  • Added set_time_limit_sec, unset_time_limit_sec and time_limit_sec to set and query the time limit for the solver in seconds (#2053).

Version 0.20.0 (Aug 24, 2019)

  • Documentation updates.
  • Numerous bug fixes.
  • Better error messages (#1977, #1978, #1997, #2017).
  • Performance improvements (#1947, #2032).
  • Added LP sensitivity summary functions lp_objective_perturbation_range and lp_rhs_perturbation_range (#1917).
  • Added functions dual_objective_value, raw_status and set_parameter.
  • Added function set_objective_coefficient to modify the coefficient of a linear term of the objective (#2008).
  • Added functions set_normalized_rhs, normalized_rhs, and add_to_function_constant to modify and get the constant part of a constraint (#1935, #1960).
  • Added functions set_normalized_coefficient and normalized_coefficient to modify and get the coefficient of a linear term of a constraint (#1935, #1960).
  • Numerous other improvements in MOI 0.9, see the NEWS.md file of MOI for more details.

Version 0.19.2 (June 8, 2019)

  • Fix a bug in derivatives that could arise in models with nested nonlinear subexpressions.

Version 0.19.1 (May 12, 2019)

  • Usability and performance improvements.
  • Bug fixes.

Version 0.19.0 (February 15, 2019)

JuMP 0.19 contains significant breaking changes.

Breaking

  • JuMP's abstraction layer for communicating with solvers changed from MathProgBase (MPB) to MathOptInterface (MOI). MOI addresses many longstanding design issues. (See @mlubin's slides from JuMP-dev 2018.) JuMP 0.19 is compatible only with solvers that have been updated for MOI. See the installation guide for a list of solvers that have and have not yet been updated.

  • Most solvers have been renamed to PackageName.Optimizer. For example, GurobiSolver() is now Gurobi.Optimizer.

  • Solvers are no longer added to a model via Model(solver = XXX(kwargs...)). Instead use Model(with_optimizer(XXX, kwargs...)). For example, Model(with_optimizer(Gurobi.Optimizer, OutputFlag=0)).

  • JuMP containers (for example, the objects returned by @variable) have been redesigned. Containers.SparseAxisArray replaces JuMPDict, JuMPArray was rewritten (inspired by AxisArrays) and renamed Containers.DenseAxisArray, and you can now request a container type with the container= keyword to the macros. See the corresponding documentation for more details.

  • The statuses returned by solvers have changed. See the possible status values here. The MOI statuses are much richer than the MPB statuses and can be used to distinguish between previously indistinguishable cases (for example, did the solver have a feasible solution when it stopped because of the time limit?).

  • Starting values are separate from result values. Use value to query the value of a variable in a solution. Use start_value and set_start_value to get and set an initial starting point provided to the solver. The solutions from previous solves are no longer automatically set as the starting points for the next solve.

  • The data structures for affine and quadratic expressions AffExpr and QuadExpr have changed. Internally, terms are stored in dictionaries instead of lists. Duplicate coefficients can no longer exist. Accessors and iteration methods have changed.

  • JuMPNLPEvaluator no longer includes the linear and quadratic parts of the model in the evaluation calls. These are now handled separately to allow NLP solvers that support various types of constraints.

  • JuMP solver-independent callbacks have been replaced by solver-specific callbacks. See your favorite solver for more details. (See the note below: No solver-specific callbacks are implemented yet.)

  • The norm() syntax is no longer recognized inside macros. Use the SecondOrderCone() set instead.

  • JuMP no longer performs automatic transformation between special quadratic forms and second-order cone constraints. Support for these constraint classes depends on the solver.

  • The symbols :Min and :Max are no longer used as optimization senses. Instead, JuMP uses the OptimizationSense enum from MathOptInterface. @objective(model, Max, ...), @objective(model, Min, ...), @NLobjective(model, Max, ...), and @objective(model, Min, ...) remain valid, but @objective(m, :Max, ...) is no longer accepted.

  • The sign conventions for duals has changed in some cases for consistency with conic duality (see the documentation). The shadow_price helper method returns duals with signs that match conventional LP interpretations of dual values as sensitivities of the objective value to relaxations of constraints.

  • @constraintref is no longer defined. Instead, create the appropriate container to hold constraint references manually. For example,

    constraints = Dict() # Optionally, specify types for improved performance.
     for i in 1:N
       constraints[i] = @constraint(model, ...)
    -end
  • The lowerbound, upperbound, and basename keyword arguments to the @variable macro have been renamed to lower_bound, upper_bound, and base_name, for consistency with JuMP's new style recommendations.

  • We rely on broadcasting syntax to apply accessors to collections of variables, for example, value.(x) instead of getvalue(x) for collections. (Use value(x) when x is a scalar object.)

Added

  • Splatting (like f(x...)) is recognized in restricted settings in nonlinear expressions.

  • Support for deleting constraints and variables.

  • The documentation has been completely rewritten using docstrings and Documenter.

  • Support for modeling mixed conic and quadratic models (for example, conic models with quadratic objectives and bi-linear matrix inequalities).

  • Significantly improved support for modeling new types of constraints and for extending JuMP's macros.

  • Support for providing dual warm starts.

  • Improved support for accessing solver-specific attributes (for example, the irreducible inconsistent subsystem).

  • Explicit control of whether symmetry-enforcing constraints are added to PSD constraints.

  • Support for modeling exponential cones.

  • Significant improvements in internal code quality and testing.

  • Style and naming guidelines.

  • Direct mode and manual mode provide explicit control over when copies of a model are stored or regenerated. See the corresponding documentation.

Regressions

There are known regressions from JuMP 0.18 that will be addressed in a future release (0.19.x or later):

  • Performance regressions in model generation (issue). Please file an issue anyway if you notice a significant performance regression. We have plans to address a number of performance issues, but we might not be aware of all of them.

  • Fast incremental NLP solves are not yet reimplemented (issue).

  • We do not yet have an implementation of solver-specific callbacks.

  • The column generation syntax in @variable has been removed (that is, the objective, coefficients, and inconstraints keyword arguments). Support for column generation will be re-introduced in a future release.

  • The ability to solve the continuous relaxation (that is, via solve(model; relaxation = true)) is not yet reimplemented (issue).

Version 0.18.5 (December 1, 2018)

  • Support views in some derivative evaluation functions.
  • Improved compatibility with PackageCompiler.

Version 0.18.4 (October 8, 2018)

  • Fix a bug in model printing on Julia 0.7 and 1.0.

Version 0.18.3 (October 1, 2018)

  • Add support for Julia v1.0 (Thanks @ExpandingMan)
  • Fix matrix expressions with quadratic functions (#1508)

Version 0.18.2 (June 10, 2018)

  • Fix a bug in second-order derivatives when expressions are present (#1319)
  • Fix a bug in @constraintref (#1330)

Version 0.18.1 (April 9, 2018)

  • Fix for nested tuple destructuring (#1193)
  • Preserve internal model when relaxation=true (#1209)
  • Minor bug fixes and updates for example

Version 0.18.0 (July 27, 2017)

  • Drop support for Julia 0.5.
  • Update for ForwardDiff 0.5.
  • Minor bug fixes.

Version 0.17.1 (June 9, 2017)

  • Use of constructconstraint! in @SDconstraint.
  • Minor bug fixes.

Version 0.17.0 (May 27, 2017)

  • Breaking change: Mixing quadratic and conic constraints is no longer supported.
  • Breaking change: The getvariable and getconstraint functions are replaced by indexing on the corresponding symbol. For instance, to access the variable with name x, one should now write m[:x] instead of getvariable(m, :x). As a consequence, creating a variable and constraint with the same name now triggers a warning, and accessing one of them afterwards throws an error. This change is breaking only in the latter case.
  • Addition of the getobjectivebound function that mirrors the functionality of the MathProgBase getobjbound function except that it takes into account transformations performed by JuMP.
  • Minor bug fixes.

The following changes are primarily of interest to developers of JuMP extensions:

  • The new syntax @constraint(model, expr in Cone) creates the constraint ensuring that expr is inside Cone. The Cone argument is passed to constructconstraint! which enables the call to the dispatched to an extension.
  • The @variable macro now calls constructvariable! instead of directly calling the Variable constructor. Extra arguments and keyword arguments passed to @variable are passed to constructvariable! which enables the call to be dispatched to an extension.
  • Refactor the internal function conicdata (used build the MathProgBase conic model) into smaller sub-functions to make these parts reusable by extensions.

Version 0.16.2 (March 28, 2017)

  • Minor bug fixes and printing tweaks
  • Address deprecation warnings for Julia 0.6

Version 0.16.1 (March 7, 2017)

  • Better support for AbstractArray in JuMP (Thanks @tkoolen)
  • Minor bug fixes

Version 0.16.0 (February 23, 2017)

  • Breaking change: JuMP no longer has a mechanism for selecting solvers by default (the previous mechanism was flawed and incompatible with Julia 0.6). Not specifying a solver before calling solve() will result in an error.
  • Breaking change: User-defined functions are no longer global. The first argument to JuMP.register is now a JuMP Model object within whose scope the function will be registered. Calling JuMP.register without a Model now produces an error.
  • Breaking change: Use the new JuMP.fix method to fix a variable to a value or to update the value to which a variable is fixed. Calling setvalue on a fixed variable now results in an error in order to avoid silent behavior changes. (Thanks @joaquimg)
  • Nonlinear expressions now print out similarly to linear/quadratic expressions (useful for debugging!)
  • New category keyword to @variable. Used for specifying categories of anonymous variables.
  • Compatibility with Julia 0.6-dev.
  • Minor fixes and improvements (Thanks @cossio, @ccoffrin, @blegat)

Version 0.15.1 (January 31, 2017)

  • Bugfix for @LinearConstraints and friends

Version 0.15.0 (December 22, 2016)

  • Julia 0.5.0 is the minimum required version for this release.
  • Document support for BARON solver
  • Enable info callbacks in more states than before, for example, for recording solutions. New when argument to addinfocallback (#814, thanks @yeesian)
  • Improved support for anonymous variables. This includes new warnings for potentially confusing use of the traditional non-anonymous syntax:
    • When multiple variables in a model are given the same name
    • When non-symbols are used as names, for example, @variable(m, x[1][1:N])
  • Improvements in iterating over JuMP containers (#836, thanks @IssamT)
  • Support for writing variable names in .lp file output (Thanks @leethargo)
  • Support for querying duals to SDP problems (Thanks @blegat)
  • The comprehension syntax with curly braces sum{}, prod{}, and norm2{} has been deprecated in favor of Julia's native comprehension syntax sum(), prod() and norm() as previously announced. (For early adopters of the new syntax, norm2() was renamed to norm() without deprecation.)
  • Unit tests rewritten to use Base.Test instead of FactCheck
  • Improved support for operations with matrices of JuMP types (Thanks @ExpandingMan)
  • The syntax to halt a solver from inside a callback has changed from throw(CallbackAbort()) to return JuMP.StopTheSolver
  • Minor bug fixes

Version 0.14.2 (December 12, 2016)

  • Allow singleton anonymous variables (includes bugfix)

Version 0.14.1 (September 12, 2016)

  • More consistent handling of states in informational callbacks, includes a new when parameter to addinfocallback for specifying in which state an informational callback should be called.

Version 0.14.0 (August 7, 2016)

  • Compatibility with Julia 0.5 and ForwardDiff 0.2
  • Support for "anonymous" variables, constraints, expressions, and parameters, for example, x = @variable(m, [1:N]) instead of @variable(m, x[1:N])
  • Support for retrieving constraints from a model by name via getconstraint
  • @NLconstraint now returns constraint references (as expected).
  • Support for vectorized expressions within lazy constraints
  • On Julia 0.5, parse new comprehension syntax sum(x[i] for i in 1:N if isodd(i)) instead of sum{ x[i], i in 1:N; isodd(i) }. The old syntax with curly braces will be deprecated in JuMP 0.15.
  • Now possible to provide nonlinear expressions as "raw" Julia Expr objects instead of using JuMP's nonlinear macros. This input format is useful for programmatically generated expressions.
  • s/Mathematical Programming/Mathematical Optimization/
  • Support for local cuts (Thanks to @madanim, Mehdi Madani)
  • Document Xpress interface developed by @joaquimg, Joaquim Dias Garcia
  • Minor bug and deprecation fixes (Thanks @odow, @jrevels)

Version 0.13.2 (May 16, 2016)

  • Compatibility update for MathProgBase

Version 0.13.1 (May 3, 2016)

  • Fix broken deprecation for registerNLfunction.

Version 0.13.0 (April 29, 2016)

  • Most exported methods and macros have been renamed to avoid camelCase. See the list of changes here. There is a 1-1 mapping from the old names to the new, and it is safe to simply replace the names to update existing models.
  • Specify variable lower/upper bounds in @variable using the lowerbound and upperbound keyword arguments.
  • Change name printed for variable using the basename keyword argument to @variable.
  • New @variables macro allows multi-line declaration of groups of variables.
  • A number of solver methods previously available only through MathProgBase are now exposed directly in JuMP. The fix was recorded live.
  • Compatibility fixes with Julia 0.5.
  • The "end" indexing syntax is no longer supported within JuMPArrays which do not use 1-based indexing until upstream issues are resolved, see here.

Version 0.12.2 (March 9, 2016)

  • Small fixes for nonlinear optimization

Version 0.12.1 (March 1, 2016)

  • Fix a regression in slicing for JuMPArrays (when not using 1-based indexing)

Version 0.12.0 (February 27, 2016)

  • The automatic differentiation functionality has been completely rewritten with a number of user-facing changes:
    • @defExpr and @defNLExpr now take the model as the first argument. The previous one-argument version of @defExpr is deprecated; all expressions should be named. For example, replace @defExpr(2x+y) with @defExpr(jump_model, my_expr, 2x+y).
    • JuMP no longer uses Julia's variable binding rules for efficiently re-solving a sequence of nonlinear models. Instead, we have introduced nonlinear parameters. This is a breaking change, so we have added a warning message when we detect models that may depend on the old behavior.
    • Support for user-defined functions integrated within nonlinear JuMP expressions.
  • Replaced iteration over AffExpr with Number-like scalar iteration; previous iteration behavior is now available via linearterms(::AffExpr).
  • Stopping the solver via throw(CallbackAbort()) from a callback no longer triggers an exception. Instead, solve() returns UserLimit status.
  • getDual() now works for conic problems (Thanks @emreyamangil.)

Version 0.11.3 (February 4, 2016)

  • Bug-fix for problems with quadratic objectives and semidefinite constraints

Version 0.11.2 (January 14, 2016)

  • Compatibility update for Mosek

Version 0.11.1 (December 1, 2015)

  • Remove usage of @compat in tests.
  • Fix updating quadratic objectives for nonlinear models.

Version 0.11.0 (November 30, 2015)

  • Julia 0.4.0 is the minimum required version for this release.
  • Fix for scoping semantics of index variables in sum{}. Index variables no longer leak into the surrounding scope.
  • Addition of the solve(m::Model, relaxation=true) keyword argument to solve the standard continuous relaxation of model m
  • The getConstraintBounds() method allows access to the lower and upper bounds of all constraints in a (nonlinear) model.
  • Update for breaking changes in MathProgBase

Version 0.10.3 (November 20, 2015)

  • Fix a rare error when parsing quadratic expressions
  • Fix Variable() constructor with default arguments
  • Detect unrecognized keywords in solve()

Version 0.10.2 (September 28, 2015)

  • Fix for deprecation warnings

Version 0.10.1 (September 3, 2015)

  • Fixes for ambiguity warnings.
  • Fix for breaking change in precompilation syntax in Julia 0.4-pre

Version 0.10.0 (August 31, 2015)

  • Support (on Julia 0.4 and later) for conditions in indexing @defVar and @addConstraint constructs, for example, @defVar(m, x[i=1:5,j=1:5; i+j >= 3])
  • Support for vectorized operations on Variables and expressions. See the documentation for details.
  • New getVar() method to access variables in a model by name
  • Support for semidefinite programming.
  • Dual solutions are now available for general nonlinear problems. You may call getDual on a reference object for a nonlinear constraint, and getDual on a variable object for Lagrange multipliers from active bounds.
  • Introduce warnings for two common performance traps: too many calls to getValue() on a collection of variables and use of the + operator in a loop to sum expressions.
  • Second-order cone constraints can be written directly with the norm() and norm2{} syntax.
  • Implement MathProgBase interface for querying Hessian-vector products.
  • Iteration over JuMPContainers is deprecated; instead, use the keys and values functions, and zip(keys(d),values(d)) for the old behavior.
  • @defVar returns Array{Variable,N} when each of N index sets are of the form 1:nᵢ.
  • Module precompilation: on Julia 0.4 and later, using JuMP is now much faster.

Version 0.9.3 (August 11, 2015)

  • Fixes for FactCheck testing on julia v0.4.

Version 0.9.2 (June 27, 2015)

  • Fix bug in @addConstraints.

Version 0.9.1 (April 25, 2015)

  • Fix for Julia 0.4-dev.
  • Small infrastructure improvements for extensions.

Version 0.9.0 (April 18, 2015)

  • Comparison operators for constructing constraints (for example, 2x >= 1) have been deprecated. Instead, construct the constraints explicitly in the @addConstraint macro to add them to the model, or in the @LinearConstraint macro to create a stand-alone linear constraint instance.
  • getValue() method implemented to compute the value of a nonlinear subexpression
  • JuMP is now released under the Mozilla Public License version 2.0 (was previously LGPL). MPL is a copyleft license which is less restrictive than LGPL, especially for embedding JuMP within other applications.
  • A number of performance improvements in ReverseDiffSparse for computing derivatives.
  • MathProgBase.getsolvetime(m) now returns the solution time reported by the solver, if available. (Thanks @odow, Oscar Dowson)
  • Formatting fix for LP format output. (Thanks @sbebo, Leonardo Taccari).

Version 0.8.0 (February 17, 2015)

  • Nonlinear subexpressions now supported with the @defNLExpr macro.
  • SCS supported for solving second-order conic problems.
  • setXXXCallback family deprecated in favor of addXXXCallback.
  • Multiple callbacks of the same type can be registered.
  • Added support for informational callbacks via addInfoCallback.
  • A CallbackAbort exception can be thrown from callback to safely exit optimization.

Version 0.7.4 (February 4, 2015)

  • Reduced costs and linear constraint duals are now accessible when quadratic constraints are present.
  • Two-sided nonlinear constraints are supported.
  • Methods for accessing the number of variables and constraints in a model are renamed.
  • New default procedure for setting initial values in nonlinear optimization: project zero onto the variable bounds.
  • Small bug fixes.

Version 0.7.3 (January 14, 2015)

  • Fix a method ambiguity conflict with Compose.jl (cosmetic fix)

Version 0.7.2 (January 9, 2015)

  • Fix a bug in sum(::JuMPDict)
  • Added the setCategory function to change a variables category (for example, continuous or binary)

after construction, and getCategory to retrieve the variable category.

Version 0.7.1 (January 2, 2015)

  • Fix a bug in parsing linear expressions in macros. Affects only Julia 0.4 and later.

Version 0.7.0 (December 29, 2014)

Linear/quadratic/conic programming

  • Breaking change: The syntax for column-wise model generation has been changed to use keyword arguments in @defVar.
  • On Julia 0.4 and later, variables and coefficients may be multiplied in any order within macros. That is, variable*coefficient is now valid syntax.
  • ECOS supported for solving second-order conic problems.

Nonlinear programming

  • Support for skipping model generation when solving a sequence of nonlinear models with changing data.
  • Fix a memory leak when solving a sequence of nonlinear models.
  • The @addNLConstraint macro now supports the three-argument version to define sets of nonlinear constraints.
  • KNITRO supported as a nonlinear solver.
  • Speed improvements for model generation.
  • The @addNLConstraints macro supports adding multiple (groups of) constraints at once. Syntax is similar to @addConstraints.
  • Discrete variables allowed in nonlinear problems for solvers which support them (currently only KNITRO).

General

  • Starting values for variables may now be specified with @defVar(m, x, start=value).
  • The setSolver function allows users to change the solver subsequent to model creation.
  • Support for "fixed" variables via the @defVar(m, x == 1) syntax.
  • Unit tests rewritten to use FactCheck.jl, improved testing across solvers.

Version 0.6.3 (October 19, 2014)

  • Fix a bug in multiplying two AffExpr objects.

Version 0.6.2 (October 11, 2014)

  • Further improvements and bug fixes for printing.
  • Fixed a bug in @defExpr.
  • Support for accessing expression graphs through the MathProgBase NLP interface.

Version 0.6.1 (September 19, 2014)

  • Improvements and bug fixes for printing.

Version 0.6.0 (September 9, 2014)

  • Julia 0.3.0 is the minimum required version for this release.
  • buildInternalModel(m::Model) added to build solver-level model in memory without optimizing.
  • Deprecate load_model_only keyword argument to solve.
  • Add groups of constraints with @addConstraints macro.
  • Unicode operators now supported, including for sum, for prod, and /
  • Quadratic constraints supported in @addConstraint macro.
  • Quadratic objectives supported in @setObjective macro.
  • MathProgBase solver-independent interface replaces Ipopt-specific interface for nonlinear problems
    • Breaking change: IpoptOptions no longer supported to specify solver options, use m = Model(solver=IpoptSolver(options...)) instead.
  • New solver interfaces: ECOS, NLopt, and nonlinear support for MOSEK
  • New option to control whether the lazy constraint callback is executed at each node in the B&B tree or just when feasible solutions are found
  • Add support for semicontinuous and semi-integer variables for those solvers that support them.
  • Add support for index dependencies (for example, triangular indexing) in @defVar, @addConstraint, and @defExpr (for example, @defVar(m, x[i=1:10,j=i:10])).
    • This required some changes to the internal structure of JuMP containers, which may break code that explicitly stored JuMPDict objects.

Version 0.5.8 (September 24, 2014)

  • Fix a bug with specifying solvers (affects Julia 0.2 only)

Version 0.5.7 (September 5, 2014)

  • Fix a bug in printing models

Version 0.5.6 (September 2, 2014)

  • Add support for semicontinuous and semi-integer variables for those solvers that support them.
    • Breaking change: Syntax for Variable() constructor has changed (use of this interface remains discouraged)
  • Update for breaking changes in MathProgBase

Version 0.5.5 (July 6, 2014)

  • Fix bug with problem modification: adding variables that did not appear in existing constraints or objective.

Version 0.5.4 (June 19, 2014)

  • Update for breaking change in MathProgBase which reduces loading times for using JuMP
  • Fix error when MIPs not solved to optimality

Version 0.5.3 (May 21, 2014)

  • Update for breaking change in ReverseDiffSparse

Version 0.5.2 (May 9, 2014)

  • Fix compatibility with Julia 0.3 prerelease

Version 0.5.1 (May 5, 2014)

  • Fix a bug in coefficient handling inside lazy constraints and user cuts

Version 0.5.0 (May 2, 2014)

  • Support for nonlinear optimization with exact, sparse second-order derivatives automatically computed. Ipopt is currently the only solver supported.
  • getValue for AffExpr and QuadExpr
  • Breaking change: getSolverModel replaced by getInternalModel, which returns the internal MathProgBase-level model
  • Groups of constraints can be specified with @addConstraint (see documentation for details). This is not a breaking change.
  • dot(::JuMPDict{Variable},::JuMPDict{Variable}) now returns the corresponding quadratic expression.

Version 0.4.1 (March 24, 2014)

  • Fix bug where change in objective sense was ignored when re-solving a model.
  • Fix issue with handling zero coefficients in AffExpr.

Version 0.4.0 (March 10, 2014)

  • Support for SOS1 and SOS2 constraints.
  • Solver-independent callback for user heuristics.
  • dot and sum implemented for JuMPDict objects. Now you can say @addConstraint(m, dot(a,x) <= b).
  • Developers: support for extensions to JuMP. See definition of Model in src/JuMP.jl for more details.
  • Option to construct the low-level model before optimizing.

Version 0.3.2 (February 17, 2014)

  • Improved model printing
    • Preliminary support for IJulia output

Version 0.3.1 (January 30, 2014)

  • Documentation updates
  • Support for MOSEK
  • CPLEXLink renamed to CPLEX

Version 0.3.0 (January 21, 2014)

  • Unbounded/infeasibility rays: getValue() will return the corresponding components of an unbounded ray when a model is unbounded, if supported by the selected solver. getDual() will return an infeasibility ray (Farkas proof) if a model is infeasible and the selected solver supports this feature.
  • Solver-independent callbacks for user generated cuts.
  • Use new interface for solver-independent QCQP.
  • setlazycallback renamed to setLazyCallback for consistency.

Version 0.2.0 (December 15, 2013)

Breaking

  • Objective sense is specified in setObjective instead of in the Model constructor.
  • lpsolver and mipsolver merged into single solver option.

Added

  • Problem modification with efficient LP restarts and MIP warm-starts.
  • Relatedly, column-wise modeling now supported.
  • Solver-independent callbacks supported. Currently we support only a "lazy constraint" callback, which works with Gurobi, CPLEX, and GLPK. More callbacks coming soon.

Version 0.1.2 (November 16, 2013)

  • Bug fixes for printing, improved error messages.
  • Allow AffExpr to be used in macros; for example, ex = y + z; @addConstraint(m, x + 2*ex <= 3)

Version 0.1.1 (October 23, 2013)

  • Update for solver specification API changes in MathProgBase.

Version 0.1.0 (October 3, 2013)

  • Initial public release.
+end
  • The lowerbound, upperbound, and basename keyword arguments to the @variable macro have been renamed to lower_bound, upper_bound, and base_name, for consistency with JuMP's new style recommendations.

  • We rely on broadcasting syntax to apply accessors to collections of variables, for example, value.(x) instead of getvalue(x) for collections. (Use value(x) when x is a scalar object.)

  • Added

    • Splatting (like f(x...)) is recognized in restricted settings in nonlinear expressions.

    • Support for deleting constraints and variables.

    • The documentation has been completely rewritten using docstrings and Documenter.

    • Support for modeling mixed conic and quadratic models (for example, conic models with quadratic objectives and bi-linear matrix inequalities).

    • Significantly improved support for modeling new types of constraints and for extending JuMP's macros.

    • Support for providing dual warm starts.

    • Improved support for accessing solver-specific attributes (for example, the irreducible inconsistent subsystem).

    • Explicit control of whether symmetry-enforcing constraints are added to PSD constraints.

    • Support for modeling exponential cones.

    • Significant improvements in internal code quality and testing.

    • Style and naming guidelines.

    • Direct mode and manual mode provide explicit control over when copies of a model are stored or regenerated. See the corresponding documentation.

    Regressions

    There are known regressions from JuMP 0.18 that will be addressed in a future release (0.19.x or later):

    • Performance regressions in model generation (issue). Please file an issue anyway if you notice a significant performance regression. We have plans to address a number of performance issues, but we might not be aware of all of them.

    • Fast incremental NLP solves are not yet reimplemented (issue).

    • We do not yet have an implementation of solver-specific callbacks.

    • The column generation syntax in @variable has been removed (that is, the objective, coefficients, and inconstraints keyword arguments). Support for column generation will be re-introduced in a future release.

    • The ability to solve the continuous relaxation (that is, via solve(model; relaxation = true)) is not yet reimplemented (issue).

    Version 0.18.5 (December 1, 2018)

    • Support views in some derivative evaluation functions.
    • Improved compatibility with PackageCompiler.

    Version 0.18.4 (October 8, 2018)

    • Fix a bug in model printing on Julia 0.7 and 1.0.

    Version 0.18.3 (October 1, 2018)

    • Add support for Julia v1.0 (Thanks @ExpandingMan)
    • Fix matrix expressions with quadratic functions (#1508)

    Version 0.18.2 (June 10, 2018)

    • Fix a bug in second-order derivatives when expressions are present (#1319)
    • Fix a bug in @constraintref (#1330)

    Version 0.18.1 (April 9, 2018)

    • Fix for nested tuple destructuring (#1193)
    • Preserve internal model when relaxation=true (#1209)
    • Minor bug fixes and updates for example

    Version 0.18.0 (July 27, 2017)

    • Drop support for Julia 0.5.
    • Update for ForwardDiff 0.5.
    • Minor bug fixes.

    Version 0.17.1 (June 9, 2017)

    • Use of constructconstraint! in @SDconstraint.
    • Minor bug fixes.

    Version 0.17.0 (May 27, 2017)

    • Breaking change: Mixing quadratic and conic constraints is no longer supported.
    • Breaking change: The getvariable and getconstraint functions are replaced by indexing on the corresponding symbol. For instance, to access the variable with name x, one should now write m[:x] instead of getvariable(m, :x). As a consequence, creating a variable and constraint with the same name now triggers a warning, and accessing one of them afterwards throws an error. This change is breaking only in the latter case.
    • Addition of the getobjectivebound function that mirrors the functionality of the MathProgBase getobjbound function except that it takes into account transformations performed by JuMP.
    • Minor bug fixes.

    The following changes are primarily of interest to developers of JuMP extensions:

    • The new syntax @constraint(model, expr in Cone) creates the constraint ensuring that expr is inside Cone. The Cone argument is passed to constructconstraint! which enables the call to the dispatched to an extension.
    • The @variable macro now calls constructvariable! instead of directly calling the Variable constructor. Extra arguments and keyword arguments passed to @variable are passed to constructvariable! which enables the call to be dispatched to an extension.
    • Refactor the internal function conicdata (used build the MathProgBase conic model) into smaller sub-functions to make these parts reusable by extensions.

    Version 0.16.2 (March 28, 2017)

    • Minor bug fixes and printing tweaks
    • Address deprecation warnings for Julia 0.6

    Version 0.16.1 (March 7, 2017)

    • Better support for AbstractArray in JuMP (Thanks @tkoolen)
    • Minor bug fixes

    Version 0.16.0 (February 23, 2017)

    • Breaking change: JuMP no longer has a mechanism for selecting solvers by default (the previous mechanism was flawed and incompatible with Julia 0.6). Not specifying a solver before calling solve() will result in an error.
    • Breaking change: User-defined functions are no longer global. The first argument to JuMP.register is now a JuMP Model object within whose scope the function will be registered. Calling JuMP.register without a Model now produces an error.
    • Breaking change: Use the new JuMP.fix method to fix a variable to a value or to update the value to which a variable is fixed. Calling setvalue on a fixed variable now results in an error in order to avoid silent behavior changes. (Thanks @joaquimg)
    • Nonlinear expressions now print out similarly to linear/quadratic expressions (useful for debugging!)
    • New category keyword to @variable. Used for specifying categories of anonymous variables.
    • Compatibility with Julia 0.6-dev.
    • Minor fixes and improvements (Thanks @cossio, @ccoffrin, @blegat)

    Version 0.15.1 (January 31, 2017)

    • Bugfix for @LinearConstraints and friends

    Version 0.15.0 (December 22, 2016)

    • Julia 0.5.0 is the minimum required version for this release.
    • Document support for BARON solver
    • Enable info callbacks in more states than before, for example, for recording solutions. New when argument to addinfocallback (#814, thanks @yeesian)
    • Improved support for anonymous variables. This includes new warnings for potentially confusing use of the traditional non-anonymous syntax:
      • When multiple variables in a model are given the same name
      • When non-symbols are used as names, for example, @variable(m, x[1][1:N])
    • Improvements in iterating over JuMP containers (#836, thanks @IssamT)
    • Support for writing variable names in .lp file output (Thanks @leethargo)
    • Support for querying duals to SDP problems (Thanks @blegat)
    • The comprehension syntax with curly braces sum{}, prod{}, and norm2{} has been deprecated in favor of Julia's native comprehension syntax sum(), prod() and norm() as previously announced. (For early adopters of the new syntax, norm2() was renamed to norm() without deprecation.)
    • Unit tests rewritten to use Base.Test instead of FactCheck
    • Improved support for operations with matrices of JuMP types (Thanks @ExpandingMan)
    • The syntax to halt a solver from inside a callback has changed from throw(CallbackAbort()) to return JuMP.StopTheSolver
    • Minor bug fixes

    Version 0.14.2 (December 12, 2016)

    • Allow singleton anonymous variables (includes bugfix)

    Version 0.14.1 (September 12, 2016)

    • More consistent handling of states in informational callbacks, includes a new when parameter to addinfocallback for specifying in which state an informational callback should be called.

    Version 0.14.0 (August 7, 2016)

    • Compatibility with Julia 0.5 and ForwardDiff 0.2
    • Support for "anonymous" variables, constraints, expressions, and parameters, for example, x = @variable(m, [1:N]) instead of @variable(m, x[1:N])
    • Support for retrieving constraints from a model by name via getconstraint
    • @NLconstraint now returns constraint references (as expected).
    • Support for vectorized expressions within lazy constraints
    • On Julia 0.5, parse new comprehension syntax sum(x[i] for i in 1:N if isodd(i)) instead of sum{ x[i], i in 1:N; isodd(i) }. The old syntax with curly braces will be deprecated in JuMP 0.15.
    • Now possible to provide nonlinear expressions as "raw" Julia Expr objects instead of using JuMP's nonlinear macros. This input format is useful for programmatically generated expressions.
    • s/Mathematical Programming/Mathematical Optimization/
    • Support for local cuts (Thanks to @madanim, Mehdi Madani)
    • Document Xpress interface developed by @joaquimg, Joaquim Dias Garcia
    • Minor bug and deprecation fixes (Thanks @odow, @jrevels)

    Version 0.13.2 (May 16, 2016)

    • Compatibility update for MathProgBase

    Version 0.13.1 (May 3, 2016)

    • Fix broken deprecation for registerNLfunction.

    Version 0.13.0 (April 29, 2016)

    • Most exported methods and macros have been renamed to avoid camelCase. See the list of changes here. There is a 1-1 mapping from the old names to the new, and it is safe to simply replace the names to update existing models.
    • Specify variable lower/upper bounds in @variable using the lowerbound and upperbound keyword arguments.
    • Change name printed for variable using the basename keyword argument to @variable.
    • New @variables macro allows multi-line declaration of groups of variables.
    • A number of solver methods previously available only through MathProgBase are now exposed directly in JuMP. The fix was recorded live.
    • Compatibility fixes with Julia 0.5.
    • The "end" indexing syntax is no longer supported within JuMPArrays which do not use 1-based indexing until upstream issues are resolved, see here.

    Version 0.12.2 (March 9, 2016)

    • Small fixes for nonlinear optimization

    Version 0.12.1 (March 1, 2016)

    • Fix a regression in slicing for JuMPArrays (when not using 1-based indexing)

    Version 0.12.0 (February 27, 2016)

    • The automatic differentiation functionality has been completely rewritten with a number of user-facing changes:
      • @defExpr and @defNLExpr now take the model as the first argument. The previous one-argument version of @defExpr is deprecated; all expressions should be named. For example, replace @defExpr(2x+y) with @defExpr(jump_model, my_expr, 2x+y).
      • JuMP no longer uses Julia's variable binding rules for efficiently re-solving a sequence of nonlinear models. Instead, we have introduced nonlinear parameters. This is a breaking change, so we have added a warning message when we detect models that may depend on the old behavior.
      • Support for user-defined functions integrated within nonlinear JuMP expressions.
    • Replaced iteration over AffExpr with Number-like scalar iteration; previous iteration behavior is now available via linearterms(::AffExpr).
    • Stopping the solver via throw(CallbackAbort()) from a callback no longer triggers an exception. Instead, solve() returns UserLimit status.
    • getDual() now works for conic problems (Thanks @emreyamangil.)

    Version 0.11.3 (February 4, 2016)

    • Bug-fix for problems with quadratic objectives and semidefinite constraints

    Version 0.11.2 (January 14, 2016)

    • Compatibility update for Mosek

    Version 0.11.1 (December 1, 2015)

    • Remove usage of @compat in tests.
    • Fix updating quadratic objectives for nonlinear models.

    Version 0.11.0 (November 30, 2015)

    • Julia 0.4.0 is the minimum required version for this release.
    • Fix for scoping semantics of index variables in sum{}. Index variables no longer leak into the surrounding scope.
    • Addition of the solve(m::Model, relaxation=true) keyword argument to solve the standard continuous relaxation of model m
    • The getConstraintBounds() method allows access to the lower and upper bounds of all constraints in a (nonlinear) model.
    • Update for breaking changes in MathProgBase

    Version 0.10.3 (November 20, 2015)

    • Fix a rare error when parsing quadratic expressions
    • Fix Variable() constructor with default arguments
    • Detect unrecognized keywords in solve()

    Version 0.10.2 (September 28, 2015)

    • Fix for deprecation warnings

    Version 0.10.1 (September 3, 2015)

    • Fixes for ambiguity warnings.
    • Fix for breaking change in precompilation syntax in Julia 0.4-pre

    Version 0.10.0 (August 31, 2015)

    • Support (on Julia 0.4 and later) for conditions in indexing @defVar and @addConstraint constructs, for example, @defVar(m, x[i=1:5,j=1:5; i+j >= 3])
    • Support for vectorized operations on Variables and expressions. See the documentation for details.
    • New getVar() method to access variables in a model by name
    • Support for semidefinite programming.
    • Dual solutions are now available for general nonlinear problems. You may call getDual on a reference object for a nonlinear constraint, and getDual on a variable object for Lagrange multipliers from active bounds.
    • Introduce warnings for two common performance traps: too many calls to getValue() on a collection of variables and use of the + operator in a loop to sum expressions.
    • Second-order cone constraints can be written directly with the norm() and norm2{} syntax.
    • Implement MathProgBase interface for querying Hessian-vector products.
    • Iteration over JuMPContainers is deprecated; instead, use the keys and values functions, and zip(keys(d),values(d)) for the old behavior.
    • @defVar returns Array{Variable,N} when each of N index sets are of the form 1:nᵢ.
    • Module precompilation: on Julia 0.4 and later, using JuMP is now much faster.

    Version 0.9.3 (August 11, 2015)

    • Fixes for FactCheck testing on julia v0.4.

    Version 0.9.2 (June 27, 2015)

    • Fix bug in @addConstraints.

    Version 0.9.1 (April 25, 2015)

    • Fix for Julia 0.4-dev.
    • Small infrastructure improvements for extensions.

    Version 0.9.0 (April 18, 2015)

    • Comparison operators for constructing constraints (for example, 2x >= 1) have been deprecated. Instead, construct the constraints explicitly in the @addConstraint macro to add them to the model, or in the @LinearConstraint macro to create a stand-alone linear constraint instance.
    • getValue() method implemented to compute the value of a nonlinear subexpression
    • JuMP is now released under the Mozilla Public License version 2.0 (was previously LGPL). MPL is a copyleft license which is less restrictive than LGPL, especially for embedding JuMP within other applications.
    • A number of performance improvements in ReverseDiffSparse for computing derivatives.
    • MathProgBase.getsolvetime(m) now returns the solution time reported by the solver, if available. (Thanks @odow, Oscar Dowson)
    • Formatting fix for LP format output. (Thanks @sbebo, Leonardo Taccari).

    Version 0.8.0 (February 17, 2015)

    • Nonlinear subexpressions now supported with the @defNLExpr macro.
    • SCS supported for solving second-order conic problems.
    • setXXXCallback family deprecated in favor of addXXXCallback.
    • Multiple callbacks of the same type can be registered.
    • Added support for informational callbacks via addInfoCallback.
    • A CallbackAbort exception can be thrown from callback to safely exit optimization.

    Version 0.7.4 (February 4, 2015)

    • Reduced costs and linear constraint duals are now accessible when quadratic constraints are present.
    • Two-sided nonlinear constraints are supported.
    • Methods for accessing the number of variables and constraints in a model are renamed.
    • New default procedure for setting initial values in nonlinear optimization: project zero onto the variable bounds.
    • Small bug fixes.

    Version 0.7.3 (January 14, 2015)

    • Fix a method ambiguity conflict with Compose.jl (cosmetic fix)

    Version 0.7.2 (January 9, 2015)

    • Fix a bug in sum(::JuMPDict)
    • Added the setCategory function to change a variables category (for example, continuous or binary)

    after construction, and getCategory to retrieve the variable category.

    Version 0.7.1 (January 2, 2015)

    • Fix a bug in parsing linear expressions in macros. Affects only Julia 0.4 and later.

    Version 0.7.0 (December 29, 2014)

    Linear/quadratic/conic programming

    • Breaking change: The syntax for column-wise model generation has been changed to use keyword arguments in @defVar.
    • On Julia 0.4 and later, variables and coefficients may be multiplied in any order within macros. That is, variable*coefficient is now valid syntax.
    • ECOS supported for solving second-order conic problems.

    Nonlinear programming

    • Support for skipping model generation when solving a sequence of nonlinear models with changing data.
    • Fix a memory leak when solving a sequence of nonlinear models.
    • The @addNLConstraint macro now supports the three-argument version to define sets of nonlinear constraints.
    • KNITRO supported as a nonlinear solver.
    • Speed improvements for model generation.
    • The @addNLConstraints macro supports adding multiple (groups of) constraints at once. Syntax is similar to @addConstraints.
    • Discrete variables allowed in nonlinear problems for solvers which support them (currently only KNITRO).

    General

    • Starting values for variables may now be specified with @defVar(m, x, start=value).
    • The setSolver function allows users to change the solver subsequent to model creation.
    • Support for "fixed" variables via the @defVar(m, x == 1) syntax.
    • Unit tests rewritten to use FactCheck.jl, improved testing across solvers.

    Version 0.6.3 (October 19, 2014)

    • Fix a bug in multiplying two AffExpr objects.

    Version 0.6.2 (October 11, 2014)

    • Further improvements and bug fixes for printing.
    • Fixed a bug in @defExpr.
    • Support for accessing expression graphs through the MathProgBase NLP interface.

    Version 0.6.1 (September 19, 2014)

    • Improvements and bug fixes for printing.

    Version 0.6.0 (September 9, 2014)

    • Julia 0.3.0 is the minimum required version for this release.
    • buildInternalModel(m::Model) added to build solver-level model in memory without optimizing.
    • Deprecate load_model_only keyword argument to solve.
    • Add groups of constraints with @addConstraints macro.
    • Unicode operators now supported, including for sum, for prod, and /
    • Quadratic constraints supported in @addConstraint macro.
    • Quadratic objectives supported in @setObjective macro.
    • MathProgBase solver-independent interface replaces Ipopt-specific interface for nonlinear problems
      • Breaking change: IpoptOptions no longer supported to specify solver options, use m = Model(solver=IpoptSolver(options...)) instead.
    • New solver interfaces: ECOS, NLopt, and nonlinear support for MOSEK
    • New option to control whether the lazy constraint callback is executed at each node in the B&B tree or just when feasible solutions are found
    • Add support for semicontinuous and semi-integer variables for those solvers that support them.
    • Add support for index dependencies (for example, triangular indexing) in @defVar, @addConstraint, and @defExpr (for example, @defVar(m, x[i=1:10,j=i:10])).
      • This required some changes to the internal structure of JuMP containers, which may break code that explicitly stored JuMPDict objects.

    Version 0.5.8 (September 24, 2014)

    • Fix a bug with specifying solvers (affects Julia 0.2 only)

    Version 0.5.7 (September 5, 2014)

    • Fix a bug in printing models

    Version 0.5.6 (September 2, 2014)

    • Add support for semicontinuous and semi-integer variables for those solvers that support them.
      • Breaking change: Syntax for Variable() constructor has changed (use of this interface remains discouraged)
    • Update for breaking changes in MathProgBase

    Version 0.5.5 (July 6, 2014)

    • Fix bug with problem modification: adding variables that did not appear in existing constraints or objective.

    Version 0.5.4 (June 19, 2014)

    • Update for breaking change in MathProgBase which reduces loading times for using JuMP
    • Fix error when MIPs not solved to optimality

    Version 0.5.3 (May 21, 2014)

    • Update for breaking change in ReverseDiffSparse

    Version 0.5.2 (May 9, 2014)

    • Fix compatibility with Julia 0.3 prerelease

    Version 0.5.1 (May 5, 2014)

    • Fix a bug in coefficient handling inside lazy constraints and user cuts

    Version 0.5.0 (May 2, 2014)

    • Support for nonlinear optimization with exact, sparse second-order derivatives automatically computed. Ipopt is currently the only solver supported.
    • getValue for AffExpr and QuadExpr
    • Breaking change: getSolverModel replaced by getInternalModel, which returns the internal MathProgBase-level model
    • Groups of constraints can be specified with @addConstraint (see documentation for details). This is not a breaking change.
    • dot(::JuMPDict{Variable},::JuMPDict{Variable}) now returns the corresponding quadratic expression.

    Version 0.4.1 (March 24, 2014)

    • Fix bug where change in objective sense was ignored when re-solving a model.
    • Fix issue with handling zero coefficients in AffExpr.

    Version 0.4.0 (March 10, 2014)

    • Support for SOS1 and SOS2 constraints.
    • Solver-independent callback for user heuristics.
    • dot and sum implemented for JuMPDict objects. Now you can say @addConstraint(m, dot(a,x) <= b).
    • Developers: support for extensions to JuMP. See definition of Model in src/JuMP.jl for more details.
    • Option to construct the low-level model before optimizing.

    Version 0.3.2 (February 17, 2014)

    • Improved model printing
      • Preliminary support for IJulia output

    Version 0.3.1 (January 30, 2014)

    • Documentation updates
    • Support for MOSEK
    • CPLEXLink renamed to CPLEX

    Version 0.3.0 (January 21, 2014)

    • Unbounded/infeasibility rays: getValue() will return the corresponding components of an unbounded ray when a model is unbounded, if supported by the selected solver. getDual() will return an infeasibility ray (Farkas proof) if a model is infeasible and the selected solver supports this feature.
    • Solver-independent callbacks for user generated cuts.
    • Use new interface for solver-independent QCQP.
    • setlazycallback renamed to setLazyCallback for consistency.

    Version 0.2.0 (December 15, 2013)

    Breaking

    • Objective sense is specified in setObjective instead of in the Model constructor.
    • lpsolver and mipsolver merged into single solver option.

    Added

    • Problem modification with efficient LP restarts and MIP warm-starts.
    • Relatedly, column-wise modeling now supported.
    • Solver-independent callbacks supported. Currently we support only a "lazy constraint" callback, which works with Gurobi, CPLEX, and GLPK. More callbacks coming soon.

    Version 0.1.2 (November 16, 2013)

    • Bug fixes for printing, improved error messages.
    • Allow AffExpr to be used in macros; for example, ex = y + z; @addConstraint(m, x + 2*ex <= 3)

    Version 0.1.1 (October 23, 2013)

    • Update for solver specification API changes in MathProgBase.

    Version 0.1.0 (October 3, 2013)

    • Initial public release.
    diff --git a/previews/PR3919/developers/checklists/index.html b/previews/PR3919/developers/checklists/index.html index 1e74d8982da..f42841792fb 100644 --- a/previews/PR3919/developers/checklists/index.html +++ b/previews/PR3919/developers/checklists/index.html @@ -69,4 +69,4 @@ - [ ] Implement `vectorize(data, ::NewShape)::Vector` - [ ] Implement `reshape_vector(vector, ::NewShape)` - [ ] Implement `dual_shape`, or verify that the shape is self-dual - - [ ] Add the tests from https://github.com/jump-dev/JuMP.jl/pull/3816 + - [ ] Add the tests from https://github.com/jump-dev/JuMP.jl/pull/3816 diff --git a/previews/PR3919/developers/contributing/index.html b/previews/PR3919/developers/contributing/index.html index 1f602f074af..6a3345ab1d9 100644 --- a/previews/PR3919/developers/contributing/index.html +++ b/previews/PR3919/developers/contributing/index.html @@ -25,4 +25,4 @@ $ git checkout master -$ git pull
    Note

    If you have suggestions to improve this guide, please make a pull request. It's particularly helpful if you do this after your first pull request because you'll know all the parts that could be explained better.

    +$ git pull
    Note

    If you have suggestions to improve this guide, please make a pull request. It's particularly helpful if you do this after your first pull request because you'll know all the parts that could be explained better.

    diff --git a/previews/PR3919/developers/custom_solver_binaries/index.html b/previews/PR3919/developers/custom_solver_binaries/index.html index 04797ce10bd..f5ce8db6974 100644 --- a/previews/PR3919/developers/custom_solver_binaries/index.html +++ b/previews/PR3919/developers/custom_solver_binaries/index.html @@ -90,4 +90,4 @@ libCbc_path = "/usr/local/Cellar/cbc/2.10.5/lib/libCbc.3.10.5" libOsiCbc_path = "/usr/local/Cellar/cbc/2.10.5/lib/libOsiCbc.3.10.5" libcbcsolver_path = "/usr/local/Cellar/cbc/2.10.5/lib/libCbcSolver.3.10.5"
    Info

    Note that capitalization matters, so libcbcsolver_path corresponds to libCbcSolver.3.10.5.

    Override entire artifact

    To use the homebrew install as our custom binary we add the following to ~/.julia/artifacts/Overrides.toml:

    # Override for Cbc_jll
    -e481bc81db5e229ba1f52b2b4bd57484204b1b06 = "/usr/local/Cellar/cbc/2.10.5"
    +e481bc81db5e229ba1f52b2b4bd57484204b1b06 = "/usr/local/Cellar/cbc/2.10.5" diff --git a/previews/PR3919/developers/extensions/index.html b/previews/PR3919/developers/extensions/index.html index b90c8592f97..d15bb04a9d5 100644 --- a/previews/PR3919/developers/extensions/index.html +++ b/previews/PR3919/developers/extensions/index.html @@ -310,4 +310,4 @@ _function_barrier(names, model, F, S) end return names -end
    Note

    It is important to explicitly type the F and S arguments. If you leave them untyped, for example, function _function_barrier(names, model, F, S), Julia will not specialize the function calls and performance will not be improved.

    +end
    Note

    It is important to explicitly type the F and S arguments. If you leave them untyped, for example, function _function_barrier(names, model, F, S), Julia will not specialize the function calls and performance will not be improved.

    diff --git a/previews/PR3919/developers/roadmap/index.html b/previews/PR3919/developers/roadmap/index.html index 10d0c25711a..d007df38b46 100644 --- a/previews/PR3919/developers/roadmap/index.html +++ b/previews/PR3919/developers/roadmap/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash}); -

    Development roadmap

    The JuMP developers have compiled this roadmap document to share their plans and goals with the JuMP community. Contributions to roadmap issues are especially invited.

    Most of these issues will require changes to both JuMP and MathOptInterface, and are non-trivial in their implementation. They are in no particular order, but represent broad themes that we see as areas in which JuMP could be improved.

    • Support nonlinear expressions with vector-valued inputs and outputs. There are a few related components:
      • Representing terms like log(det(X)) as necessary for Convex.jl
      • Automatic differentiation of terms with vector inputs and outputs
      • User-defined functions with vector–as opposed to scalar–inputs, which is particularly useful for optimal control problems
      • User-defined functions with vector outputs, avoiding the need for User-defined operators with vector outputs
    • Add support for modeling with SI units. The UnitJuMP.jl extension is a good proof of concept for what this would look like. We want to make units a first-class concept in JuMP. See #1350 for more details.

    Completed

    +

    Development roadmap

    The JuMP developers have compiled this roadmap document to share their plans and goals with the JuMP community. Contributions to roadmap issues are especially invited.

    Most of these issues will require changes to both JuMP and MathOptInterface, and are non-trivial in their implementation. They are in no particular order, but represent broad themes that we see as areas in which JuMP could be improved.

    • Support nonlinear expressions with vector-valued inputs and outputs. There are a few related components:
      • Representing terms like log(det(X)) as necessary for Convex.jl
      • Automatic differentiation of terms with vector inputs and outputs
      • User-defined functions with vector–as opposed to scalar–inputs, which is particularly useful for optimal control problems
      • User-defined functions with vector outputs, avoiding the need for User-defined operators with vector outputs
    • Add support for modeling with SI units. The UnitJuMP.jl extension is a good proof of concept for what this would look like. We want to make units a first-class concept in JuMP. See #1350 for more details.

    Completed

    diff --git a/previews/PR3919/developers/style/index.html b/previews/PR3919/developers/style/index.html index 49bd5cd50c5..66d19f26ab2 100644 --- a/previews/PR3919/developers/style/index.html +++ b/previews/PR3919/developers/style/index.html @@ -182,4 +182,4 @@ end # module TestPkg -TestPkg.runtests()

    Break the tests into multiple files, with one module per file, so that subsets of the codebase can be tested by calling include with the relevant file.

    +TestPkg.runtests()

    Break the tests into multiple files, with one module per file, so that subsets of the codebase can be tested by calling include with the relevant file.

    diff --git a/previews/PR3919/extensions/DimensionalData/index.html b/previews/PR3919/extensions/DimensionalData/index.html index 5ea96d690f2..248c598f8e3 100644 --- a/previews/PR3919/extensions/DimensionalData/index.html +++ b/previews/PR3919/extensions/DimensionalData/index.html @@ -45,4 +45,4 @@ ↓ j Categorical{String} ["a", "b"] ForwardOrdered └──────────────────────────────────────────────────────────────────────────────┘ "a" x[2,a] + x[3,a] + x[4,a] ≤ 1 - "b" x[2,b] + x[3,b] + x[4,b] ≤ 1

    Documentation

    See the DimensionalData.jl documentation for more details on the syntax and features of DimensionalData.DimArray.

    + "b" x[2,b] + x[3,b] + x[4,b] ≤ 1

    Documentation

    See the DimensionalData.jl documentation for more details on the syntax and features of DimensionalData.DimArray.

    diff --git a/previews/PR3919/extensions/introduction/index.html b/previews/PR3919/extensions/introduction/index.html index aa603210733..a4ccf00408b 100644 --- a/previews/PR3919/extensions/introduction/index.html +++ b/previews/PR3919/extensions/introduction/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash}); -

    Introduction

    This section of the documentation contains brief documentation for some popular JuMP extensions. The list of extensions is not exhaustive, but instead is intended to help you discover popular JuMP extensions, and to give you an overview of the types of extensions that are possible to write with JuMP.

    Affiliation

    Packages beginning with jump-dev/ are developed and maintained by the JuMP developers.

    Packages that do not begin with jump-dev/ are developed independently. The developers of these packages requested or consented to the inclusion of their README contents in the JuMP documentation for the benefit of users.

    Adding new extensions

    Written an extension? Add it to this section of the JuMP documentation by making a pull request to the docs/packages.toml file.

    Weak dependencies

    Some extensions listed in this section are implemented using the weak dependency feature added to Julia in v1.9. These extensions are activated if and only if you have JuMP and the other package loaded into your current scope with using or import.

    Compat

    Using a weak dependency requires Julia v1.9 or later.

    +

    Introduction

    This section of the documentation contains brief documentation for some popular JuMP extensions. The list of extensions is not exhaustive, but instead is intended to help you discover popular JuMP extensions, and to give you an overview of the types of extensions that are possible to write with JuMP.

    Affiliation

    Packages beginning with jump-dev/ are developed and maintained by the JuMP developers.

    Packages that do not begin with jump-dev/ are developed independently. The developers of these packages requested or consented to the inclusion of their README contents in the JuMP documentation for the benefit of users.

    Adding new extensions

    Written an extension? Add it to this section of the JuMP documentation by making a pull request to the docs/packages.toml file.

    Weak dependencies

    Some extensions listed in this section are implemented using the weak dependency feature added to Julia in v1.9. These extensions are activated if and only if you have JuMP and the other package loaded into your current scope with using or import.

    Compat

    Using a weak dependency requires Julia v1.9 or later.

    diff --git a/previews/PR3919/index.html b/previews/PR3919/index.html index 4b3ed873e9c..8d153a5a2ed 100644 --- a/previews/PR3919/index.html +++ b/previews/PR3919/index.html @@ -32,4 +32,4 @@ journal = {Mathematical Programming Computation}, year = {2023}, doi = {10.1007/s12532-023-00239-3} -}

    NumFOCUS

    NumFOCUS logo

    JuMP is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. NumFOCUS provides JuMP with fiscal, legal, and administrative support to help ensure the health and sustainability of the project. Visit numfocus.org for more information.

    You can support JuMP by donating.

    Donations to JuMP are managed by NumFOCUS. For donors in the United States, your gift is tax-deductible to the extent provided by law. As with any donation, you should consult with your tax adviser about your particular tax situation.

    JuMP's largest expense is the annual JuMP-dev workshop. Donations will help us provide travel support for JuMP-dev attendees and take advantage of other opportunities that arise to support JuMP development.

    License

    JuMP is licensed under the MPL-2.0 software license. Consult the license and the Mozilla FAQ for more information. In addition, JuMP is typically used in conjunction with solver packages and extensions which have their own licences. Consult their package repositories for the specific licenses that apply.

    +}

    NumFOCUS

    NumFOCUS logo

    JuMP is a Sponsored Project of NumFOCUS, a 501(c)(3) nonprofit charity in the United States. NumFOCUS provides JuMP with fiscal, legal, and administrative support to help ensure the health and sustainability of the project. Visit numfocus.org for more information.

    You can support JuMP by donating.

    Donations to JuMP are managed by NumFOCUS. For donors in the United States, your gift is tax-deductible to the extent provided by law. As with any donation, you should consult with your tax adviser about your particular tax situation.

    JuMP's largest expense is the annual JuMP-dev workshop. Donations will help us provide travel support for JuMP-dev attendees and take advantage of other opportunities that arise to support JuMP development.

    License

    JuMP is licensed under the MPL-2.0 software license. Consult the license and the Mozilla FAQ for more information. In addition, JuMP is typically used in conjunction with solver packages and extensions which have their own licences. Consult their package repositories for the specific licenses that apply.

    diff --git a/previews/PR3919/installation/index.html b/previews/PR3919/installation/index.html index 42ed765ab5c..0847cff1fa4 100644 --- a/previews/PR3919/installation/index.html +++ b/previews/PR3919/installation/index.html @@ -28,4 +28,4 @@ [4076af6c] ↓ JuMP v0.21.5 ⇒ v0.18.6 [707a9f91] + JuMPeR v0.6.0 Updating `~/jump_example/Manifest.toml` - ... lines omitted ...

    JuMPeR gets added at version 0.6.0 (+ JuMPeR v0.6.0), but JuMP gets downgraded from 0.21.5 to 0.18.6 (↓ JuMP v0.21.5 ⇒ v0.18.6)! The reason for this is that JuMPeR doesn't support a version of JuMP newer than 0.18.6.

    Tip

    Pay careful attention to the output of the package manager when adding new packages, especially when you see a package being downgraded.

    + ... lines omitted ...

    JuMPeR gets added at version 0.6.0 (+ JuMPeR v0.6.0), but JuMP gets downgraded from 0.21.5 to 0.18.6 (↓ JuMP v0.21.5 ⇒ v0.18.6)! The reason for this is that JuMPeR doesn't support a version of JuMP newer than 0.18.6.

    Tip

    Pay careful attention to the output of the package manager when adding new packages, especially when you see a package being downgraded.

    diff --git a/previews/PR3919/manual/callbacks/index.html b/previews/PR3919/manual/callbacks/index.html index 087fc0183de..9785b082bb4 100644 --- a/previews/PR3919/manual/callbacks/index.html +++ b/previews/PR3919/manual/callbacks/index.html @@ -81,4 +81,4 @@ end my_callback_function (generic function with 1 method) -julia> set_attribute(model, MOI.HeuristicCallback(), my_callback_function)

    The third argument to submit is a vector of JuMP variables, and the fourth argument is a vector of values corresponding to each variable.

    MOI.submit returns an enum that depends on whether the solver accepted the solution. The possible return codes are:

    • MOI.HEURISTIC_SOLUTION_ACCEPTED
    • MOI.HEURISTIC_SOLUTION_REJECTED
    • MOI.HEURISTIC_SOLUTION_UNKNOWN
    Warning

    Some solvers may accept partial solutions. Others require a feasible integer solution for every variable. If in doubt, provide a complete solution.

    Info

    The heuristic solution callback may be called at fractional nodes in the branch-and-bound tree. There is no guarantee that the callback is called at every fractional primal solution.

    +julia> set_attribute(model, MOI.HeuristicCallback(), my_callback_function)

    The third argument to submit is a vector of JuMP variables, and the fourth argument is a vector of values corresponding to each variable.

    MOI.submit returns an enum that depends on whether the solver accepted the solution. The possible return codes are:

    • MOI.HEURISTIC_SOLUTION_ACCEPTED
    • MOI.HEURISTIC_SOLUTION_REJECTED
    • MOI.HEURISTIC_SOLUTION_UNKNOWN
    Warning

    Some solvers may accept partial solutions. Others require a feasible integer solution for every variable. If in doubt, provide a complete solution.

    Info

    The heuristic solution callback may be called at fractional nodes in the branch-and-bound tree. There is no guarantee that the callback is called at every fractional primal solution.

    diff --git a/previews/PR3919/manual/complex/index.html b/previews/PR3919/manual/complex/index.html index 66cd45f990f..b45bd64fa35 100644 --- a/previews/PR3919/manual/complex/index.html +++ b/previews/PR3919/manual/complex/index.html @@ -197,4 +197,4 @@ julia> @constraint(model, H in HermitianPSDCone()) [x[1] im - -im -x[2]] ∈ HermitianPSDCone()
    Note

    The matrix H in H in HermitianPSDCone() must be a LinearAlgebra.Hermitian matrix type. A build_constraint error will be thrown if the matrix is a different matrix type.

    + -im -x[2]] ∈ HermitianPSDCone()
    Note

    The matrix H in H in HermitianPSDCone() must be a LinearAlgebra.Hermitian matrix type. A build_constraint error will be thrown if the matrix is a different matrix type.

    diff --git a/previews/PR3919/manual/constraints/index.html b/previews/PR3919/manual/constraints/index.html index 28642a970ce..8221aa3fb7a 100644 --- a/previews/PR3919/manual/constraints/index.html +++ b/previews/PR3919/manual/constraints/index.html @@ -801,4 +801,4 @@ (x[1] == x[2]) - 0.0 = 0 julia> @constraint(model, x[1] == x[2] := rhs) -x[1] == x[2] = false +x[1] == x[2] = false diff --git a/previews/PR3919/manual/containers/index.html b/previews/PR3919/manual/containers/index.html index c4e22db3fb9..a77f666fcc9 100644 --- a/previews/PR3919/manual/containers/index.html +++ b/previews/PR3919/manual/containers/index.html @@ -232,4 +232,4 @@ julia> Containers.@container([i = 1:2, j = 1:4; condition(i, j)], i + j) JuMP.Containers.SparseAxisArray{Int64, 2, Tuple{Int64, Int64}} with 2 entries: [1, 2] = 3 - [1, 4] = 5 + [1, 4] = 5 diff --git a/previews/PR3919/manual/expressions/index.html b/previews/PR3919/manual/expressions/index.html index 0ac41e2b676..ee9817dd57f 100644 --- a/previews/PR3919/manual/expressions/index.html +++ b/previews/PR3919/manual/expressions/index.html @@ -247,4 +247,4 @@ julia> x 2-element Vector{AffExpr}: 1.1 - 0

    Note that for large expressions this will be slower due to the allocation of additional temporary objects.

    + 0

    Note that for large expressions this will be slower due to the allocation of additional temporary objects.

    diff --git a/previews/PR3919/manual/models/index.html b/previews/PR3919/manual/models/index.html index dd257ec2324..7108693ff67 100644 --- a/previews/PR3919/manual/models/index.html +++ b/previews/PR3919/manual/models/index.html @@ -313,4 +313,4 @@ If you expected the solver to support your problem, you may have an error in your formulation. Otherwise, consider using a different solver. The list of available solvers, along with the problem types they support, is available at https://jump.dev/JuMP.jl/stable/installation/#Supported-solvers. -Stacktrace:
    Warning

    Another downside of direct mode is that the behavior of querying solution information after modifying the problem is solver-specific. This can lead to errors, or the solver silently returning an incorrect value. See OptimizeNotCalled errors for more information.

    +Stacktrace:
    Warning

    Another downside of direct mode is that the behavior of querying solution information after modifying the problem is solver-specific. This can lead to errors, or the solver silently returning an incorrect value. See OptimizeNotCalled errors for more information.

    diff --git a/previews/PR3919/manual/nlp/index.html b/previews/PR3919/manual/nlp/index.html index 98fab0840c6..867b9d5c20c 100644 --- a/previews/PR3919/manual/nlp/index.html +++ b/previews/PR3919/manual/nlp/index.html @@ -344,4 +344,4 @@ f1(x[1]) - 1.0 ≤ 0 f2(x[1], x[2]) - 1.0 ≤ 0 f3(x[2], x[3], x[4]) - 1.0 ≤ 0 - f4(x[1], x[3], x[4], x[5]) - 1.0 ≤ 0

    Known performance issues

    The macro-based input to JuMP's nonlinear interface can cause a performance issue if you:

    1. write a macro with a large number (hundreds) of terms
    2. call that macro from within a function instead of from the top-level in global scope.

    The first issue does not depend on the number of resulting terms in the mathematical expression, but rather the number of terms in the Julia Expr representation of that expression. For example, the expression sum(x[i] for i in 1:1_000_000) contains one million mathematical terms, but the Expr representation is just a single sum.

    The most common cause, other than a lot of tedious typing, is if you write a program that automatically writes a JuMP model as a text file, which you later execute. One example is MINLPlib.jl which automatically transpiled models in the GAMS scalar format into JuMP examples.

    As a rule of thumb, if you are writing programs to automatically generate expressions for the JuMP macros, you should target the Raw expression input instead. For more information, read MathOptInterface Issue#1997.

    + f4(x[1], x[3], x[4], x[5]) - 1.0 ≤ 0

    Known performance issues

    The macro-based input to JuMP's nonlinear interface can cause a performance issue if you:

    1. write a macro with a large number (hundreds) of terms
    2. call that macro from within a function instead of from the top-level in global scope.

    The first issue does not depend on the number of resulting terms in the mathematical expression, but rather the number of terms in the Julia Expr representation of that expression. For example, the expression sum(x[i] for i in 1:1_000_000) contains one million mathematical terms, but the Expr representation is just a single sum.

    The most common cause, other than a lot of tedious typing, is if you write a program that automatically writes a JuMP model as a text file, which you later execute. One example is MINLPlib.jl which automatically transpiled models in the GAMS scalar format into JuMP examples.

    As a rule of thumb, if you are writing programs to automatically generate expressions for the JuMP macros, you should target the Raw expression input instead. For more information, read MathOptInterface Issue#1997.

    diff --git a/previews/PR3919/manual/nonlinear/index.html b/previews/PR3919/manual/nonlinear/index.html index ce90484dbb7..47f3e2896b0 100644 --- a/previews/PR3919/manual/nonlinear/index.html +++ b/previews/PR3919/manual/nonlinear/index.html @@ -319,4 +319,4 @@ julia> ForwardDiff.gradient(x -> my_operator_good(x...), [1.0, 2.0]) 2-element Vector{Float64}: 2.0 - 4.0 + 4.0 diff --git a/previews/PR3919/manual/objective/index.html b/previews/PR3919/manual/objective/index.html index 6f957c3c018..d18da95e272 100644 --- a/previews/PR3919/manual/objective/index.html +++ b/previews/PR3919/manual/objective/index.html @@ -179,4 +179,4 @@ 2 x[1] julia> @constraint(model, obj3 <= 2.0) -x[1] + x[2] ≤ 2 +x[1] + x[2] ≤ 2 diff --git a/previews/PR3919/manual/solutions/index.html b/previews/PR3919/manual/solutions/index.html index 848d35e97a1..4d08f27735e 100644 --- a/previews/PR3919/manual/solutions/index.html +++ b/previews/PR3919/manual/solutions/index.html @@ -430,4 +430,4 @@ x integer => 0.1

    You can also use the functional form, where the first argument is a function that maps variables to their primal values:

    julia> optimize!(model)
     
     julia> primal_feasibility_report(v -> value(v), model)
    -Dict{Any, Float64}()
    +Dict{Any, Float64}() diff --git a/previews/PR3919/manual/variables/index.html b/previews/PR3919/manual/variables/index.html index 53bcb15a40c..c4f6ac9fcb9 100644 --- a/previews/PR3919/manual/variables/index.html +++ b/previews/PR3919/manual/variables/index.html @@ -639,4 +639,4 @@ p*x julia> typeof(px) -QuadExpr (alias for GenericQuadExpr{Float64, GenericVariableRef{Float64}})

    When to use a parameter

    Parameters are most useful when solving nonlinear models in a sequence:

    julia> using JuMP, Ipopt
    julia> model = Model(Ipopt.Optimizer);
    julia> set_silent(model)
    julia> @variable(model, x)x
    julia> @variable(model, p in Parameter(1.0))p
    julia> @objective(model, Min, (x - p)^2)x² - 2 p*x + p²
    julia> optimize!(model)
    julia> value(x)1.0
    julia> set_parameter_value(p, 5.0)
    julia> optimize!(model)
    julia> value(x)5.0

    Using parameters can be faster than creating a new model from scratch with updated data because JuMP is able to avoid repeating a number of steps in processing the model before handing it off to the solver.

    +QuadExpr (alias for GenericQuadExpr{Float64, GenericVariableRef{Float64}})

    When to use a parameter

    Parameters are most useful when solving nonlinear models in a sequence:

    julia> using JuMP, Ipopt
    julia> model = Model(Ipopt.Optimizer);
    julia> set_silent(model)
    julia> @variable(model, x)x
    julia> @variable(model, p in Parameter(1.0))p
    julia> @objective(model, Min, (x - p)^2)x² - 2 p*x + p²
    julia> optimize!(model)
    julia> value(x)1.0
    julia> set_parameter_value(p, 5.0)
    julia> optimize!(model)
    julia> value(x)5.0

    Using parameters can be faster than creating a new model from scratch with updated data because JuMP is able to avoid repeating a number of steps in processing the model before handing it off to the solver.

    diff --git a/previews/PR3919/moi/background/duality/index.html b/previews/PR3919/moi/background/duality/index.html index da9e2d066f1..7c011457dbc 100644 --- a/previews/PR3919/moi/background/duality/index.html +++ b/previews/PR3919/moi/background/duality/index.html @@ -81,4 +81,4 @@ \max & \sum b_k y_k \\ \text{s.t.} \;\; & C+C^\top - \sum (A_k+A_k^\top) y_k \in \mathcal{S}_+ \\ & C-C^\top - \sum(A_k-A_k^\top) y_k = 0 -\end{align}\]

    and we recover $Z = X + X^\top$.

    +\end{align}\]

    and we recover $Z = X + X^\top$.

    diff --git a/previews/PR3919/moi/background/infeasibility_certificates/index.html b/previews/PR3919/moi/background/infeasibility_certificates/index.html index 1521067b317..870ee1a1dcf 100644 --- a/previews/PR3919/moi/background/infeasibility_certificates/index.html +++ b/previews/PR3919/moi/background/infeasibility_certificates/index.html @@ -29,4 +29,4 @@ \end{align}\]

    and:

    \[-\sum_{i=1}^m b_i^\top (y_i + \eta d_i) > -\sum_{i=1}^m b_i^\top y_i,\]

    for any feasible dual solution $y$. The latter simplifies to $-\sum_{i=1}^m b_i^\top d_i > 0$. For a maximization problem, the inequality is $\sum_{i=1}^m b_i^\top d_i < 0$. (Note that these are the same inequality, modulo a - sign.)

    If the solver has found a certificate of primal infeasibility:

    Note

    The choice of whether to scale the ray $d$ to have magnitude 1 is left to the solver.

    Infeasibility certificates of variable bounds

    Many linear solvers (for example, Gurobi) do not provide explicit access to the primal infeasibility certificate of a variable bound. However, given a set of linear constraints:

    \[\begin{align} l_A \le A x \le u_A \\ l_x \le x \le u_x, -\end{align}\]

    the primal certificate of the variable bounds can be computed using the primal certificate associated with the affine constraints, $d$. (Note that $d$ will have one element for each row of the $A$ matrix, and that some or all of the elements in the vectors $l_A$ and $u_A$ may be $\pm \infty$. If both $l_A$ and $u_A$ are finite for some row, the corresponding element in `d must be 0.)

    Given $d$, compute $\bar{d} = d^\top A$. If the bound is finite, a certificate for the lower variable bound of $x_i$ is $\max\{\bar{d}_i, 0\}$, and a certificate for the upper variable bound is $\min\{\bar{d}_i, 0\}$.

    +\end{align}\]

    the primal certificate of the variable bounds can be computed using the primal certificate associated with the affine constraints, $d$. (Note that $d$ will have one element for each row of the $A$ matrix, and that some or all of the elements in the vectors $l_A$ and $u_A$ may be $\pm \infty$. If both $l_A$ and $u_A$ are finite for some row, the corresponding element in `d must be 0.)

    Given $d$, compute $\bar{d} = d^\top A$. If the bound is finite, a certificate for the lower variable bound of $x_i$ is $\max\{\bar{d}_i, 0\}$, and a certificate for the upper variable bound is $\min\{\bar{d}_i, 0\}$.

    diff --git a/previews/PR3919/moi/background/motivation/index.html b/previews/PR3919/moi/background/motivation/index.html index 908600c9ea4..c268f9d71ec 100644 --- a/previews/PR3919/moi/background/motivation/index.html +++ b/previews/PR3919/moi/background/motivation/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash}); -

    Motivation

    MathOptInterface (MOI) is a replacement for MathProgBase, the first-generation abstraction layer for mathematical optimization previously used by JuMP and Convex.jl.

    To address a number of limitations of MathProgBase, MOI is designed to:

    • Be simple and extensible
      • unifying linear, quadratic, and conic optimization,
      • seamlessly facilitating extensions to essentially arbitrary constraints and functions (for example, indicator constraints, complementarity constraints, and piecewise-linear functions)
    • Be fast
      • by allowing access to a solver's in-memory representation of a problem without writing intermediate files (when possible)
      • by using multiple dispatch and avoiding requiring containers of non-concrete types
    • Allow a solver to return multiple results (for example, a pool of solutions)
    • Allow a solver to return extra arbitrary information via attributes (for example, variable- and constraint-wise membership in an irreducible inconsistent subset for infeasibility analysis)
    • Provide a greatly expanded set of status codes explaining what happened during the optimization procedure
    • Enable a solver to more precisely specify which problem classes it supports
    • Enable both primal and dual warm starts
    • Enable adding and removing both variables and constraints by indices that are not required to be consecutive
    • Enable any modification that the solver supports to an existing model
    • Avoid requiring the solver wrapper to store an additional copy of the problem data
    +

    Motivation

    MathOptInterface (MOI) is a replacement for MathProgBase, the first-generation abstraction layer for mathematical optimization previously used by JuMP and Convex.jl.

    To address a number of limitations of MathProgBase, MOI is designed to:

    • Be simple and extensible
      • unifying linear, quadratic, and conic optimization,
      • seamlessly facilitating extensions to essentially arbitrary constraints and functions (for example, indicator constraints, complementarity constraints, and piecewise-linear functions)
    • Be fast
      • by allowing access to a solver's in-memory representation of a problem without writing intermediate files (when possible)
      • by using multiple dispatch and avoiding requiring containers of non-concrete types
    • Allow a solver to return multiple results (for example, a pool of solutions)
    • Allow a solver to return extra arbitrary information via attributes (for example, variable- and constraint-wise membership in an irreducible inconsistent subset for infeasibility analysis)
    • Provide a greatly expanded set of status codes explaining what happened during the optimization procedure
    • Enable a solver to more precisely specify which problem classes it supports
    • Enable both primal and dual warm starts
    • Enable adding and removing both variables and constraints by indices that are not required to be consecutive
    • Enable any modification that the solver supports to an existing model
    • Avoid requiring the solver wrapper to store an additional copy of the problem data
    diff --git a/previews/PR3919/moi/background/naming_conventions/index.html b/previews/PR3919/moi/background/naming_conventions/index.html index 5db42d88f78..981d48624e0 100644 --- a/previews/PR3919/moi/background/naming_conventions/index.html +++ b/previews/PR3919/moi/background/naming_conventions/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash}); -

    Naming conventions

    MOI follows several conventions for naming functions and structures. These should also be followed by packages extending MOI.

    Sets

    Sets encode the structure of constraints. Their names should follow the following conventions:

    • Abstract types in the set hierarchy should begin with Abstract and end in Set, for example, AbstractScalarSet, AbstractVectorSet.
    • Vector-valued conic sets should end with Cone, for example, NormInfinityCone, SecondOrderCone.
    • Vector-valued Cartesian products should be plural and not end in Cone, for example, Nonnegatives, not NonnegativeCone.
    • Matrix-valued conic sets should provide two representations: ConeSquare and ConeTriangle, for example, RootDetConeTriangle and RootDetConeSquare. See Matrix cones for more details.
    • Scalar sets should be singular, not plural, for example, Integer, not Integers.
    • As much as possible, the names should follow established conventions in the domain where this set is used: for instance, convex sets should have names close to those of CVX, and constraint-programming sets should follow MiniZinc's constraints.
    +

    Naming conventions

    MOI follows several conventions for naming functions and structures. These should also be followed by packages extending MOI.

    Sets

    Sets encode the structure of constraints. Their names should follow the following conventions:

    • Abstract types in the set hierarchy should begin with Abstract and end in Set, for example, AbstractScalarSet, AbstractVectorSet.
    • Vector-valued conic sets should end with Cone, for example, NormInfinityCone, SecondOrderCone.
    • Vector-valued Cartesian products should be plural and not end in Cone, for example, Nonnegatives, not NonnegativeCone.
    • Matrix-valued conic sets should provide two representations: ConeSquare and ConeTriangle, for example, RootDetConeTriangle and RootDetConeSquare. See Matrix cones for more details.
    • Scalar sets should be singular, not plural, for example, Integer, not Integers.
    • As much as possible, the names should follow established conventions in the domain where this set is used: for instance, convex sets should have names close to those of CVX, and constraint-programming sets should follow MiniZinc's constraints.
    diff --git a/previews/PR3919/moi/changelog/index.html b/previews/PR3919/moi/changelog/index.html index 33d4466122a..8161c2704fa 100644 --- a/previews/PR3919/moi/changelog/index.html +++ b/previews/PR3919/moi/changelog/index.html @@ -31,4 +31,4 @@ end write(path, s) end -end

    v0.9.22 (May 22, 2021)

    This release contains backports from the ongoing development of the v0.10 release.

    • Improved type inference in Utilities, Bridges and FileFormats submodules to reduce latency.
    • Improved performance of Utilities.is_canonical.
    • Fixed Utilities.pass_nonvariable_constraints with bridged variables.
    • Fixed performance regression of Utilities.Model.
    • Fixed ordering of objective setting in parser.

    v0.9.21 (April 23, 2021)

    • Added supports_shift_constant.
    • Improve performance of bridging quadratic constraints.
    • Add precompilation statements.
    • Large improvements to the documentation.
    • Fix a variety of inference issues, benefiting precompilation and reducing initial latency.
    • RawParameters are now ignored when resetting a CachingOptimizer. Previously, changing the underlying optimizer after RawParameters were set would throw an error.
    • Utilities.AbstractModel is being refactored. This may break users interacting with private fields of a model generated using @model.

    v0.9.20 (February 20, 2021)

    • Improved performance of Utilities.ScalarFunctionIterator
    • Added support for compute_conflict to MOI layers
    • Added test with zero off-diagonal quadratic term in objective
    • Fixed double deletion of nested bridged SingleVariable/VectorOfVariables constraints
    • Fixed modification of un-set objective
    • Fixed function modification with duplicate terms
    • Made unit tests abort without failing if the problem class is not supported
    • Formatted code with JuliaFormatter
    • Clarified BasisStatusCode's docstring

    v0.9.19 (December 1, 2020)

    • Added CallbackNodeStatus attribute
    • Added bridge from GreaterThan or LessThan to Interval
    • Added tests for infeasibility certificates and double optimize
    • Fixed support for Julia v1.6
    • Re-organized MOI docs and added documentation for adding a test

    v0.9.18 (November 3, 2020)

    • Various improvements for working with complex numbers
    • Added GeoMeantoRelEntrBridge to bridge a GeometricMeanCone constraint to a relative entropy constraint

    v0.9.17 (September 21, 2020)

    • Fixed CleverDict with variable of negative index value
    • Implement supports_add_constrained_variable for MockOptimizer

    v0.9.16 (September 17, 2020)

    • Various fixes:
      • 32-bit support
      • CleverDict with abstract value type
      • Checks in test suite

    v0.9.15 (September 14, 2020)

    • Bridges improvements:
      • (R)SOCtoNonConvexQuad bridge
      • ZeroOne bridge
      • Use supports_add_constrained_variable in LazyBridgeOptimizer
      • Exposed VariableBridgeCost and ConstraintBridgeCost attributes
      • Prioritize constraining variables on creation according to these costs
      • Refactor bridge debugging
    • Large performance improvements across all submodules
    • Lots of documentation improvements
    • FileFormats improvements:
      • Update MathOptFormat to v0.5
      • Fix supported objectives in FileFormats
    • Testing improvements:
      • Add name option for basic_constraint_test
    • Bug fixes and missing methods
      • Add length for iterators
      • Fix bug with duplicate terms
      • Fix order of LinearOfConstraintIndices

    v0.9.14 (May 30, 2020)

    • Add a solver-independent interface for accessing the set of conflicting constraints an Irreducible Inconsistent Subsystem (#1056).
    • Bump JSONSchema dependency from v0.2 to v0.3 (#1090).
    • Documentation improvements:
      • Fix typos (#1054, #1060, #1061, #1064, #1069, #1070).
      • Remove the outdated recommendation for a package implementing MOI for a solver XXX to be called MathOptInterfaceXXX (#1087).
    • Utilities improvements:
      • Fix is_canonical for quadratic functions (#1081, #1089).
      • Implement add_constrained_variable[s] for CachingOptimizer so that it is added as constrained variables to the underlying optimizer (#1084).
      • Add support for custom objective functions for UniversalFallback (#1086).
      • Deterministic ordering of constraints in UniversalFallback (#1088).
    • Testing improvements:
      • Add NormOneCone/NormInfinityCone tests (#1045).
    • Bridges improvements:
      • Add bridges from Semiinteger and Semicontinuous (#1059).
      • Implement getting ConstraintSet for Variable.FlipSignBridge (#1066).
      • Fix setting ConstraintFunction for Constraint.ScalarizeBridge (#1093).
      • Fix NormOne/NormInf bridges with nonzero constants (#1045).
      • Fix StackOverflow in debug (#1063).
    • FileFormats improvements:
      • [SDPA] Implement the extension for integer variables (#1079).
      • [SDPA] Ignore comments after m and nblocks and detect dat-s extension (#1077).
      • [SDPA] No scaling of off-diagonal coefficient (#1076).
      • [SDPA] Add missing negation of constant (#1075).

    v0.9.13 (March 24, 2020)

    • Added tests for Semicontinuous and Semiinteger variables (#1033).
    • Added tests for using ExprGraphs from NLP evaluators (#1043).
    • Update version compatibilities of dependencies (#1034, #1051, #1052).
    • Fixed typos in documentation (#1044).

    v0.9.12 (February 28, 2020)

    • Fixed writing NLPBlock in MathOptFormat (#1037).
    • Fixed MockOptimizer for result attributes with non-one result index (#1039).
    • Updated test template with instantiate (#1032).

    v0.9.11 (February 21, 2020)

    • Add an option for the model created by Utilities.@model to be a subtype of AbstractOptimizer (#1031).
    • Described dual cone in docstrings of GeoMeanCone and RelativeEntropyCone (#1018, #1028).
    • Fixed typos in documentation (#1022, #1024).
    • Fixed warning of unsupported attribute (#1027).
    • Added more rootdet/logdet conic tests (#1026).
    • Implemented ConstraintDual for Constraint.GeoMeanBridge, Constraint.RootDetBridge and Constraint.LogDetBridge and test duals in tests with GeoMeanCone and RootDetConeTriangle and LogDetConeTriangle cones (#1025, #1026).

    v0.9.10 (January 31, 2020)

    • Added OptimizerWithAttributes grouping an optimizer constructor and a list of optimizer attributes (#1008).
    • Added RelativeEntropyCone with corresponding bridge into exponential cone constraints (#993).
    • Added NormSpectralCone and NormNuclearCone with corresponding bridges into positive semidefinite constraints (#976).
    • Added supports_constrained_variable(s) (#1004).
    • Added dual_set_type (#1002).
    • Added tests for vector specialized version of delete (#989, #1011).
    • Added PSD3 test (#1007).
    • Clarified dual solution of Tests.pow1v and Tests.pow1f (#1013).
    • Added support for EqualTo and Zero in Bridges.Constraint.SplitIntervalBridge (#1005).
    • Fixed Utilities.vectorize for empty vector (#1003).
    • Fixed free variables in LP writer (#1006).

    v0.9.9 (December 29, 2019)

    • Incorporated MathOptFormat.jl as the FileFormats submodule. FileFormats provides readers and writers for a number of standard file formats and MOF, a file format specialized for MOI (#969).
    • Improved performance of deletion of vector of variables in MOI.Utilities.Model (#983).
    • Updated to MutableArithmetics v0.2 (#981).
    • Added MutableArithmetics.promote_operation allocation tests (#975).
    • Fixed inference issue on Julia v1.1 (#982).

    v0.9.8 (December 19, 2019)

    • Implemented MutableArithmetics API (#924).
    • Fixed callbacks with CachingOptimizer (#959).
    • Fixed MOI.dimension for MOI.Complements (#948).
    • Added fallback for add_variables (#972).
    • Added is_diagonal_vectorized_index utility (#965).
    • Improved linear constraints display in manual (#963, #964).
    • Bridges improvements:
      • Added IndicatorSet to SOS1 bridge (#877).
      • Added support for starting values for Variable.VectorizeBridge (#944).
      • Fixed MOI.add_constraints with non-bridged variable constraint on bridged variable (#951).
      • Fixed corner cases and docstring of GeoMeanBridge (#961, #962, #966).
      • Fixed choice between variable or constraint bridges for constrained variables (#973).
      • Improve performance of bridge shortest path (#945, #946, #956).
      • Added docstring for test_delete_bridge (#954).
      • Added Variable bridge tests (#952).

    v0.9.7 (October 30, 2019)

    • Implemented _result_index_field for NLPBlockDual (#934).
    • Fixed copy of model with starting values for vector constraints (#941).
    • Bridges improvements:
      • Improved performance of add_bridge and added has_bridge (#935).
      • Added AbstractSetMapBridge for bridges between sets S1, S2 such that there is a linear map A such that A*S1 = S2 (#933).
      • Added support for starting values for FlipSignBridge, VectorizeBridge, ScalarizeBridge, SlackBridge, SplitIntervalBridge, RSOCBridge, SOCRBridge NormInfinityBridge, SOCtoPSDBridge and RSOCtoPSDBridge (#933, #936, #937, #938, #939).

    v0.9.6 (October 25, 2019)

    • Added complementarity constraints (#913).
    • Allowed ModelLike objects as value of attributes (#928).
    • Testing improvements:
      • Added dual_objective_value option to MOI.Test.TestConfig (#922).
      • Added InvalidIndex tests in basic_constraint_tests (#921).
      • Added tests for the constant term in indicator constraint (#929).
    • Bridges improvements:
      • Added support for starting values for Functionize bridges (#923).
      • Added variable indices context to variable bridges (#920).
      • Fixed a typo in printing o debug_supports (#927).

    v0.9.5 (October 9, 2019)

    • Clarified PrimalStatus/DualStatus to be NO_SOLUTION if result_index is out of bounds (#912).
    • Added tolerance for checks and use ResultCount + 1 for the result_index in MOI.Test.solve_result_status (#910, #917).
    • Use 0.5 instead of 2.0 for power in PowerCone in basic_constraint_test (#916).
    • Bridges improvements:
      • Added debug utilities for unsupported variable/constraint/objective (#861).
      • Fixed deletion of variables in bridged VectorOfVariables constraints (#909).
      • Fixed result_index with objective bridges (#911).

    v0.9.4 (October 2, 2019)

    • Added solver-independent MIP callbacks (#782).
    • Implements submit for Utilities.CachingOptimizer and Bridges.AbstractBridgeOptimizer (#906).
    • Added tests for result count of solution attributes (#901, #904).
    • Added NumberOfThreads attribute (#892).
    • Added Utilities.get_bounds to get the bounds on a variable (#890).
    • Added a note on duplicate coefficients in documentation (#581).
    • Added result index in ConstraintBasisStatus (#898).
    • Added extension dictionary to Utilities.Model (#884, #895).
    • Fixed deletion of constrained variables for CachingOptimizer (#905).
    • Implemented Utilities.shift_constraint for Test.UnknownScalarSet (#896).
    • Bridges improvements:
      • Added Variable.RSOCtoSOCBridge (#907).
      • Implemented MOI.get for ConstraintFunction/ConstraintSet for Bridges.Constraint.SquareBridge (#899).

    v0.9.3 (September 20, 2019)

    • Fixed ambiguity detected in Julia v1.3 (#891, #893).
    • Fixed missing sets from ListOfSupportedConstraints (#880).
    • Fixed copy of VectorOfVariables constraints with duplicate indices (#886).
    • Added extension dictionary to MOIU.Model (#884).
    • Implemented MOI.get for function and set for GeoMeanBridge (#888).
    • Updated documentation for SingleVariable indices and bridges (#885).
    • Testing improvements:
      • Added more comprehensive tests for names (#882).
      • Added tests for SingleVariable duals (#883).
      • Added tests for DualExponentialCone and DualPowerCone (#873).
    • Improvements for arbitrary coefficient type:
      • Fixed == for sets with mutable fields (#887).
      • Removed some Float64 assumptions in bridges (#878).
      • Automatic selection of Constraint.[Scalar|Vector]FunctionizeBridge (#889).

    v0.9.2 (September 5, 2019)

    • Implemented model printing for MOI.ModelLike and specialized it for models defined in MOI (864).
    • Generalized contlinear tests for arbitrary coefficient type (#855).
    • Fixed supports_constraint for Semiinteger and Semicontinuous and supports for ObjectiveFunction (#859).
    • Fixed Allocate-Load copy for single variable constraints (#856).
    • Bridges improvements:
      • Add objective bridges (#789).
      • Fixed Variable.RSOCtoPSDBridge for dimension 2 (#869).
      • Added Variable.SOCtoRSOCBridge (#865).
      • Added Constraint.SOCRBridge and disable MOI.Bridges.Constraint.SOCtoPSDBridge (#751).
      • Fixed added_constraint_types for Contraint.LogDetBridge and Constraint.RootDetBridge (#870).

    v0.9.1 (August 22, 2019)

    • Fix support for Julia v1.2 (#834).
    • L1 and L∞ norm epigraph cones and corresponding bridges to LP were added (#818).
    • Added tests to MOI.Test.nametest (#833).
    • Fix MOI.Test.soc3test for solvers not supporting infeasibility certificates (#839).
    • Implements operate for operators * and / between vector function and constant (#837).
    • Implements show for MOI.Utilities.IndexMap (#847).
    • Fix corner cases for mapping of variables in MOI.Utilities.CachingOptimizer and substitution of variables in MOI.Bridges.AbstractBridgeOptimizer (#848).
    • Fix transformation of constant terms for MOI.Bridges.Constraint.SOCtoPSDBridge and MOI.Bridges.Constraint.RSOCtoPSDBridge (#840).

    v0.9.0 (August 13, 2019)

    • Support for Julia v0.6 and v0.7 was dropped (#714, #717).
    • A MOI.Utilities.Model implementation of ModelLike, this should replace most use cases of MOI.Utilities.@model (#781).
    • add_constrained_variable and add_constrained_variables were added (#759).
    • Support for indicator constraints was added (#709, #712).
    • DualObjectiveValue attribute was added (#473).
    • RawParameter attribute was added (#733).
    • A dual_set function was added (#804).
    • A Benchmarks submodule was added to facilitate solver benchmarking (#769).
    • A submit function was added, this may for instance allow the user to submit solutions or cuts to the solver from a callback (#775).
    • The field of ObjectiveValue was renamed to result_index (#729).
    • The _constant and Utilities.getconstant function were renamed to constant
    • REDUCTION_CERTIFICATE result status was added (#734).
    • Abstract matrix sets were added (#731).
    • Testing improvements:
      • The testing guideline was updated (#728).
      • Quadratic tests were added (#697).
      • Unit tests for RawStatusString, SolveTime, Silent and SolverName were added (#726, #741).
      • A rotated second-order cone test was added (#759).
      • A power cone test was added (#768).
      • Tests for ZeroOne variables with variable bounds were added (#772).
      • An unbounded test was added (#773).
      • Existing tests had a few updates (#702, #703, #763).
    • Documentation improvements:
      • Added a section on CachingOptimizer (#777).
      • Added a section on UniversalFallback, Model and @model (#762).
      • Transition the knapsack example to a doctest with MockOptimizer (#786).
    • Utilities improvements:
      • A CleverDict utility was added for a vector that automatically transform into a dictionary once a first index is removed (#767).
      • The Utilities.constant function was renamed to Utilities.constant_vector (#740).
      • Implement optimizer attributes for CachingOptimizer (#745).
      • Rename Utilities.add_scalar_constraint to Utilities.normalize_and_add_constraint (#801).
      • operate with vcat, SingleVariable and VectorOfVariables now returns a VectorOfVariables (#616).
      • Fix a type piracy of operate (#784).
      • The load_constraint fallback signature was fixed (#760).
      • The set_dot function was extended to work with sparse arrays (#805).
    • Bridges improvements:
      • The bridges no longer store the constraint function and set before it is bridged, the bridges now have to implement ConstraintFunction and ConstraintSet if the user wants to recover them. As a consequence, the @bridge macro was removed (#722).
      • Bridge are now instantiated with a bridge_constraint function instead of using a constructor (#730).
      • Fix constraint attributes for bridges (#699).
      • Constraint bridges were moved to the Bridges/Constraint submodule so they should now inherit from MOI.Bridges.Constraint.Abstract and should implement MOI.Bridges.Constraint.concrete_bridge_type instead of MOI.Bridges.concrete_bridge_type (#756).
      • Variable bridges were added in (#759).
      • Various improvements (#746, #747).

    v0.8.4 (March 13, 2019)

    • Performance improvement in default_copy_to and bridge optimizer (#696).
    • Add Silent and implement setting optimizer attributes in caching and mock optimizers (#695).
    • Add Functionize bridges (SingleVariable and VectorOfVariables) (#659).
    • Minor typo fixes (#694).

    v0.8.3 (March 6, 2019)

    • Use zero constant in scalar constraint function of MOI.Test.copytest (#691).
    • Fix variable deletion with SingleVariable objective function (#690).
    • Fix LazyBridgeOptimizer with bridges that add no constraints (#689).
    • Error message improvements (#673, #685, #686, #688).
    • Documentation improvements (#682, #683, #687).
    • Basis status:
      • Remove VariableBasisStatus (#679).
      • Test ConstraintBasisStatus and implement it in bridges (#678).
    • Fix inference of NumberOfVariables and NumberOfConstraints (#677).
    • Implement division between a quadratic function and a number (#675).

    v0.8.2 (February 7, 2019)

    • Add RawStatusString attribute (#629).
    • Do not set names to the optimizer but only to the cache in CachingOptimizer (#638).
    • Make scalar MOI functions act as scalars in broadcast (#646).
    • Add function utilities:
      • Implement Base.zero (#634), Base.iszero (#643), add missing arithmetic operations (#644, #645) and fix division (#648).
      • Add a vectorize function that turns a vector of ScalarAffineFunction into a VectorAffineFunction (#642).
    • Improve support for starting values:
      • Show a warning in copy when starting values are not supported instead of throwing an error (#630).
      • Fix UniversalFallback for getting an variable or constraint attribute set to no indices (#623).
      • Add a test in contlineartest with partially set VariablePrimalStart.
    • Bridges improvements:
      • Fix StackOverFlow in LazyBridgeOptimizer when there is a cycle in the graph of bridges.
      • Add Slack bridges (#610, #650).
      • Add FlipSign bridges (#658).
    • Add tests with duplicate coefficients in ScalarAffineFunction and VectorAffineFunction (#639).
    • Use tolerance to compare VariablePrimal in rotatedsoc1 test (#632).
    • Use a zero constant in ScalarAffineFunction of constraints in psdt2 (#622).

    v0.8.1 (January 7, 2019)

    • Adding an NLP objective now overrides any objective set using the ObjectiveFunction attribute (#619).
    • Rename fullbridgeoptimizer into full_bridge_optimizer (#621).
    • Allow custom constraint types with full_bridge_optimizer (#617).
    • Add Vectorize bridge which transforms scalar linear constraints into vector linear constraints (#615).

    v0.8.0 (December 18, 2018)

    • Rename all enum values to follow the JuMP naming guidelines for constants, for example, Optimal becomes OPTIMAL, and DualInfeasible becomes DUAL_INFEASIBLE.
    • Rename CachingOptimizer methods for style compliance.
    • Add an MOI.TerminationStatusCode called ALMOST_DUAL_INFEASIBLE.

    v0.7.0 (December 13, 2018)

    • Test that MOI.TerminationStatus is MOI.OptimizeNotCalled before MOI.optimize! is called.
    • Check supports_default_copy_to in tests (#594).
    • Key pieces of information like optimality, infeasibility, etc., are now reported through TerminationStatusCode. It is typically no longer necessary to check the result statuses in addition to the termination status.
    • Add perspective dimension to log-det cone (#593).

    v0.6.4 (November 27, 2018)

    • Add OptimizeNotCalled termination status (#577) and improve documentation of other statuses (#575).
    • Add a solver naming guideline (#578).
    • Make FeasibilitySense the default ObjectiveSense (#579).
    • Fix Utilities.@model and Bridges.@bridge macros for functions and sets defined outside MOI (#582).
    • Document solver-specific attributes (#580) and implement them in Utilities.CachingOptimizer (#565).

    v0.6.3 (November 16, 2018)

    • Variables and constraints are now allowed to have duplicate names. An error is thrown only on lookup. This change breaks some existing tests. (#549)
    • Attributes may now be partially set (some values could be nothing). (#563)
    • Performance improvements in Utilities.Model (#549, #567, #568)
    • Fix bug in QuadtoSOC (#558).
    • New supports_default_copy_to method that optimizers should implement to control caching behavior.
    • Documentation improvements.

    v0.6.2 (October 26, 2018)

    • Improve hygiene of @model macro (#544).
    • Fix bug in copy tests (#543).
    • Fix bug in UniversalFallback attribute getter (#540).
    • Allow all correct solutions for solve_blank_obj unit test (#537).
    • Add errors for Allocate-Load and bad constraints (#534).
    • [performance] Add specialized implementation of hash for VariableIndex (#533).
    • [performance] Construct the name to object dictionaries lazily in model (#535).
    • Add the QuadtoSOC bridge which transforms ScalarQuadraticFunction constraints into RotatedSecondOrderCone (#483).

    v0.6.1 (September 22, 2018)

    • Enable PositiveSemidefiniteConeSquare set and quadratic functions in MOIB.fullbridgeoptimizer (#524).
    • Add warning in the bridge between PositiveSemidefiniteConeSquare and PositiveSemidefiniteConeTriangle when the matrix is almost symmetric (#522).
    • Modify MOIT.copytest to not add multiples constraints on the same variable (#521).
    • Add missing keyword argument in one of MOIU.add_scalar_constraint methods (#520).

    v0.6.0 (August 30, 2018)

    • The MOIU.@model and MOIB.@bridge macros now support functions and sets defined in external modules. As a consequence, function and set names in the macro arguments need to be prefixed by module name.
    • Rename functions according to the JuMP style guide:
      • copy! with keyword arguments copynames and warnattributes -> copy_to with keyword arguments copy_names and warn_attributes;
      • set! -> set;
      • addvariable[s]! -> add_variable[s];
      • supportsconstraint -> supports_constraint;
      • addconstraint[s]! -> add_constraint[s];
      • isvalid -> is_valid;
      • isempty -> is_empty;
      • Base.delete! -> delete;
      • modify! -> modify;
      • transform! -> transform;
      • initialize! -> initialize;
      • write -> write_to_file; and
      • read! -> read_from_file.
    • Remove free! (use Base.finalize instead).
    • Add the SquarePSD bridge which transforms PositiveSemidefiniteConeTriangle constraints into PositiveSemidefiniteConeTriangle.
    • Add result fallback for ConstraintDual of variable-wise constraint, ConstraintPrimal and ObjectiveValue.
    • Add tests for ObjectiveBound.
    • Add test for empty rows in vector linear constraint.
    • Rework errors: CannotError has been renamed NotAllowedError and the distinction between UnsupportedError and NotAllowedError is now about whether the element is not supported (for example, it cannot be copied a model containing this element) or the operation is not allowed (either because it is not implemented, because it cannot be performed in the current state of the model, or because it cannot be performed for a specific index)
    • canget is removed. NoSolution is added as a result status to indicate that the solver does not have either a primal or dual solution available (See #479).

    v0.5.0 (August 5, 2018)

    • Fix names with CachingOptimizer.
    • Cleanup thanks to @mohamed82008.
    • Added a universal fallback for constraints.
    • Fast utilities for function canonicalization thanks to @rdeits.
    • Renamed dimension field to side_dimension in the context of matrix-like sets.
    • New and improved tests for cases like duplicate terms and ObjectiveBound.
    • Removed cantransform, canaddconstraint, canaddvariable, canset, canmodify, and candelete functions from the API. They are replaced by a new set of errors that are thrown: Subtypes of UnsupportedError indicate unsupported operations, while subtypes of CannotError indicate operations that cannot be performed in the current state.
    • The API for copy! is updated to remove the CopyResult type.
    • Updates for the new JuMP style guide.

    v0.4.1 (June 28, 2018)

    • Fixes vector function modification on 32 bits.
    • Fixes Bellman-Ford algorithm for bridges.
    • Added an NLP test with FeasibilitySense.
    • Update modification documentation.

    v0.4.0 (June 23, 2018)

    • Helper constructors for VectorAffineTerm and VectorQuadraticTerm.
    • Added modify_lhs to TestConfig.
    • Additional unit tests for optimizers.
    • Added a type parameter to CachingOptimizer for the optimizer field.
    • New API for problem modification (#388)
    • Tests pass without deprecation warnings on Julia 0.7.
    • Small fixes and documentation updates.

    v0.3.0 (May 25, 2018)

    • Functions have been redefined to use arrays-of-structs instead of structs-of-arrays.
    • Improvements to MockOptimizer.
    • Significant changes to Bridges.
    • New and improved unit tests.
    • Fixes for Julia 0.7.

    v0.2.0 (April 24, 2018)

    • Improvements to and better coverage of Tests.
    • Documentation fixes.
    • SolverName attribute.
    • Changes to the NLP interface (new definition of variable order and arrays of structs for bound pairs and sparsity patterns).
    • Addition of NLP tests.
    • Introduction of UniversalFallback.
    • copynames keyword argument to MOI.copy!.
    • Add Bridges submodule.

    v0.1.0 (February 28, 2018)

    • Initial public release.
    • The framework for MOI was developed at the JuMP-dev workshop at MIT in June 2017 as a sorely needed replacement for MathProgBase.
    +end

    v0.9.22 (May 22, 2021)

    This release contains backports from the ongoing development of the v0.10 release.

    • Improved type inference in Utilities, Bridges and FileFormats submodules to reduce latency.
    • Improved performance of Utilities.is_canonical.
    • Fixed Utilities.pass_nonvariable_constraints with bridged variables.
    • Fixed performance regression of Utilities.Model.
    • Fixed ordering of objective setting in parser.

    v0.9.21 (April 23, 2021)

    • Added supports_shift_constant.
    • Improve performance of bridging quadratic constraints.
    • Add precompilation statements.
    • Large improvements to the documentation.
    • Fix a variety of inference issues, benefiting precompilation and reducing initial latency.
    • RawParameters are now ignored when resetting a CachingOptimizer. Previously, changing the underlying optimizer after RawParameters were set would throw an error.
    • Utilities.AbstractModel is being refactored. This may break users interacting with private fields of a model generated using @model.

    v0.9.20 (February 20, 2021)

    • Improved performance of Utilities.ScalarFunctionIterator
    • Added support for compute_conflict to MOI layers
    • Added test with zero off-diagonal quadratic term in objective
    • Fixed double deletion of nested bridged SingleVariable/VectorOfVariables constraints
    • Fixed modification of un-set objective
    • Fixed function modification with duplicate terms
    • Made unit tests abort without failing if the problem class is not supported
    • Formatted code with JuliaFormatter
    • Clarified BasisStatusCode's docstring

    v0.9.19 (December 1, 2020)

    • Added CallbackNodeStatus attribute
    • Added bridge from GreaterThan or LessThan to Interval
    • Added tests for infeasibility certificates and double optimize
    • Fixed support for Julia v1.6
    • Re-organized MOI docs and added documentation for adding a test

    v0.9.18 (November 3, 2020)

    • Various improvements for working with complex numbers
    • Added GeoMeantoRelEntrBridge to bridge a GeometricMeanCone constraint to a relative entropy constraint

    v0.9.17 (September 21, 2020)

    • Fixed CleverDict with variable of negative index value
    • Implement supports_add_constrained_variable for MockOptimizer

    v0.9.16 (September 17, 2020)

    • Various fixes:
      • 32-bit support
      • CleverDict with abstract value type
      • Checks in test suite

    v0.9.15 (September 14, 2020)

    • Bridges improvements:
      • (R)SOCtoNonConvexQuad bridge
      • ZeroOne bridge
      • Use supports_add_constrained_variable in LazyBridgeOptimizer
      • Exposed VariableBridgeCost and ConstraintBridgeCost attributes
      • Prioritize constraining variables on creation according to these costs
      • Refactor bridge debugging
    • Large performance improvements across all submodules
    • Lots of documentation improvements
    • FileFormats improvements:
      • Update MathOptFormat to v0.5
      • Fix supported objectives in FileFormats
    • Testing improvements:
      • Add name option for basic_constraint_test
    • Bug fixes and missing methods
      • Add length for iterators
      • Fix bug with duplicate terms
      • Fix order of LinearOfConstraintIndices

    v0.9.14 (May 30, 2020)

    • Add a solver-independent interface for accessing the set of conflicting constraints an Irreducible Inconsistent Subsystem (#1056).
    • Bump JSONSchema dependency from v0.2 to v0.3 (#1090).
    • Documentation improvements:
      • Fix typos (#1054, #1060, #1061, #1064, #1069, #1070).
      • Remove the outdated recommendation for a package implementing MOI for a solver XXX to be called MathOptInterfaceXXX (#1087).
    • Utilities improvements:
      • Fix is_canonical for quadratic functions (#1081, #1089).
      • Implement add_constrained_variable[s] for CachingOptimizer so that it is added as constrained variables to the underlying optimizer (#1084).
      • Add support for custom objective functions for UniversalFallback (#1086).
      • Deterministic ordering of constraints in UniversalFallback (#1088).
    • Testing improvements:
      • Add NormOneCone/NormInfinityCone tests (#1045).
    • Bridges improvements:
      • Add bridges from Semiinteger and Semicontinuous (#1059).
      • Implement getting ConstraintSet for Variable.FlipSignBridge (#1066).
      • Fix setting ConstraintFunction for Constraint.ScalarizeBridge (#1093).
      • Fix NormOne/NormInf bridges with nonzero constants (#1045).
      • Fix StackOverflow in debug (#1063).
    • FileFormats improvements:
      • [SDPA] Implement the extension for integer variables (#1079).
      • [SDPA] Ignore comments after m and nblocks and detect dat-s extension (#1077).
      • [SDPA] No scaling of off-diagonal coefficient (#1076).
      • [SDPA] Add missing negation of constant (#1075).

    v0.9.13 (March 24, 2020)

    • Added tests for Semicontinuous and Semiinteger variables (#1033).
    • Added tests for using ExprGraphs from NLP evaluators (#1043).
    • Update version compatibilities of dependencies (#1034, #1051, #1052).
    • Fixed typos in documentation (#1044).

    v0.9.12 (February 28, 2020)

    • Fixed writing NLPBlock in MathOptFormat (#1037).
    • Fixed MockOptimizer for result attributes with non-one result index (#1039).
    • Updated test template with instantiate (#1032).

    v0.9.11 (February 21, 2020)

    • Add an option for the model created by Utilities.@model to be a subtype of AbstractOptimizer (#1031).
    • Described dual cone in docstrings of GeoMeanCone and RelativeEntropyCone (#1018, #1028).
    • Fixed typos in documentation (#1022, #1024).
    • Fixed warning of unsupported attribute (#1027).
    • Added more rootdet/logdet conic tests (#1026).
    • Implemented ConstraintDual for Constraint.GeoMeanBridge, Constraint.RootDetBridge and Constraint.LogDetBridge and test duals in tests with GeoMeanCone and RootDetConeTriangle and LogDetConeTriangle cones (#1025, #1026).

    v0.9.10 (January 31, 2020)

    • Added OptimizerWithAttributes grouping an optimizer constructor and a list of optimizer attributes (#1008).
    • Added RelativeEntropyCone with corresponding bridge into exponential cone constraints (#993).
    • Added NormSpectralCone and NormNuclearCone with corresponding bridges into positive semidefinite constraints (#976).
    • Added supports_constrained_variable(s) (#1004).
    • Added dual_set_type (#1002).
    • Added tests for vector specialized version of delete (#989, #1011).
    • Added PSD3 test (#1007).
    • Clarified dual solution of Tests.pow1v and Tests.pow1f (#1013).
    • Added support for EqualTo and Zero in Bridges.Constraint.SplitIntervalBridge (#1005).
    • Fixed Utilities.vectorize for empty vector (#1003).
    • Fixed free variables in LP writer (#1006).

    v0.9.9 (December 29, 2019)

    • Incorporated MathOptFormat.jl as the FileFormats submodule. FileFormats provides readers and writers for a number of standard file formats and MOF, a file format specialized for MOI (#969).
    • Improved performance of deletion of vector of variables in MOI.Utilities.Model (#983).
    • Updated to MutableArithmetics v0.2 (#981).
    • Added MutableArithmetics.promote_operation allocation tests (#975).
    • Fixed inference issue on Julia v1.1 (#982).

    v0.9.8 (December 19, 2019)

    • Implemented MutableArithmetics API (#924).
    • Fixed callbacks with CachingOptimizer (#959).
    • Fixed MOI.dimension for MOI.Complements (#948).
    • Added fallback for add_variables (#972).
    • Added is_diagonal_vectorized_index utility (#965).
    • Improved linear constraints display in manual (#963, #964).
    • Bridges improvements:
      • Added IndicatorSet to SOS1 bridge (#877).
      • Added support for starting values for Variable.VectorizeBridge (#944).
      • Fixed MOI.add_constraints with non-bridged variable constraint on bridged variable (#951).
      • Fixed corner cases and docstring of GeoMeanBridge (#961, #962, #966).
      • Fixed choice between variable or constraint bridges for constrained variables (#973).
      • Improve performance of bridge shortest path (#945, #946, #956).
      • Added docstring for test_delete_bridge (#954).
      • Added Variable bridge tests (#952).

    v0.9.7 (October 30, 2019)

    • Implemented _result_index_field for NLPBlockDual (#934).
    • Fixed copy of model with starting values for vector constraints (#941).
    • Bridges improvements:
      • Improved performance of add_bridge and added has_bridge (#935).
      • Added AbstractSetMapBridge for bridges between sets S1, S2 such that there is a linear map A such that A*S1 = S2 (#933).
      • Added support for starting values for FlipSignBridge, VectorizeBridge, ScalarizeBridge, SlackBridge, SplitIntervalBridge, RSOCBridge, SOCRBridge NormInfinityBridge, SOCtoPSDBridge and RSOCtoPSDBridge (#933, #936, #937, #938, #939).

    v0.9.6 (October 25, 2019)

    • Added complementarity constraints (#913).
    • Allowed ModelLike objects as value of attributes (#928).
    • Testing improvements:
      • Added dual_objective_value option to MOI.Test.TestConfig (#922).
      • Added InvalidIndex tests in basic_constraint_tests (#921).
      • Added tests for the constant term in indicator constraint (#929).
    • Bridges improvements:
      • Added support for starting values for Functionize bridges (#923).
      • Added variable indices context to variable bridges (#920).
      • Fixed a typo in printing o debug_supports (#927).

    v0.9.5 (October 9, 2019)

    • Clarified PrimalStatus/DualStatus to be NO_SOLUTION if result_index is out of bounds (#912).
    • Added tolerance for checks and use ResultCount + 1 for the result_index in MOI.Test.solve_result_status (#910, #917).
    • Use 0.5 instead of 2.0 for power in PowerCone in basic_constraint_test (#916).
    • Bridges improvements:
      • Added debug utilities for unsupported variable/constraint/objective (#861).
      • Fixed deletion of variables in bridged VectorOfVariables constraints (#909).
      • Fixed result_index with objective bridges (#911).

    v0.9.4 (October 2, 2019)

    • Added solver-independent MIP callbacks (#782).
    • Implements submit for Utilities.CachingOptimizer and Bridges.AbstractBridgeOptimizer (#906).
    • Added tests for result count of solution attributes (#901, #904).
    • Added NumberOfThreads attribute (#892).
    • Added Utilities.get_bounds to get the bounds on a variable (#890).
    • Added a note on duplicate coefficients in documentation (#581).
    • Added result index in ConstraintBasisStatus (#898).
    • Added extension dictionary to Utilities.Model (#884, #895).
    • Fixed deletion of constrained variables for CachingOptimizer (#905).
    • Implemented Utilities.shift_constraint for Test.UnknownScalarSet (#896).
    • Bridges improvements:
      • Added Variable.RSOCtoSOCBridge (#907).
      • Implemented MOI.get for ConstraintFunction/ConstraintSet for Bridges.Constraint.SquareBridge (#899).

    v0.9.3 (September 20, 2019)

    • Fixed ambiguity detected in Julia v1.3 (#891, #893).
    • Fixed missing sets from ListOfSupportedConstraints (#880).
    • Fixed copy of VectorOfVariables constraints with duplicate indices (#886).
    • Added extension dictionary to MOIU.Model (#884).
    • Implemented MOI.get for function and set for GeoMeanBridge (#888).
    • Updated documentation for SingleVariable indices and bridges (#885).
    • Testing improvements:
      • Added more comprehensive tests for names (#882).
      • Added tests for SingleVariable duals (#883).
      • Added tests for DualExponentialCone and DualPowerCone (#873).
    • Improvements for arbitrary coefficient type:
      • Fixed == for sets with mutable fields (#887).
      • Removed some Float64 assumptions in bridges (#878).
      • Automatic selection of Constraint.[Scalar|Vector]FunctionizeBridge (#889).

    v0.9.2 (September 5, 2019)

    • Implemented model printing for MOI.ModelLike and specialized it for models defined in MOI (864).
    • Generalized contlinear tests for arbitrary coefficient type (#855).
    • Fixed supports_constraint for Semiinteger and Semicontinuous and supports for ObjectiveFunction (#859).
    • Fixed Allocate-Load copy for single variable constraints (#856).
    • Bridges improvements:
      • Add objective bridges (#789).
      • Fixed Variable.RSOCtoPSDBridge for dimension 2 (#869).
      • Added Variable.SOCtoRSOCBridge (#865).
      • Added Constraint.SOCRBridge and disable MOI.Bridges.Constraint.SOCtoPSDBridge (#751).
      • Fixed added_constraint_types for Contraint.LogDetBridge and Constraint.RootDetBridge (#870).

    v0.9.1 (August 22, 2019)

    • Fix support for Julia v1.2 (#834).
    • L1 and L∞ norm epigraph cones and corresponding bridges to LP were added (#818).
    • Added tests to MOI.Test.nametest (#833).
    • Fix MOI.Test.soc3test for solvers not supporting infeasibility certificates (#839).
    • Implements operate for operators * and / between vector function and constant (#837).
    • Implements show for MOI.Utilities.IndexMap (#847).
    • Fix corner cases for mapping of variables in MOI.Utilities.CachingOptimizer and substitution of variables in MOI.Bridges.AbstractBridgeOptimizer (#848).
    • Fix transformation of constant terms for MOI.Bridges.Constraint.SOCtoPSDBridge and MOI.Bridges.Constraint.RSOCtoPSDBridge (#840).

    v0.9.0 (August 13, 2019)

    • Support for Julia v0.6 and v0.7 was dropped (#714, #717).
    • A MOI.Utilities.Model implementation of ModelLike, this should replace most use cases of MOI.Utilities.@model (#781).
    • add_constrained_variable and add_constrained_variables were added (#759).
    • Support for indicator constraints was added (#709, #712).
    • DualObjectiveValue attribute was added (#473).
    • RawParameter attribute was added (#733).
    • A dual_set function was added (#804).
    • A Benchmarks submodule was added to facilitate solver benchmarking (#769).
    • A submit function was added, this may for instance allow the user to submit solutions or cuts to the solver from a callback (#775).
    • The field of ObjectiveValue was renamed to result_index (#729).
    • The _constant and Utilities.getconstant function were renamed to constant
    • REDUCTION_CERTIFICATE result status was added (#734).
    • Abstract matrix sets were added (#731).
    • Testing improvements:
      • The testing guideline was updated (#728).
      • Quadratic tests were added (#697).
      • Unit tests for RawStatusString, SolveTime, Silent and SolverName were added (#726, #741).
      • A rotated second-order cone test was added (#759).
      • A power cone test was added (#768).
      • Tests for ZeroOne variables with variable bounds were added (#772).
      • An unbounded test was added (#773).
      • Existing tests had a few updates (#702, #703, #763).
    • Documentation improvements:
      • Added a section on CachingOptimizer (#777).
      • Added a section on UniversalFallback, Model and @model (#762).
      • Transition the knapsack example to a doctest with MockOptimizer (#786).
    • Utilities improvements:
      • A CleverDict utility was added for a vector that automatically transform into a dictionary once a first index is removed (#767).
      • The Utilities.constant function was renamed to Utilities.constant_vector (#740).
      • Implement optimizer attributes for CachingOptimizer (#745).
      • Rename Utilities.add_scalar_constraint to Utilities.normalize_and_add_constraint (#801).
      • operate with vcat, SingleVariable and VectorOfVariables now returns a VectorOfVariables (#616).
      • Fix a type piracy of operate (#784).
      • The load_constraint fallback signature was fixed (#760).
      • The set_dot function was extended to work with sparse arrays (#805).
    • Bridges improvements:
      • The bridges no longer store the constraint function and set before it is bridged, the bridges now have to implement ConstraintFunction and ConstraintSet if the user wants to recover them. As a consequence, the @bridge macro was removed (#722).
      • Bridge are now instantiated with a bridge_constraint function instead of using a constructor (#730).
      • Fix constraint attributes for bridges (#699).
      • Constraint bridges were moved to the Bridges/Constraint submodule so they should now inherit from MOI.Bridges.Constraint.Abstract and should implement MOI.Bridges.Constraint.concrete_bridge_type instead of MOI.Bridges.concrete_bridge_type (#756).
      • Variable bridges were added in (#759).
      • Various improvements (#746, #747).

    v0.8.4 (March 13, 2019)

    • Performance improvement in default_copy_to and bridge optimizer (#696).
    • Add Silent and implement setting optimizer attributes in caching and mock optimizers (#695).
    • Add Functionize bridges (SingleVariable and VectorOfVariables) (#659).
    • Minor typo fixes (#694).

    v0.8.3 (March 6, 2019)

    • Use zero constant in scalar constraint function of MOI.Test.copytest (#691).
    • Fix variable deletion with SingleVariable objective function (#690).
    • Fix LazyBridgeOptimizer with bridges that add no constraints (#689).
    • Error message improvements (#673, #685, #686, #688).
    • Documentation improvements (#682, #683, #687).
    • Basis status:
      • Remove VariableBasisStatus (#679).
      • Test ConstraintBasisStatus and implement it in bridges (#678).
    • Fix inference of NumberOfVariables and NumberOfConstraints (#677).
    • Implement division between a quadratic function and a number (#675).

    v0.8.2 (February 7, 2019)

    • Add RawStatusString attribute (#629).
    • Do not set names to the optimizer but only to the cache in CachingOptimizer (#638).
    • Make scalar MOI functions act as scalars in broadcast (#646).
    • Add function utilities:
      • Implement Base.zero (#634), Base.iszero (#643), add missing arithmetic operations (#644, #645) and fix division (#648).
      • Add a vectorize function that turns a vector of ScalarAffineFunction into a VectorAffineFunction (#642).
    • Improve support for starting values:
      • Show a warning in copy when starting values are not supported instead of throwing an error (#630).
      • Fix UniversalFallback for getting an variable or constraint attribute set to no indices (#623).
      • Add a test in contlineartest with partially set VariablePrimalStart.
    • Bridges improvements:
      • Fix StackOverFlow in LazyBridgeOptimizer when there is a cycle in the graph of bridges.
      • Add Slack bridges (#610, #650).
      • Add FlipSign bridges (#658).
    • Add tests with duplicate coefficients in ScalarAffineFunction and VectorAffineFunction (#639).
    • Use tolerance to compare VariablePrimal in rotatedsoc1 test (#632).
    • Use a zero constant in ScalarAffineFunction of constraints in psdt2 (#622).

    v0.8.1 (January 7, 2019)

    • Adding an NLP objective now overrides any objective set using the ObjectiveFunction attribute (#619).
    • Rename fullbridgeoptimizer into full_bridge_optimizer (#621).
    • Allow custom constraint types with full_bridge_optimizer (#617).
    • Add Vectorize bridge which transforms scalar linear constraints into vector linear constraints (#615).

    v0.8.0 (December 18, 2018)

    • Rename all enum values to follow the JuMP naming guidelines for constants, for example, Optimal becomes OPTIMAL, and DualInfeasible becomes DUAL_INFEASIBLE.
    • Rename CachingOptimizer methods for style compliance.
    • Add an MOI.TerminationStatusCode called ALMOST_DUAL_INFEASIBLE.

    v0.7.0 (December 13, 2018)

    • Test that MOI.TerminationStatus is MOI.OptimizeNotCalled before MOI.optimize! is called.
    • Check supports_default_copy_to in tests (#594).
    • Key pieces of information like optimality, infeasibility, etc., are now reported through TerminationStatusCode. It is typically no longer necessary to check the result statuses in addition to the termination status.
    • Add perspective dimension to log-det cone (#593).

    v0.6.4 (November 27, 2018)

    • Add OptimizeNotCalled termination status (#577) and improve documentation of other statuses (#575).
    • Add a solver naming guideline (#578).
    • Make FeasibilitySense the default ObjectiveSense (#579).
    • Fix Utilities.@model and Bridges.@bridge macros for functions and sets defined outside MOI (#582).
    • Document solver-specific attributes (#580) and implement them in Utilities.CachingOptimizer (#565).

    v0.6.3 (November 16, 2018)

    • Variables and constraints are now allowed to have duplicate names. An error is thrown only on lookup. This change breaks some existing tests. (#549)
    • Attributes may now be partially set (some values could be nothing). (#563)
    • Performance improvements in Utilities.Model (#549, #567, #568)
    • Fix bug in QuadtoSOC (#558).
    • New supports_default_copy_to method that optimizers should implement to control caching behavior.
    • Documentation improvements.

    v0.6.2 (October 26, 2018)

    • Improve hygiene of @model macro (#544).
    • Fix bug in copy tests (#543).
    • Fix bug in UniversalFallback attribute getter (#540).
    • Allow all correct solutions for solve_blank_obj unit test (#537).
    • Add errors for Allocate-Load and bad constraints (#534).
    • [performance] Add specialized implementation of hash for VariableIndex (#533).
    • [performance] Construct the name to object dictionaries lazily in model (#535).
    • Add the QuadtoSOC bridge which transforms ScalarQuadraticFunction constraints into RotatedSecondOrderCone (#483).

    v0.6.1 (September 22, 2018)

    • Enable PositiveSemidefiniteConeSquare set and quadratic functions in MOIB.fullbridgeoptimizer (#524).
    • Add warning in the bridge between PositiveSemidefiniteConeSquare and PositiveSemidefiniteConeTriangle when the matrix is almost symmetric (#522).
    • Modify MOIT.copytest to not add multiples constraints on the same variable (#521).
    • Add missing keyword argument in one of MOIU.add_scalar_constraint methods (#520).

    v0.6.0 (August 30, 2018)

    • The MOIU.@model and MOIB.@bridge macros now support functions and sets defined in external modules. As a consequence, function and set names in the macro arguments need to be prefixed by module name.
    • Rename functions according to the JuMP style guide:
      • copy! with keyword arguments copynames and warnattributes -> copy_to with keyword arguments copy_names and warn_attributes;
      • set! -> set;
      • addvariable[s]! -> add_variable[s];
      • supportsconstraint -> supports_constraint;
      • addconstraint[s]! -> add_constraint[s];
      • isvalid -> is_valid;
      • isempty -> is_empty;
      • Base.delete! -> delete;
      • modify! -> modify;
      • transform! -> transform;
      • initialize! -> initialize;
      • write -> write_to_file; and
      • read! -> read_from_file.
    • Remove free! (use Base.finalize instead).
    • Add the SquarePSD bridge which transforms PositiveSemidefiniteConeTriangle constraints into PositiveSemidefiniteConeTriangle.
    • Add result fallback for ConstraintDual of variable-wise constraint, ConstraintPrimal and ObjectiveValue.
    • Add tests for ObjectiveBound.
    • Add test for empty rows in vector linear constraint.
    • Rework errors: CannotError has been renamed NotAllowedError and the distinction between UnsupportedError and NotAllowedError is now about whether the element is not supported (for example, it cannot be copied a model containing this element) or the operation is not allowed (either because it is not implemented, because it cannot be performed in the current state of the model, or because it cannot be performed for a specific index)
    • canget is removed. NoSolution is added as a result status to indicate that the solver does not have either a primal or dual solution available (See #479).

    v0.5.0 (August 5, 2018)

    • Fix names with CachingOptimizer.
    • Cleanup thanks to @mohamed82008.
    • Added a universal fallback for constraints.
    • Fast utilities for function canonicalization thanks to @rdeits.
    • Renamed dimension field to side_dimension in the context of matrix-like sets.
    • New and improved tests for cases like duplicate terms and ObjectiveBound.
    • Removed cantransform, canaddconstraint, canaddvariable, canset, canmodify, and candelete functions from the API. They are replaced by a new set of errors that are thrown: Subtypes of UnsupportedError indicate unsupported operations, while subtypes of CannotError indicate operations that cannot be performed in the current state.
    • The API for copy! is updated to remove the CopyResult type.
    • Updates for the new JuMP style guide.

    v0.4.1 (June 28, 2018)

    • Fixes vector function modification on 32 bits.
    • Fixes Bellman-Ford algorithm for bridges.
    • Added an NLP test with FeasibilitySense.
    • Update modification documentation.

    v0.4.0 (June 23, 2018)

    • Helper constructors for VectorAffineTerm and VectorQuadraticTerm.
    • Added modify_lhs to TestConfig.
    • Additional unit tests for optimizers.
    • Added a type parameter to CachingOptimizer for the optimizer field.
    • New API for problem modification (#388)
    • Tests pass without deprecation warnings on Julia 0.7.
    • Small fixes and documentation updates.

    v0.3.0 (May 25, 2018)

    • Functions have been redefined to use arrays-of-structs instead of structs-of-arrays.
    • Improvements to MockOptimizer.
    • Significant changes to Bridges.
    • New and improved unit tests.
    • Fixes for Julia 0.7.

    v0.2.0 (April 24, 2018)

    • Improvements to and better coverage of Tests.
    • Documentation fixes.
    • SolverName attribute.
    • Changes to the NLP interface (new definition of variable order and arrays of structs for bound pairs and sparsity patterns).
    • Addition of NLP tests.
    • Introduction of UniversalFallback.
    • copynames keyword argument to MOI.copy!.
    • Add Bridges submodule.

    v0.1.0 (February 28, 2018)

    • Initial public release.
    • The framework for MOI was developed at the JuMP-dev workshop at MIT in June 2017 as a sorely needed replacement for MathProgBase.
    diff --git a/previews/PR3919/moi/developer/checklists/index.html b/previews/PR3919/moi/developer/checklists/index.html index f93ea33528e..3223a29bdd2 100644 --- a/previews/PR3919/moi/developer/checklists/index.html +++ b/previews/PR3919/moi/developer/checklists/index.html @@ -112,4 +112,4 @@ ## Documentation - - [ ] The version fields are updated in `docs/src/submodules/FileFormats/overview.md` + - [ ] The version fields are updated in `docs/src/submodules/FileFormats/overview.md` diff --git a/previews/PR3919/moi/index.html b/previews/PR3919/moi/index.html index 0a73e626eae..fbcd5abcde1 100644 --- a/previews/PR3919/moi/index.html +++ b/previews/PR3919/moi/index.html @@ -10,4 +10,4 @@ year={2021}, doi={10.1287/ijoc.2021.1067}, publisher={INFORMS} -}

    A preprint of this paper is freely available.

    +}

    A preprint of this paper is freely available.

    diff --git a/previews/PR3919/moi/manual/constraints/index.html b/previews/PR3919/moi/manual/constraints/index.html index 764f7877681..6802fe81e6d 100644 --- a/previews/PR3919/moi/manual/constraints/index.html +++ b/previews/PR3919/moi/manual/constraints/index.html @@ -23,4 +23,4 @@ false

    Constraint attributes

    The following attributes are available for constraints:

    Get and set these attributes using get and set.

    julia> MOI.set(model, MOI.ConstraintName(), c, "con_c")
     
     julia> MOI.get(model, MOI.ConstraintName(), c)
    -"con_c"

    Constraints by function-set pairs

    Below is a list of common constraint types and how they are represented as function-set pairs in MOI. In the notation below, $x$ is a vector of decision variables, $x_i$ is a scalar decision variable, $\alpha, \beta$ are scalar constants, $a, b$ are constant vectors, A is a constant matrix and $\mathbb{R}_+$ (resp. $\mathbb{R}_-$) is the set of non-negative (resp. non-positive) real numbers.

    Linear constraints

    Mathematical ConstraintMOI FunctionMOI Set
    $a^Tx \le \beta$ScalarAffineFunctionLessThan
    $a^Tx \ge \alpha$ScalarAffineFunctionGreaterThan
    $a^Tx = \beta$ScalarAffineFunctionEqualTo
    $\alpha \le a^Tx \le \beta$ScalarAffineFunctionInterval
    $x_i \le \beta$VariableIndexLessThan
    $x_i \ge \alpha$VariableIndexGreaterThan
    $x_i = \beta$VariableIndexEqualTo
    $\alpha \le x_i \le \beta$VariableIndexInterval
    $Ax + b \in \mathbb{R}_+^n$VectorAffineFunctionNonnegatives
    $Ax + b \in \mathbb{R}_-^n$VectorAffineFunctionNonpositives
    $Ax + b = 0$VectorAffineFunctionZeros

    By convention, solvers are not expected to support nonzero constant terms in the ScalarAffineFunctions the first four rows of the preceding table because they are redundant with the parameters of the sets. For example, encode $2x + 1 \le 2$ as $2x \le 1$.

    Constraints with VariableIndex in LessThan, GreaterThan, EqualTo, or Interval sets have a natural interpretation as variable bounds. As such, it is typically not natural to impose multiple lower- or upper-bounds on the same variable, and the solver interfaces will throw respectively LowerBoundAlreadySet or UpperBoundAlreadySet.

    Moreover, adding two VariableIndex constraints on the same variable with the same set is impossible because they share the same index as it is the index of the variable, see ConstraintIndex.

    It is natural, however, to impose upper- and lower-bounds separately as two different constraints on a single variable. The difference between imposing bounds by using a single Interval constraint and by using separate LessThan and GreaterThan constraints is that the latter will allow the solver to return separate dual multipliers for the two bounds, while the former will allow the solver to return only a single dual for the interval constraint.

    Conic constraints

    Mathematical ConstraintMOI FunctionMOI Set
    $\lVert Ax + b\rVert_2 \le c^Tx + d$VectorAffineFunctionSecondOrderCone
    $y \ge \lVert x \rVert_2$VectorOfVariablesSecondOrderCone
    $2yz \ge \lVert x \rVert_2^2, y,z \ge 0$VectorOfVariablesRotatedSecondOrderCone
    $(a_1^Tx + b_1,a_2^Tx + b_2,a_3^Tx + b_3) \in \mathcal{E}$VectorAffineFunctionExponentialCone
    $A(x) \in \mathcal{S}_+$VectorAffineFunctionPositiveSemidefiniteConeTriangle
    $B(x) \in \mathcal{S}_+$VectorAffineFunctionPositiveSemidefiniteConeSquare
    $x \in \mathcal{S}_+$VectorOfVariablesPositiveSemidefiniteConeTriangle
    $x \in \mathcal{S}_+$VectorOfVariablesPositiveSemidefiniteConeSquare

    where $\mathcal{E}$ is the exponential cone (see ExponentialCone), $\mathcal{S}_+$ is the set of positive semidefinite symmetric matrices, $A$ is an affine map that outputs symmetric matrices and $B$ is an affine map that outputs square matrices.

    Quadratic constraints

    Mathematical ConstraintMOI FunctionMOI Set
    $\frac{1}{2}x^TQx + a^Tx + b \ge 0$ScalarQuadraticFunctionGreaterThan
    $\frac{1}{2}x^TQx + a^Tx + b \le 0$ScalarQuadraticFunctionLessThan
    $\frac{1}{2}x^TQx + a^Tx + b = 0$ScalarQuadraticFunctionEqualTo
    Bilinear matrix inequalityVectorQuadraticFunctionPositiveSemidefiniteCone...
    Note

    For more details on the internal format of the quadratic functions see ScalarQuadraticFunction or VectorQuadraticFunction.

    Discrete and logical constraints

    Mathematical ConstraintMOI FunctionMOI Set
    $x_i \in \mathbb{Z}$VariableIndexInteger
    $x_i \in \{0,1\}$VariableIndexZeroOne
    $x_i \in \{0\} \cup [l,u]$VariableIndexSemicontinuous
    $x_i \in \{0\} \cup \{l,l+1,\ldots,u-1,u\}$VariableIndexSemiinteger
    At most one component of $x$ can be nonzeroVectorOfVariablesSOS1
    At most two components of $x$ can be nonzero, and if so they must be adjacent componentsVectorOfVariablesSOS2
    $y = 1 \implies a^T x \in S$VectorAffineFunctionIndicator

    JuMP mapping

    The following bullet points show examples of how JuMP constraints are translated into MOI function-set pairs:

    • @constraint(m, 2x + y <= 10) becomes ScalarAffineFunction-in-LessThan
    • @constraint(m, 2x + y >= 10) becomes ScalarAffineFunction-in-GreaterThan
    • @constraint(m, 2x + y == 10) becomes ScalarAffineFunction-in-EqualTo
    • @constraint(m, 0 <= 2x + y <= 10) becomes ScalarAffineFunction-in-Interval
    • @constraint(m, 2x + y in ArbitrarySet()) becomes ScalarAffineFunction-in-ArbitrarySet.

    Variable bounds are handled in a similar fashion:

    • @variable(m, x <= 1) becomes VariableIndex-in-LessThan
    • @variable(m, x >= 1) becomes VariableIndex-in-GreaterThan

    One notable difference is that a variable with an upper and lower bound is translated into two constraints, rather than an interval, that is:

    • @variable(m, 0 <= x <= 1) becomes VariableIndex-in-LessThan and VariableIndex-in-GreaterThan.
    +"con_c"

    Constraints by function-set pairs

    Below is a list of common constraint types and how they are represented as function-set pairs in MOI. In the notation below, $x$ is a vector of decision variables, $x_i$ is a scalar decision variable, $\alpha, \beta$ are scalar constants, $a, b$ are constant vectors, A is a constant matrix and $\mathbb{R}_+$ (resp. $\mathbb{R}_-$) is the set of non-negative (resp. non-positive) real numbers.

    Linear constraints

    Mathematical ConstraintMOI FunctionMOI Set
    $a^Tx \le \beta$ScalarAffineFunctionLessThan
    $a^Tx \ge \alpha$ScalarAffineFunctionGreaterThan
    $a^Tx = \beta$ScalarAffineFunctionEqualTo
    $\alpha \le a^Tx \le \beta$ScalarAffineFunctionInterval
    $x_i \le \beta$VariableIndexLessThan
    $x_i \ge \alpha$VariableIndexGreaterThan
    $x_i = \beta$VariableIndexEqualTo
    $\alpha \le x_i \le \beta$VariableIndexInterval
    $Ax + b \in \mathbb{R}_+^n$VectorAffineFunctionNonnegatives
    $Ax + b \in \mathbb{R}_-^n$VectorAffineFunctionNonpositives
    $Ax + b = 0$VectorAffineFunctionZeros

    By convention, solvers are not expected to support nonzero constant terms in the ScalarAffineFunctions the first four rows of the preceding table because they are redundant with the parameters of the sets. For example, encode $2x + 1 \le 2$ as $2x \le 1$.

    Constraints with VariableIndex in LessThan, GreaterThan, EqualTo, or Interval sets have a natural interpretation as variable bounds. As such, it is typically not natural to impose multiple lower- or upper-bounds on the same variable, and the solver interfaces will throw respectively LowerBoundAlreadySet or UpperBoundAlreadySet.

    Moreover, adding two VariableIndex constraints on the same variable with the same set is impossible because they share the same index as it is the index of the variable, see ConstraintIndex.

    It is natural, however, to impose upper- and lower-bounds separately as two different constraints on a single variable. The difference between imposing bounds by using a single Interval constraint and by using separate LessThan and GreaterThan constraints is that the latter will allow the solver to return separate dual multipliers for the two bounds, while the former will allow the solver to return only a single dual for the interval constraint.

    Conic constraints

    Mathematical ConstraintMOI FunctionMOI Set
    $\lVert Ax + b\rVert_2 \le c^Tx + d$VectorAffineFunctionSecondOrderCone
    $y \ge \lVert x \rVert_2$VectorOfVariablesSecondOrderCone
    $2yz \ge \lVert x \rVert_2^2, y,z \ge 0$VectorOfVariablesRotatedSecondOrderCone
    $(a_1^Tx + b_1,a_2^Tx + b_2,a_3^Tx + b_3) \in \mathcal{E}$VectorAffineFunctionExponentialCone
    $A(x) \in \mathcal{S}_+$VectorAffineFunctionPositiveSemidefiniteConeTriangle
    $B(x) \in \mathcal{S}_+$VectorAffineFunctionPositiveSemidefiniteConeSquare
    $x \in \mathcal{S}_+$VectorOfVariablesPositiveSemidefiniteConeTriangle
    $x \in \mathcal{S}_+$VectorOfVariablesPositiveSemidefiniteConeSquare

    where $\mathcal{E}$ is the exponential cone (see ExponentialCone), $\mathcal{S}_+$ is the set of positive semidefinite symmetric matrices, $A$ is an affine map that outputs symmetric matrices and $B$ is an affine map that outputs square matrices.

    Quadratic constraints

    Mathematical ConstraintMOI FunctionMOI Set
    $\frac{1}{2}x^TQx + a^Tx + b \ge 0$ScalarQuadraticFunctionGreaterThan
    $\frac{1}{2}x^TQx + a^Tx + b \le 0$ScalarQuadraticFunctionLessThan
    $\frac{1}{2}x^TQx + a^Tx + b = 0$ScalarQuadraticFunctionEqualTo
    Bilinear matrix inequalityVectorQuadraticFunctionPositiveSemidefiniteCone...
    Note

    For more details on the internal format of the quadratic functions see ScalarQuadraticFunction or VectorQuadraticFunction.

    Discrete and logical constraints

    Mathematical ConstraintMOI FunctionMOI Set
    $x_i \in \mathbb{Z}$VariableIndexInteger
    $x_i \in \{0,1\}$VariableIndexZeroOne
    $x_i \in \{0\} \cup [l,u]$VariableIndexSemicontinuous
    $x_i \in \{0\} \cup \{l,l+1,\ldots,u-1,u\}$VariableIndexSemiinteger
    At most one component of $x$ can be nonzeroVectorOfVariablesSOS1
    At most two components of $x$ can be nonzero, and if so they must be adjacent componentsVectorOfVariablesSOS2
    $y = 1 \implies a^T x \in S$VectorAffineFunctionIndicator

    JuMP mapping

    The following bullet points show examples of how JuMP constraints are translated into MOI function-set pairs:

    • @constraint(m, 2x + y <= 10) becomes ScalarAffineFunction-in-LessThan
    • @constraint(m, 2x + y >= 10) becomes ScalarAffineFunction-in-GreaterThan
    • @constraint(m, 2x + y == 10) becomes ScalarAffineFunction-in-EqualTo
    • @constraint(m, 0 <= 2x + y <= 10) becomes ScalarAffineFunction-in-Interval
    • @constraint(m, 2x + y in ArbitrarySet()) becomes ScalarAffineFunction-in-ArbitrarySet.

    Variable bounds are handled in a similar fashion:

    • @variable(m, x <= 1) becomes VariableIndex-in-LessThan
    • @variable(m, x >= 1) becomes VariableIndex-in-GreaterThan

    One notable difference is that a variable with an upper and lower bound is translated into two constraints, rather than an interval, that is:

    • @variable(m, 0 <= x <= 1) becomes VariableIndex-in-LessThan and VariableIndex-in-GreaterThan.
    diff --git a/previews/PR3919/moi/manual/models/index.html b/previews/PR3919/moi/manual/models/index.html index 170b8fb68dc..9757e64fd68 100644 --- a/previews/PR3919/moi/manual/models/index.html +++ b/previews/PR3919/moi/manual/models/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash}); -

    Models

    The most significant part of MOI is the definition of the model API that is used to specify an instance of an optimization problem (for example, by adding variables and constraints). Objects that implement the model API must inherit from the ModelLike abstract type.

    Notably missing from the model API is the method to solve an optimization problem. ModelLike objects may store an instance (for example, in memory or backed by a file format) without being linked to a particular solver. In addition to the model API, MOI defines AbstractOptimizer and provides methods to solve the model and interact with solutions. See the Solutions section for more details.

    Info

    Throughout the rest of the manual, model is used as a generic ModelLike, and optimizer is used as a generic AbstractOptimizer.

    Tip

    MOI does not export functions, but for brevity we often omit qualifying names with the MOI module. Best practice is to have

    import MathOptInterface as MOI

    and prefix all MOI methods with MOI. in user code. If a name is also available in base Julia, we always explicitly use the module prefix, for example, with MOI.get.

    Attributes

    Attributes are properties of the model that can be queried and modified. These include constants such as the number of variables in a model NumberOfVariables), and properties of variables and constraints such as the name of a variable (VariableName).

    There are four types of attributes:

    Some attributes are values that can be queried by the user but not modified, while other attributes can be modified by the user.

    All interactions with attributes occur through the get and set functions.

    Consult the docstrings of each attribute for information on what it represents.

    ModelLike API

    The following attributes are available:

    AbstractOptimizer API

    The following attributes are available:

    +

    Models

    The most significant part of MOI is the definition of the model API that is used to specify an instance of an optimization problem (for example, by adding variables and constraints). Objects that implement the model API must inherit from the ModelLike abstract type.

    Notably missing from the model API is the method to solve an optimization problem. ModelLike objects may store an instance (for example, in memory or backed by a file format) without being linked to a particular solver. In addition to the model API, MOI defines AbstractOptimizer and provides methods to solve the model and interact with solutions. See the Solutions section for more details.

    Info

    Throughout the rest of the manual, model is used as a generic ModelLike, and optimizer is used as a generic AbstractOptimizer.

    Tip

    MOI does not export functions, but for brevity we often omit qualifying names with the MOI module. Best practice is to have

    import MathOptInterface as MOI

    and prefix all MOI methods with MOI. in user code. If a name is also available in base Julia, we always explicitly use the module prefix, for example, with MOI.get.

    Attributes

    Attributes are properties of the model that can be queried and modified. These include constants such as the number of variables in a model NumberOfVariables), and properties of variables and constraints such as the name of a variable (VariableName).

    There are four types of attributes:

    Some attributes are values that can be queried by the user but not modified, while other attributes can be modified by the user.

    All interactions with attributes occur through the get and set functions.

    Consult the docstrings of each attribute for information on what it represents.

    ModelLike API

    The following attributes are available:

    AbstractOptimizer API

    The following attributes are available:

    diff --git a/previews/PR3919/moi/manual/modification/index.html b/previews/PR3919/moi/manual/modification/index.html index f3cef68af55..85c441c6423 100644 --- a/previews/PR3919/moi/manual/modification/index.html +++ b/previews/PR3919/moi/manual/modification/index.html @@ -152,4 +152,4 @@ ); julia> MOI.get(model, MOI.ConstraintFunction(), c) ≈ new_f -true +true diff --git a/previews/PR3919/moi/manual/solutions/index.html b/previews/PR3919/moi/manual/solutions/index.html index 88ac5bc146f..4dbdd937e0c 100644 --- a/previews/PR3919/moi/manual/solutions/index.html +++ b/previews/PR3919/moi/manual/solutions/index.html @@ -36,4 +36,4 @@ end rethrow(err) # Something else went wrong. Rethrow the error end -end +end diff --git a/previews/PR3919/moi/manual/standard_form/index.html b/previews/PR3919/moi/manual/standard_form/index.html index 49f1535ac3c..155f91965c6 100644 --- a/previews/PR3919/moi/manual/standard_form/index.html +++ b/previews/PR3919/moi/manual/standard_form/index.html @@ -7,4 +7,4 @@ & \min_{x \in \mathbb{R}^n} & f_0(x) \\ & \;\;\text{s.t.} & f_i(x) & \in \mathcal{S}_i & i = 1 \ldots m -\end{align}\]

    where:

    • the functions $f_0, f_1, \ldots, f_m$ are specified by AbstractFunction objects
    • the sets $\mathcal{S}_1, \ldots, \mathcal{S}_m$ are specified by AbstractSet objects
    Tip

    For more information on this standard form, read our paper.

    MOI defines some commonly used functions and sets, but the interface is extensible to other sets recognized by the solver.

    Functions

    The function types implemented in MathOptInterface.jl are:

    FunctionDescription
    VariableIndex$x_j$, the projection onto a single coordinate defined by a variable index $j$.
    VectorOfVariablesThe projection onto multiple coordinates (that is, extracting a sub-vector).
    ScalarAffineFunction$a^T x + b$, where $a$ is a vector and $b$ scalar.
    ScalarNonlinearFunction$f(x)$, where $f$ is a nonlinear function.
    VectorAffineFunction$A x + b$, where $A$ is a matrix and $b$ is a vector.
    ScalarQuadraticFunction$\frac{1}{2} x^T Q x + a^T x + b$, where $Q$ is a symmetric matrix, $a$ is a vector, and $b$ is a constant.
    VectorQuadraticFunctionA vector of scalar-valued quadratic functions.
    VectorNonlinearFunction$f(x)$, where $f$ is a vector-valued nonlinear function.

    Extensions for nonlinear programming are present but not yet well documented.

    One-dimensional sets

    The one-dimensional set types implemented in MathOptInterface.jl are:

    SetDescription
    LessThan(u)$(-\infty, u]$
    GreaterThan(l)$[l, \infty)$
    EqualTo(v)$\{v\}$
    Interval(l, u)$[l, u]$
    Integer()$\mathbb{Z}$
    ZeroOne()$\{ 0, 1 \}$
    Semicontinuous(l, u)$\{ 0\} \cup [l, u]$
    Semiinteger(l, u)$\{ 0\} \cup \{l,l+1,\ldots,u-1,u\}$

    Vector cones

    The vector-valued set types implemented in MathOptInterface.jl are:

    SetDescription
    Reals(d)$\mathbb{R}^{d}$
    Zeros(d)$0^{d}$
    Nonnegatives(d)$\{ x \in \mathbb{R}^{d} : x \ge 0 \}$
    Nonpositives(d)$\{ x \in \mathbb{R}^{d} : x \le 0 \}$
    SecondOrderCone(d)$\{ (t,x) \in \mathbb{R}^{d} : t \ge \lVert x \rVert_2 \}$
    RotatedSecondOrderCone(d)$\{ (t,u,x) \in \mathbb{R}^{d} : 2tu \ge \lVert x \rVert_2^2, t \ge 0,u \ge 0 \}$
    ExponentialCone()$\{ (x,y,z) \in \mathbb{R}^3 : y \exp (x/y) \le z, y > 0 \}$
    DualExponentialCone()$\{ (u,v,w) \in \mathbb{R}^3 : -u \exp (v/u) \le \exp(1) w, u < 0 \}$
    GeometricMeanCone(d)$\{ (t,x) \in \mathbb{R}^{1+n} : x \ge 0, t \le \sqrt[n]{x_1 x_2 \cdots x_n} \}$ where $n$ is $d - 1$
    PowerCone(α)$\{ (x,y,z) \in \mathbb{R}^3 : x^{\alpha} y^{1-\alpha} \ge |z|, x \ge 0,y \ge 0 \}$
    DualPowerCone(α)$\{ (u,v,w) \in \mathbb{R}^3 : \left(\frac{u}{\alpha}\right)^{\alpha}\left(\frac{v}{1-\alpha}\right)^{1-\alpha} \ge |w|, u,v \ge 0 \}$
    NormOneCone(d)$\{ (t,x) \in \mathbb{R}^{d} : t \ge \sum_i \lvert x_i \rvert \}$
    NormInfinityCone(d)$\{ (t,x) \in \mathbb{R}^{d} : t \ge \max_i \lvert x_i \rvert \}$
    RelativeEntropyCone(d)$\{ (u, v, w) \in \mathbb{R}^{d} : u \ge \sum_i w_i \log (\frac{w_i}{v_i}), v_i \ge 0, w_i \ge 0 \}$
    HyperRectangle(l, u)$\{x \in \bar{\mathbb{R}}^d: x_i \in [l_i, u_i] \forall i=1,\ldots,d\}$
    NormCone(p, d)$\{ (t,x) \in \mathbb{R}^{d} : t \ge \left(\sum\limits_i \lvert x_i \rvert^p\right)^{\frac{1}{p}} \}$

    Matrix cones

    The matrix-valued set types implemented in MathOptInterface.jl are:

    SetDescription
    RootDetConeTriangle(d)$\{ (t,X) \in \mathbb{R}^{1+d(1+d)/2} : t \le \det(X)^{1/d}, X \mbox{ is the upper triangle of a PSD matrix} \}$
    RootDetConeSquare(d)$\{ (t,X) \in \mathbb{R}^{1+d^2} : t \le \det(X)^{1/d}, X \mbox{ is a PSD matrix} \}$
    PositiveSemidefiniteConeTriangle(d)$\{ X \in \mathbb{R}^{d(d+1)/2} : X \mbox{ is the upper triangle of a PSD matrix} \}$
    PositiveSemidefiniteConeSquare(d)$\{ X \in \mathbb{R}^{d^2} : X \mbox{ is a PSD matrix} \}$
    LogDetConeTriangle(d)$\{ (t,u,X) \in \mathbb{R}^{2+d(1+d)/2} : t \le u\log(\det(X/u)), X \mbox{ is the upper triangle of a PSD matrix}, u > 0 \}$
    LogDetConeSquare(d)$\{ (t,u,X) \in \mathbb{R}^{2+d^2} : t \le u \log(\det(X/u)), X \mbox{ is a PSD matrix}, u > 0 \}$
    NormSpectralCone(r, c)$\{ (t, X) \in \mathbb{R}^{1 + r \times c} : t \ge \sigma_1(X), X \mbox{ is a } r\times c\mbox{ matrix} \}$
    NormNuclearCone(r, c)$\{ (t, X) \in \mathbb{R}^{1 + r \times c} : t \ge \sum_i \sigma_i(X), X \mbox{ is a } r\times c\mbox{ matrix} \}$
    HermitianPositiveSemidefiniteConeTriangle(d)The cone of Hermitian positive semidefinite matrices, with
    side_dimension rows and columns.
    Scaled(S)The set S scaled so that Utilities.set_dot corresponds to LinearAlgebra.dot

    Some of these cones can take two forms: XXXConeTriangle and XXXConeSquare.

    In XXXConeTriangle sets, the matrix is assumed to be symmetric, and the elements are provided by a vector, in which the entries of the upper-right triangular part of the matrix are given column by column (or equivalently, the entries of the lower-left triangular part are given row by row).

    In XXXConeSquare sets, the entries of the matrix are given column by column (or equivalently, row by row), and the matrix is constrained to be symmetric. As an example, given a 2-by-2 matrix of variables X and a one-dimensional variable t, we can specify a root-det constraint as [t, X11, X12, X22] ∈ RootDetConeTriangle or [t, X11, X12, X21, X22] ∈ RootDetConeSquare.

    We provide both forms to enable flexibility for solvers who may natively support one or the other. Transformations between XXXConeTriangle and XXXConeSquare are handled by bridges, which removes the chance of conversion mistakes by users or solver developers.

    Multi-dimensional sets with combinatorial structure

    Other sets are vector-valued, with a particular combinatorial structure. Read their docstrings for more information on how to interpret them.

    SetDescription
    SOS1A Special Ordered Set (SOS) of Type I
    SOS2A Special Ordered Set (SOS) of Type II
    IndicatorA set to specify an indicator constraint
    ComplementsA set to specify a mixed complementarity constraint
    AllDifferentThe all_different global constraint
    BinPackingThe bin_packing global constraint
    CircuitThe circuit global constraint
    CountAtLeastThe at_least global constraint
    CountBelongsThe nvalue global constraint
    CountDistinctThe distinct global constraint
    CountGreaterThanThe count_gt global constraint
    CumulativeThe cumulative global constraint
    PathThe path global constraint
    TableThe table global constraint
    +\end{align}\]

    where:

    • the functions $f_0, f_1, \ldots, f_m$ are specified by AbstractFunction objects
    • the sets $\mathcal{S}_1, \ldots, \mathcal{S}_m$ are specified by AbstractSet objects
    Tip

    For more information on this standard form, read our paper.

    MOI defines some commonly used functions and sets, but the interface is extensible to other sets recognized by the solver.

    Functions

    The function types implemented in MathOptInterface.jl are:

    FunctionDescription
    VariableIndex$x_j$, the projection onto a single coordinate defined by a variable index $j$.
    VectorOfVariablesThe projection onto multiple coordinates (that is, extracting a sub-vector).
    ScalarAffineFunction$a^T x + b$, where $a$ is a vector and $b$ scalar.
    ScalarNonlinearFunction$f(x)$, where $f$ is a nonlinear function.
    VectorAffineFunction$A x + b$, where $A$ is a matrix and $b$ is a vector.
    ScalarQuadraticFunction$\frac{1}{2} x^T Q x + a^T x + b$, where $Q$ is a symmetric matrix, $a$ is a vector, and $b$ is a constant.
    VectorQuadraticFunctionA vector of scalar-valued quadratic functions.
    VectorNonlinearFunction$f(x)$, where $f$ is a vector-valued nonlinear function.

    Extensions for nonlinear programming are present but not yet well documented.

    One-dimensional sets

    The one-dimensional set types implemented in MathOptInterface.jl are:

    SetDescription
    LessThan(u)$(-\infty, u]$
    GreaterThan(l)$[l, \infty)$
    EqualTo(v)$\{v\}$
    Interval(l, u)$[l, u]$
    Integer()$\mathbb{Z}$
    ZeroOne()$\{ 0, 1 \}$
    Semicontinuous(l, u)$\{ 0\} \cup [l, u]$
    Semiinteger(l, u)$\{ 0\} \cup \{l,l+1,\ldots,u-1,u\}$

    Vector cones

    The vector-valued set types implemented in MathOptInterface.jl are:

    SetDescription
    Reals(d)$\mathbb{R}^{d}$
    Zeros(d)$0^{d}$
    Nonnegatives(d)$\{ x \in \mathbb{R}^{d} : x \ge 0 \}$
    Nonpositives(d)$\{ x \in \mathbb{R}^{d} : x \le 0 \}$
    SecondOrderCone(d)$\{ (t,x) \in \mathbb{R}^{d} : t \ge \lVert x \rVert_2 \}$
    RotatedSecondOrderCone(d)$\{ (t,u,x) \in \mathbb{R}^{d} : 2tu \ge \lVert x \rVert_2^2, t \ge 0,u \ge 0 \}$
    ExponentialCone()$\{ (x,y,z) \in \mathbb{R}^3 : y \exp (x/y) \le z, y > 0 \}$
    DualExponentialCone()$\{ (u,v,w) \in \mathbb{R}^3 : -u \exp (v/u) \le \exp(1) w, u < 0 \}$
    GeometricMeanCone(d)$\{ (t,x) \in \mathbb{R}^{1+n} : x \ge 0, t \le \sqrt[n]{x_1 x_2 \cdots x_n} \}$ where $n$ is $d - 1$
    PowerCone(α)$\{ (x,y,z) \in \mathbb{R}^3 : x^{\alpha} y^{1-\alpha} \ge |z|, x \ge 0,y \ge 0 \}$
    DualPowerCone(α)$\{ (u,v,w) \in \mathbb{R}^3 : \left(\frac{u}{\alpha}\right)^{\alpha}\left(\frac{v}{1-\alpha}\right)^{1-\alpha} \ge |w|, u,v \ge 0 \}$
    NormOneCone(d)$\{ (t,x) \in \mathbb{R}^{d} : t \ge \sum_i \lvert x_i \rvert \}$
    NormInfinityCone(d)$\{ (t,x) \in \mathbb{R}^{d} : t \ge \max_i \lvert x_i \rvert \}$
    RelativeEntropyCone(d)$\{ (u, v, w) \in \mathbb{R}^{d} : u \ge \sum_i w_i \log (\frac{w_i}{v_i}), v_i \ge 0, w_i \ge 0 \}$
    HyperRectangle(l, u)$\{x \in \bar{\mathbb{R}}^d: x_i \in [l_i, u_i] \forall i=1,\ldots,d\}$
    NormCone(p, d)$\{ (t,x) \in \mathbb{R}^{d} : t \ge \left(\sum\limits_i \lvert x_i \rvert^p\right)^{\frac{1}{p}} \}$

    Matrix cones

    The matrix-valued set types implemented in MathOptInterface.jl are:

    SetDescription
    RootDetConeTriangle(d)$\{ (t,X) \in \mathbb{R}^{1+d(1+d)/2} : t \le \det(X)^{1/d}, X \mbox{ is the upper triangle of a PSD matrix} \}$
    RootDetConeSquare(d)$\{ (t,X) \in \mathbb{R}^{1+d^2} : t \le \det(X)^{1/d}, X \mbox{ is a PSD matrix} \}$
    PositiveSemidefiniteConeTriangle(d)$\{ X \in \mathbb{R}^{d(d+1)/2} : X \mbox{ is the upper triangle of a PSD matrix} \}$
    PositiveSemidefiniteConeSquare(d)$\{ X \in \mathbb{R}^{d^2} : X \mbox{ is a PSD matrix} \}$
    LogDetConeTriangle(d)$\{ (t,u,X) \in \mathbb{R}^{2+d(1+d)/2} : t \le u\log(\det(X/u)), X \mbox{ is the upper triangle of a PSD matrix}, u > 0 \}$
    LogDetConeSquare(d)$\{ (t,u,X) \in \mathbb{R}^{2+d^2} : t \le u \log(\det(X/u)), X \mbox{ is a PSD matrix}, u > 0 \}$
    NormSpectralCone(r, c)$\{ (t, X) \in \mathbb{R}^{1 + r \times c} : t \ge \sigma_1(X), X \mbox{ is a } r\times c\mbox{ matrix} \}$
    NormNuclearCone(r, c)$\{ (t, X) \in \mathbb{R}^{1 + r \times c} : t \ge \sum_i \sigma_i(X), X \mbox{ is a } r\times c\mbox{ matrix} \}$
    HermitianPositiveSemidefiniteConeTriangle(d)The cone of Hermitian positive semidefinite matrices, with
    side_dimension rows and columns.
    Scaled(S)The set S scaled so that Utilities.set_dot corresponds to LinearAlgebra.dot

    Some of these cones can take two forms: XXXConeTriangle and XXXConeSquare.

    In XXXConeTriangle sets, the matrix is assumed to be symmetric, and the elements are provided by a vector, in which the entries of the upper-right triangular part of the matrix are given column by column (or equivalently, the entries of the lower-left triangular part are given row by row).

    In XXXConeSquare sets, the entries of the matrix are given column by column (or equivalently, row by row), and the matrix is constrained to be symmetric. As an example, given a 2-by-2 matrix of variables X and a one-dimensional variable t, we can specify a root-det constraint as [t, X11, X12, X22] ∈ RootDetConeTriangle or [t, X11, X12, X21, X22] ∈ RootDetConeSquare.

    We provide both forms to enable flexibility for solvers who may natively support one or the other. Transformations between XXXConeTriangle and XXXConeSquare are handled by bridges, which removes the chance of conversion mistakes by users or solver developers.

    Multi-dimensional sets with combinatorial structure

    Other sets are vector-valued, with a particular combinatorial structure. Read their docstrings for more information on how to interpret them.

    SetDescription
    SOS1A Special Ordered Set (SOS) of Type I
    SOS2A Special Ordered Set (SOS) of Type II
    IndicatorA set to specify an indicator constraint
    ComplementsA set to specify a mixed complementarity constraint
    AllDifferentThe all_different global constraint
    BinPackingThe bin_packing global constraint
    CircuitThe circuit global constraint
    CountAtLeastThe at_least global constraint
    CountBelongsThe nvalue global constraint
    CountDistinctThe distinct global constraint
    CountGreaterThanThe count_gt global constraint
    CumulativeThe cumulative global constraint
    PathThe path global constraint
    TableThe table global constraint
    diff --git a/previews/PR3919/moi/manual/variables/index.html b/previews/PR3919/moi/manual/variables/index.html index 9b1e9a82000..d4070348c88 100644 --- a/previews/PR3919/moi/manual/variables/index.html +++ b/previews/PR3919/moi/manual/variables/index.html @@ -14,4 +14,4 @@ false
    Warning

    Not all ModelLike models support deleting variables. A DeleteNotAllowed error is thrown if this is not supported.

    Variable attributes

    The following attributes are available for variables:

    Get and set these attributes using get and set.

    julia> MOI.set(model, MOI.VariableName(), x, "var_x")
     
     julia> MOI.get(model, MOI.VariableName(), x)
    -"var_x"
    +"var_x" diff --git a/previews/PR3919/moi/reference/callbacks/index.html b/previews/PR3919/moi/reference/callbacks/index.html index f4d71a0fe1e..a38d469c6b5 100644 --- a/previews/PR3919/moi/reference/callbacks/index.html +++ b/previews/PR3919/moi/reference/callbacks/index.html @@ -33,4 +33,4 @@ MOI.submit(optimizer, MOI.HeuristicSolution(callback_data), x, values) end -endsource
    MathOptInterface.HeuristicSolutionType
    HeuristicSolution(callback_data)

    Heuristically obtained feasible solution. The solution is submitted as variables, values where values[i] gives the value of variables[i], similarly to set. The submit call returns a HeuristicSolutionStatus indicating whether the provided solution was accepted or rejected.

    This can be submitted only from the HeuristicCallback. The field callback_data is a solver-specific callback type that is passed as the argument to the heuristic callback.

    Some solvers require a complete solution, others only partial solutions.

    source
    +endsource
    MathOptInterface.HeuristicSolutionType
    HeuristicSolution(callback_data)

    Heuristically obtained feasible solution. The solution is submitted as variables, values where values[i] gives the value of variables[i], similarly to set. The submit call returns a HeuristicSolutionStatus indicating whether the provided solution was accepted or rejected.

    This can be submitted only from the HeuristicCallback. The field callback_data is a solver-specific callback type that is passed as the argument to the heuristic callback.

    Some solvers require a complete solution, others only partial solutions.

    source
    diff --git a/previews/PR3919/moi/reference/constraints/index.html b/previews/PR3919/moi/reference/constraints/index.html index 8cc533dcb3b..7a2e187cc66 100644 --- a/previews/PR3919/moi/reference/constraints/index.html +++ b/previews/PR3919/moi/reference/constraints/index.html @@ -44,4 +44,4 @@ model::ModelLike, ::Type{F}, ::Type{S}, -)::Bool where {F<:AbstractFunction,S<:AbstractSet}

    Return a Bool indicating whether model supports F-in-S constraints, that is, copy_to(model, src) does not throw UnsupportedConstraint when src contains F-in-S constraints. If F-in-S constraints are only not supported in specific circumstances, for example, F-in-S constraints cannot be combined with another type of constraint, it should still return true.

    source

    Attributes

    MathOptInterface.ConstraintNameType
    ConstraintName()

    A constraint attribute for a string identifying the constraint.

    It is valid for constraints variables to have the same name; however, constraints with duplicate names cannot be looked up using get, regardless of whether they have the same F-in-S type.

    ConstraintName has a default value of "" if not set.

    Notes

    You should not implement ConstraintName for VariableIndex constraints.

    source
    MathOptInterface.ConstraintPrimalType
    ConstraintPrimal(result_index::Int = 1)

    A constraint attribute for the assignment to some constraint's primal value in result result_index.

    If the constraint is f(x) in S, then in most cases the ConstraintPrimal is the value of f, evaluated at the corresponding VariablePrimal solution.

    However, some conic solvers reformulate b - Ax in S to s = b - Ax, s in S. These solvers may return the value of s for ConstraintPrimal, rather than b - Ax. (Although these are constrained by an equality constraint, due to numerical tolerances they may not be identical.)

    If the solver does not have a primal value for the constraint because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a dual solution is available), the result is undefined. Users should first check PrimalStatus before accessing the ConstraintPrimal attribute.

    If result_index is omitted, it is 1 by default. See ResultCount for information on how the results are ordered.

    source
    MathOptInterface.ConstraintDualType
    ConstraintDual(result_index::Int = 1)

    A constraint attribute for the assignment to some constraint's dual value in result result_index. If result_index is omitted, it is 1 by default.

    If the solver does not have a dual value for the variable because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a primal solution is available), the result is undefined. Users should first check DualStatus before accessing the ConstraintDual attribute.

    See ResultCount for information on how the results are ordered.

    source
    MathOptInterface.ConstraintBasisStatusType
    ConstraintBasisStatus(result_index::Int = 1)

    A constraint attribute for the BasisStatusCode of some constraint in result result_index, with respect to an available optimal solution basis. If result_index is omitted, it is 1 by default.

    If the solver does not have a basis status for the constraint because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a dual solution is available), the result is undefined. Users should first check PrimalStatus before accessing the ConstraintBasisStatus attribute.

    See ResultCount for information on how the results are ordered.

    Notes

    For the basis status of a variable, query VariableBasisStatus.

    ConstraintBasisStatus does not apply to VariableIndex constraints. You can infer the basis status of a VariableIndex constraint by looking at the result of VariableBasisStatus.

    source
    MathOptInterface.ConstraintFunctionType
    ConstraintFunction()

    A constraint attribute for the AbstractFunction object used to define the constraint.

    It is guaranteed to be equivalent but not necessarily identical to the function provided by the user.

    source
    MathOptInterface.CanonicalConstraintFunctionType
    CanonicalConstraintFunction()

    A constraint attribute for a canonical representation of the AbstractFunction object used to define the constraint.

    Getting this attribute is guaranteed to return a function that is equivalent but not necessarily identical to the function provided by the user.

    By default, MOI.get(model, MOI.CanonicalConstraintFunction(), ci) fallbacks to MOI.Utilities.canonical(MOI.get(model, MOI.ConstraintFunction(), ci)). However, if model knows that the constraint function is canonical then it can implement a specialized method that directly return the function without calling Utilities.canonical. Therefore, the value returned cannot be assumed to be a copy of the function stored in model. Moreover, Utilities.Model checks with Utilities.is_canonical whether the function stored internally is already canonical and if it's the case, then it returns the function stored internally instead of a copy.

    source
    MathOptInterface.BasisStatusCodeType
    BasisStatusCode

    An Enum of possible values for the ConstraintBasisStatus and VariableBasisStatus attributes, explaining the status of a given element with respect to an optimal solution basis.

    Notes

    • NONBASIC_AT_LOWER and NONBASIC_AT_UPPER should be used only for constraints with the Interval set. In this case, they are necessary to distinguish which side of the constraint is active. One-sided constraints (for example, LessThan and GreaterThan) should use NONBASIC instead of the NONBASIC_AT_* values. This restriction does not apply to VariableBasisStatus, which should return NONBASIC_AT_* regardless of whether the alternative bound exists.

    • In linear programs, SUPER_BASIC occurs when a variable with no bounds is not in the basis.

    Values

    Possible values are:

    source
    +)::Bool where {F<:AbstractFunction,S<:AbstractSet}

    Return a Bool indicating whether model supports F-in-S constraints, that is, copy_to(model, src) does not throw UnsupportedConstraint when src contains F-in-S constraints. If F-in-S constraints are only not supported in specific circumstances, for example, F-in-S constraints cannot be combined with another type of constraint, it should still return true.

    source

    Attributes

    MathOptInterface.ConstraintNameType
    ConstraintName()

    A constraint attribute for a string identifying the constraint.

    It is valid for constraints variables to have the same name; however, constraints with duplicate names cannot be looked up using get, regardless of whether they have the same F-in-S type.

    ConstraintName has a default value of "" if not set.

    Notes

    You should not implement ConstraintName for VariableIndex constraints.

    source
    MathOptInterface.ConstraintPrimalType
    ConstraintPrimal(result_index::Int = 1)

    A constraint attribute for the assignment to some constraint's primal value in result result_index.

    If the constraint is f(x) in S, then in most cases the ConstraintPrimal is the value of f, evaluated at the corresponding VariablePrimal solution.

    However, some conic solvers reformulate b - Ax in S to s = b - Ax, s in S. These solvers may return the value of s for ConstraintPrimal, rather than b - Ax. (Although these are constrained by an equality constraint, due to numerical tolerances they may not be identical.)

    If the solver does not have a primal value for the constraint because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a dual solution is available), the result is undefined. Users should first check PrimalStatus before accessing the ConstraintPrimal attribute.

    If result_index is omitted, it is 1 by default. See ResultCount for information on how the results are ordered.

    source
    MathOptInterface.ConstraintDualType
    ConstraintDual(result_index::Int = 1)

    A constraint attribute for the assignment to some constraint's dual value in result result_index. If result_index is omitted, it is 1 by default.

    If the solver does not have a dual value for the variable because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a primal solution is available), the result is undefined. Users should first check DualStatus before accessing the ConstraintDual attribute.

    See ResultCount for information on how the results are ordered.

    source
    MathOptInterface.ConstraintBasisStatusType
    ConstraintBasisStatus(result_index::Int = 1)

    A constraint attribute for the BasisStatusCode of some constraint in result result_index, with respect to an available optimal solution basis. If result_index is omitted, it is 1 by default.

    If the solver does not have a basis status for the constraint because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a dual solution is available), the result is undefined. Users should first check PrimalStatus before accessing the ConstraintBasisStatus attribute.

    See ResultCount for information on how the results are ordered.

    Notes

    For the basis status of a variable, query VariableBasisStatus.

    ConstraintBasisStatus does not apply to VariableIndex constraints. You can infer the basis status of a VariableIndex constraint by looking at the result of VariableBasisStatus.

    source
    MathOptInterface.ConstraintFunctionType
    ConstraintFunction()

    A constraint attribute for the AbstractFunction object used to define the constraint.

    It is guaranteed to be equivalent but not necessarily identical to the function provided by the user.

    source
    MathOptInterface.CanonicalConstraintFunctionType
    CanonicalConstraintFunction()

    A constraint attribute for a canonical representation of the AbstractFunction object used to define the constraint.

    Getting this attribute is guaranteed to return a function that is equivalent but not necessarily identical to the function provided by the user.

    By default, MOI.get(model, MOI.CanonicalConstraintFunction(), ci) fallbacks to MOI.Utilities.canonical(MOI.get(model, MOI.ConstraintFunction(), ci)). However, if model knows that the constraint function is canonical then it can implement a specialized method that directly return the function without calling Utilities.canonical. Therefore, the value returned cannot be assumed to be a copy of the function stored in model. Moreover, Utilities.Model checks with Utilities.is_canonical whether the function stored internally is already canonical and if it's the case, then it returns the function stored internally instead of a copy.

    source
    MathOptInterface.BasisStatusCodeType
    BasisStatusCode

    An Enum of possible values for the ConstraintBasisStatus and VariableBasisStatus attributes, explaining the status of a given element with respect to an optimal solution basis.

    Notes

    • NONBASIC_AT_LOWER and NONBASIC_AT_UPPER should be used only for constraints with the Interval set. In this case, they are necessary to distinguish which side of the constraint is active. One-sided constraints (for example, LessThan and GreaterThan) should use NONBASIC instead of the NONBASIC_AT_* values. This restriction does not apply to VariableBasisStatus, which should return NONBASIC_AT_* regardless of whether the alternative bound exists.

    • In linear programs, SUPER_BASIC occurs when a variable with no bounds is not in the basis.

    Values

    Possible values are:

    source
    diff --git a/previews/PR3919/moi/reference/errors/index.html b/previews/PR3919/moi/reference/errors/index.html index 34ee574deac..c23c1a93682 100644 --- a/previews/PR3919/moi/reference/errors/index.html +++ b/previews/PR3919/moi/reference/errors/index.html @@ -57,4 +57,4 @@ julia> throw(MOI.UnsupportedNonlinearOperator(:black_box)) ERROR: MathOptInterface.UnsupportedNonlinearOperator: The nonlinear operator `:black_box` is not supported by the model. Stacktrace: -[...]source

    Note that setting the ConstraintFunction of a VariableIndex constraint is not allowed:

    +[...]source

    Note that setting the ConstraintFunction of a VariableIndex constraint is not allowed:

    diff --git a/previews/PR3919/moi/reference/models/index.html b/previews/PR3919/moi/reference/models/index.html index 8f9fba5793e..48d64b094b0 100644 --- a/previews/PR3919/moi/reference/models/index.html +++ b/previews/PR3919/moi/reference/models/index.html @@ -7,7 +7,7 @@ model::MOI.ModelLike, attr::MOI.AbstractConstraintAttribute, bridge::AbstractBridge, -)

    Return the value of the attribute attr of the model model for the constraint bridged by bridge.

    source
    get(model::GenericModel, attr::MathOptInterface.AbstractOptimizerAttribute)

    Return the value of the attribute attr from the model's MOI backend.

    source
    get(model::GenericModel, attr::MathOptInterface.AbstractModelAttribute)

    Return the value of the attribute attr from the model's MOI backend.

    source
    get(optimizer::AbstractOptimizer, attr::AbstractOptimizerAttribute)

    Return an attribute attr of the optimizer optimizer.

    get(model::ModelLike, attr::AbstractModelAttribute)

    Return an attribute attr of the model model.

    get(model::ModelLike, attr::AbstractVariableAttribute, v::VariableIndex)

    If the attribute attr is set for the variable v in the model model, return its value, return nothing otherwise. If the attribute attr is not supported by model then an error should be thrown instead of returning nothing.

    get(model::ModelLike, attr::AbstractVariableAttribute, v::Vector{VariableIndex})

    Return a vector of attributes corresponding to each variable in the collection v in the model model.

    get(model::ModelLike, attr::AbstractConstraintAttribute, c::ConstraintIndex)

    If the attribute attr is set for the constraint c in the model model, return its value, return nothing otherwise. If the attribute attr is not supported by model then an error should be thrown instead of returning nothing.

    get(
    +)

    Return the value of the attribute attr of the model model for the constraint bridged by bridge.

    source
    get(model::GenericModel, attr::MathOptInterface.AbstractOptimizerAttribute)

    Return the value of the attribute attr from the model's MOI backend.

    source
    get(model::GenericModel, attr::MathOptInterface.AbstractModelAttribute)

    Return the value of the attribute attr from the model's MOI backend.

    source
    get(optimizer::AbstractOptimizer, attr::AbstractOptimizerAttribute)

    Return an attribute attr of the optimizer optimizer.

    get(model::ModelLike, attr::AbstractModelAttribute)

    Return an attribute attr of the model model.

    get(model::ModelLike, attr::AbstractVariableAttribute, v::VariableIndex)

    If the attribute attr is set for the variable v in the model model, return its value, return nothing otherwise. If the attribute attr is not supported by model then an error should be thrown instead of returning nothing.

    get(model::ModelLike, attr::AbstractVariableAttribute, v::Vector{VariableIndex})

    Return a vector of attributes corresponding to each variable in the collection v in the model model.

    get(model::ModelLike, attr::AbstractConstraintAttribute, c::ConstraintIndex)

    If the attribute attr is set for the constraint c in the model model, return its value, return nothing otherwise. If the attribute attr is not supported by model then an error should be thrown instead of returning nothing.

    get(
         model::ModelLike,
         attr::AbstractConstraintAttribute,
         c::Vector{ConstraintIndex{F,S}},
    @@ -139,4 +139,4 @@
     MOI.get(model, MOI.RelativeGapTolerance())  # returns 1e-3
     # ... and the relative gap of the obtained solution is smaller or equal to the
     # tolerance
    -MOI.get(model, MOI.RelativeGap())  # should return something ≤ 1e-3
    Warning

    The mathematical definition of "relative gap", and its allowed range, are solver-dependent. Typically, solvers expect a value between 0.0 and 1.0.

    source

    List of attributes useful for optimizers

    MathOptInterface.TerminationStatusCodeType
    TerminationStatusCode

    An Enum of possible values for the TerminationStatus attribute. This attribute is meant to explain the reason why the optimizer stopped executing in the most recent call to optimize!.

    Values

    Possible values are:

    • OPTIMIZE_NOT_CALLED: The algorithm has not started.
    • OPTIMAL: The algorithm found a globally optimal solution.
    • INFEASIBLE: The algorithm concluded that no feasible solution exists.
    • DUAL_INFEASIBLE: The algorithm concluded that no dual bound exists for the problem. If, additionally, a feasible (primal) solution is known to exist, this status typically implies that the problem is unbounded, with some technical exceptions.
    • LOCALLY_SOLVED: The algorithm converged to a stationary point, local optimal solution, could not find directions for improvement, or otherwise completed its search without global guarantees.
    • LOCALLY_INFEASIBLE: The algorithm converged to an infeasible point or otherwise completed its search without finding a feasible solution, without guarantees that no feasible solution exists.
    • INFEASIBLE_OR_UNBOUNDED: The algorithm stopped because it decided that the problem is infeasible or unbounded; this occasionally happens during MIP presolve.
    • ALMOST_OPTIMAL: The algorithm found a globally optimal solution to relaxed tolerances.
    • ALMOST_INFEASIBLE: The algorithm concluded that no feasible solution exists within relaxed tolerances.
    • ALMOST_DUAL_INFEASIBLE: The algorithm concluded that no dual bound exists for the problem within relaxed tolerances.
    • ALMOST_LOCALLY_SOLVED: The algorithm converged to a stationary point, local optimal solution, or could not find directions for improvement within relaxed tolerances.
    • ITERATION_LIMIT: An iterative algorithm stopped after conducting the maximum number of iterations.
    • TIME_LIMIT: The algorithm stopped after a user-specified computation time.
    • NODE_LIMIT: A branch-and-bound algorithm stopped because it explored a maximum number of nodes in the branch-and-bound tree.
    • SOLUTION_LIMIT: The algorithm stopped because it found the required number of solutions. This is often used in MIPs to get the solver to return the first feasible solution it encounters.
    • MEMORY_LIMIT: The algorithm stopped because it ran out of memory.
    • OBJECTIVE_LIMIT: The algorithm stopped because it found a solution better than a minimum limit set by the user.
    • NORM_LIMIT: The algorithm stopped because the norm of an iterate became too large.
    • OTHER_LIMIT: The algorithm stopped due to a limit not covered by one of the _LIMIT_ statuses above.
    • SLOW_PROGRESS: The algorithm stopped because it was unable to continue making progress towards the solution.
    • NUMERICAL_ERROR: The algorithm stopped because it encountered unrecoverable numerical error.
    • INVALID_MODEL: The algorithm stopped because the model is invalid.
    • INVALID_OPTION: The algorithm stopped because it was provided an invalid option.
    • INTERRUPTED: The algorithm stopped because of an interrupt signal.
    • OTHER_ERROR: The algorithm stopped because of an error not covered by one of the statuses defined above.
    source
    MathOptInterface.DUAL_INFEASIBLEConstant
    DUAL_INFEASIBLE::TerminationStatusCode

    An instance of the TerminationStatusCode enum.

    DUAL_INFEASIBLE: The algorithm concluded that no dual bound exists for the problem. If, additionally, a feasible (primal) solution is known to exist, this status typically implies that the problem is unbounded, with some technical exceptions.

    source
    MathOptInterface.LOCALLY_SOLVEDConstant
    LOCALLY_SOLVED::TerminationStatusCode

    An instance of the TerminationStatusCode enum.

    LOCALLY_SOLVED: The algorithm converged to a stationary point, local optimal solution, could not find directions for improvement, or otherwise completed its search without global guarantees.

    source
    MathOptInterface.LOCALLY_INFEASIBLEConstant
    LOCALLY_INFEASIBLE::TerminationStatusCode

    An instance of the TerminationStatusCode enum.

    LOCALLY_INFEASIBLE: The algorithm converged to an infeasible point or otherwise completed its search without finding a feasible solution, without guarantees that no feasible solution exists.

    source
    MathOptInterface.SOLUTION_LIMITConstant
    SOLUTION_LIMIT::TerminationStatusCode

    An instance of the TerminationStatusCode enum.

    SOLUTION_LIMIT: The algorithm stopped because it found the required number of solutions. This is often used in MIPs to get the solver to return the first feasible solution it encounters.

    source
    MathOptInterface.DualStatusType
    DualStatus(result_index::Int = 1)

    A model attribute for the ResultStatusCode of the dual result result_index. If result_index is omitted, it defaults to 1.

    See ResultCount for information on how the results are ordered.

    If result_index is larger than the value of ResultCount then NO_SOLUTION is returned.

    source
    MathOptInterface.ResultCountType
    ResultCount()

    A model attribute for the number of results available.

    Order of solutions

    A number of attributes contain an index, result_index, which is used to refer to one of the available results. Thus, result_index must be an integer between 1 and the number of available results.

    As a general rule, the first result (result_index=1) is the most important result (for example, an optimal solution or an infeasibility certificate). Other results will typically be alternate solutions that the solver found during the search for the first result.

    If a (local) optimal solution is available, that is, TerminationStatus is OPTIMAL or LOCALLY_SOLVED, the first result must correspond to the (locally) optimal solution. Other results may be alternative optimal solutions, or they may be other suboptimal solutions; use ObjectiveValue to distinguish between them.

    If a primal or dual infeasibility certificate is available, that is, TerminationStatus is INFEASIBLE or DUAL_INFEASIBLE and the corresponding PrimalStatus or DualStatus is INFEASIBILITY_CERTIFICATE, then the first result must be a certificate. Other results may be alternate certificates, or infeasible points.

    source
    MathOptInterface.ObjectiveValueType
    ObjectiveValue(result_index::Int = 1)

    A model attribute for the objective value of the primal solution result_index.

    If the solver does not have a primal value for the objective because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a dual solution is available), the result is undefined. Users should first check PrimalStatus before accessing the ObjectiveValue attribute.

    See ResultCount for information on how the results are ordered.

    source
    MathOptInterface.DualObjectiveValueType
    DualObjectiveValue(result_index::Int = 1)

    A model attribute for the value of the objective function of the dual problem for the result_indexth dual result.

    If the solver does not have a dual value for the objective because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a primal solution is available), the result is undefined. Users should first check DualStatus before accessing the DualObjectiveValue attribute.

    See ResultCount for information on how the results are ordered.

    source
    MathOptInterface.RelativeGapType
    RelativeGap()

    A model attribute for the final relative optimality gap.

    Warning

    The definition of this gap is solver-dependent. However, most solvers implementing this attribute define the relative gap as some variation of $\frac{|b-f|}{|f|}$, where $b$ is the best bound and $f$ is the best feasible objective value.

    source
    MathOptInterface.SimplexIterationsType
    SimplexIterations()

    A model attribute for the cumulative number of simplex iterations during the optimization process.

    For a mixed-integer program (MIP), the return value is the total simplex iterations for all nodes.

    source
    MathOptInterface.NodeCountType
    NodeCount()

    A model attribute for the total number of branch-and-bound nodes explored while solving a mixed-integer program (MIP).

    source

    ResultStatusCode

    MathOptInterface.ResultStatusCodeType
    ResultStatusCode

    An Enum of possible values for the PrimalStatus and DualStatus attributes.

    The values indicate how to interpret the result vector.

    Values

    Possible values are:

    • NO_SOLUTION: the result vector is empty.
    • FEASIBLE_POINT: the result vector is a feasible point.
    • NEARLY_FEASIBLE_POINT: the result vector is feasible if some constraint tolerances are relaxed.
    • INFEASIBLE_POINT: the result vector is an infeasible point.
    • INFEASIBILITY_CERTIFICATE: the result vector is an infeasibility certificate. If the PrimalStatus is INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate of dual infeasibility. If the DualStatus is INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal infeasibility.
    • NEARLY_INFEASIBILITY_CERTIFICATE: the result satisfies a relaxed criterion for a certificate of infeasibility.
    • REDUCTION_CERTIFICATE: the result vector is an ill-posed certificate; see this article for details. If the PrimalStatus is REDUCTION_CERTIFICATE, then the primal result vector is a proof that the dual problem is ill-posed. If the DualStatus is REDUCTION_CERTIFICATE, then the dual result vector is a proof that the primal is ill-posed.
    • NEARLY_REDUCTION_CERTIFICATE: the result satisfies a relaxed criterion for an ill-posed certificate.
    • UNKNOWN_RESULT_STATUS: the result vector contains a solution with an unknown interpretation.
    • OTHER_RESULT_STATUS: the result vector contains a solution with an interpretation not covered by one of the statuses defined above
    source
    MathOptInterface.INFEASIBILITY_CERTIFICATEConstant
    INFEASIBILITY_CERTIFICATE::ResultStatusCode

    An instance of the ResultStatusCode enum.

    INFEASIBILITY_CERTIFICATE: the result vector is an infeasibility certificate. If the PrimalStatus is INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate of dual infeasibility. If the DualStatus is INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal infeasibility.

    source
    MathOptInterface.REDUCTION_CERTIFICATEConstant
    REDUCTION_CERTIFICATE::ResultStatusCode

    An instance of the ResultStatusCode enum.

    REDUCTION_CERTIFICATE: the result vector is an ill-posed certificate; see this article for details. If the PrimalStatus is REDUCTION_CERTIFICATE, then the primal result vector is a proof that the dual problem is ill-posed. If the DualStatus is REDUCTION_CERTIFICATE, then the dual result vector is a proof that the primal is ill-posed.

    source

    Conflict Status

    MathOptInterface.compute_conflict!Function
    compute_conflict!(optimizer::AbstractOptimizer)

    Computes a minimal subset of constraints such that the model with the other constraint removed is still infeasible.

    Some solvers call a set of conflicting constraints an Irreducible Inconsistent Subsystem (IIS).

    See also ConflictStatus and ConstraintConflictStatus.

    Note

    If the model is modified after a call to compute_conflict!, the implementor is not obliged to purge the conflict. Any calls to the above attributes may return values for the original conflict without a warning. Similarly, when modifying the model, the conflict can be discarded.

    source
    MathOptInterface.ConflictStatusCodeType
    ConflictStatusCode

    An Enum of possible values for the ConflictStatus attribute. This attribute is meant to explain the reason why the conflict finder stopped executing in the most recent call to compute_conflict!.

    Possible values are:

    • COMPUTE_CONFLICT_NOT_CALLED: the function compute_conflict! has not yet been called
    • NO_CONFLICT_EXISTS: there is no conflict because the problem is feasible
    • NO_CONFLICT_FOUND: the solver could not find a conflict
    • CONFLICT_FOUND: at least one conflict could be found
    source
    MathOptInterface.ConflictParticipationStatusCodeType
    ConflictParticipationStatusCode

    An Enum of possible values for the ConstraintConflictStatus attribute. This attribute is meant to indicate whether a given constraint participates or not in the last computed conflict.

    Values

    Possible values are:

    • NOT_IN_CONFLICT: the constraint does not participate in the conflict
    • IN_CONFLICT: the constraint participates in the conflict
    • MAYBE_IN_CONFLICT: the constraint may participate in the conflict, the solver was not able to prove that the constraint can be excluded from the conflict
    source
    +MOI.get(model, MOI.RelativeGap()) # should return something ≤ 1e-3
    Warning

    The mathematical definition of "relative gap", and its allowed range, are solver-dependent. Typically, solvers expect a value between 0.0 and 1.0.

    source

    List of attributes useful for optimizers

    MathOptInterface.TerminationStatusCodeType
    TerminationStatusCode

    An Enum of possible values for the TerminationStatus attribute. This attribute is meant to explain the reason why the optimizer stopped executing in the most recent call to optimize!.

    Values

    Possible values are:

    • OPTIMIZE_NOT_CALLED: The algorithm has not started.
    • OPTIMAL: The algorithm found a globally optimal solution.
    • INFEASIBLE: The algorithm concluded that no feasible solution exists.
    • DUAL_INFEASIBLE: The algorithm concluded that no dual bound exists for the problem. If, additionally, a feasible (primal) solution is known to exist, this status typically implies that the problem is unbounded, with some technical exceptions.
    • LOCALLY_SOLVED: The algorithm converged to a stationary point, local optimal solution, could not find directions for improvement, or otherwise completed its search without global guarantees.
    • LOCALLY_INFEASIBLE: The algorithm converged to an infeasible point or otherwise completed its search without finding a feasible solution, without guarantees that no feasible solution exists.
    • INFEASIBLE_OR_UNBOUNDED: The algorithm stopped because it decided that the problem is infeasible or unbounded; this occasionally happens during MIP presolve.
    • ALMOST_OPTIMAL: The algorithm found a globally optimal solution to relaxed tolerances.
    • ALMOST_INFEASIBLE: The algorithm concluded that no feasible solution exists within relaxed tolerances.
    • ALMOST_DUAL_INFEASIBLE: The algorithm concluded that no dual bound exists for the problem within relaxed tolerances.
    • ALMOST_LOCALLY_SOLVED: The algorithm converged to a stationary point, local optimal solution, or could not find directions for improvement within relaxed tolerances.
    • ITERATION_LIMIT: An iterative algorithm stopped after conducting the maximum number of iterations.
    • TIME_LIMIT: The algorithm stopped after a user-specified computation time.
    • NODE_LIMIT: A branch-and-bound algorithm stopped because it explored a maximum number of nodes in the branch-and-bound tree.
    • SOLUTION_LIMIT: The algorithm stopped because it found the required number of solutions. This is often used in MIPs to get the solver to return the first feasible solution it encounters.
    • MEMORY_LIMIT: The algorithm stopped because it ran out of memory.
    • OBJECTIVE_LIMIT: The algorithm stopped because it found a solution better than a minimum limit set by the user.
    • NORM_LIMIT: The algorithm stopped because the norm of an iterate became too large.
    • OTHER_LIMIT: The algorithm stopped due to a limit not covered by one of the _LIMIT_ statuses above.
    • SLOW_PROGRESS: The algorithm stopped because it was unable to continue making progress towards the solution.
    • NUMERICAL_ERROR: The algorithm stopped because it encountered unrecoverable numerical error.
    • INVALID_MODEL: The algorithm stopped because the model is invalid.
    • INVALID_OPTION: The algorithm stopped because it was provided an invalid option.
    • INTERRUPTED: The algorithm stopped because of an interrupt signal.
    • OTHER_ERROR: The algorithm stopped because of an error not covered by one of the statuses defined above.
    source
    MathOptInterface.DUAL_INFEASIBLEConstant
    DUAL_INFEASIBLE::TerminationStatusCode

    An instance of the TerminationStatusCode enum.

    DUAL_INFEASIBLE: The algorithm concluded that no dual bound exists for the problem. If, additionally, a feasible (primal) solution is known to exist, this status typically implies that the problem is unbounded, with some technical exceptions.

    source
    MathOptInterface.LOCALLY_SOLVEDConstant
    LOCALLY_SOLVED::TerminationStatusCode

    An instance of the TerminationStatusCode enum.

    LOCALLY_SOLVED: The algorithm converged to a stationary point, local optimal solution, could not find directions for improvement, or otherwise completed its search without global guarantees.

    source
    MathOptInterface.LOCALLY_INFEASIBLEConstant
    LOCALLY_INFEASIBLE::TerminationStatusCode

    An instance of the TerminationStatusCode enum.

    LOCALLY_INFEASIBLE: The algorithm converged to an infeasible point or otherwise completed its search without finding a feasible solution, without guarantees that no feasible solution exists.

    source
    MathOptInterface.SOLUTION_LIMITConstant
    SOLUTION_LIMIT::TerminationStatusCode

    An instance of the TerminationStatusCode enum.

    SOLUTION_LIMIT: The algorithm stopped because it found the required number of solutions. This is often used in MIPs to get the solver to return the first feasible solution it encounters.

    source
    MathOptInterface.DualStatusType
    DualStatus(result_index::Int = 1)

    A model attribute for the ResultStatusCode of the dual result result_index. If result_index is omitted, it defaults to 1.

    See ResultCount for information on how the results are ordered.

    If result_index is larger than the value of ResultCount then NO_SOLUTION is returned.

    source
    MathOptInterface.ResultCountType
    ResultCount()

    A model attribute for the number of results available.

    Order of solutions

    A number of attributes contain an index, result_index, which is used to refer to one of the available results. Thus, result_index must be an integer between 1 and the number of available results.

    As a general rule, the first result (result_index=1) is the most important result (for example, an optimal solution or an infeasibility certificate). Other results will typically be alternate solutions that the solver found during the search for the first result.

    If a (local) optimal solution is available, that is, TerminationStatus is OPTIMAL or LOCALLY_SOLVED, the first result must correspond to the (locally) optimal solution. Other results may be alternative optimal solutions, or they may be other suboptimal solutions; use ObjectiveValue to distinguish between them.

    If a primal or dual infeasibility certificate is available, that is, TerminationStatus is INFEASIBLE or DUAL_INFEASIBLE and the corresponding PrimalStatus or DualStatus is INFEASIBILITY_CERTIFICATE, then the first result must be a certificate. Other results may be alternate certificates, or infeasible points.

    source
    MathOptInterface.ObjectiveValueType
    ObjectiveValue(result_index::Int = 1)

    A model attribute for the objective value of the primal solution result_index.

    If the solver does not have a primal value for the objective because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a dual solution is available), the result is undefined. Users should first check PrimalStatus before accessing the ObjectiveValue attribute.

    See ResultCount for information on how the results are ordered.

    source
    MathOptInterface.DualObjectiveValueType
    DualObjectiveValue(result_index::Int = 1)

    A model attribute for the value of the objective function of the dual problem for the result_indexth dual result.

    If the solver does not have a dual value for the objective because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a primal solution is available), the result is undefined. Users should first check DualStatus before accessing the DualObjectiveValue attribute.

    See ResultCount for information on how the results are ordered.

    source
    MathOptInterface.RelativeGapType
    RelativeGap()

    A model attribute for the final relative optimality gap.

    Warning

    The definition of this gap is solver-dependent. However, most solvers implementing this attribute define the relative gap as some variation of $\frac{|b-f|}{|f|}$, where $b$ is the best bound and $f$ is the best feasible objective value.

    source
    MathOptInterface.SimplexIterationsType
    SimplexIterations()

    A model attribute for the cumulative number of simplex iterations during the optimization process.

    For a mixed-integer program (MIP), the return value is the total simplex iterations for all nodes.

    source
    MathOptInterface.NodeCountType
    NodeCount()

    A model attribute for the total number of branch-and-bound nodes explored while solving a mixed-integer program (MIP).

    source

    ResultStatusCode

    MathOptInterface.ResultStatusCodeType
    ResultStatusCode

    An Enum of possible values for the PrimalStatus and DualStatus attributes.

    The values indicate how to interpret the result vector.

    Values

    Possible values are:

    • NO_SOLUTION: the result vector is empty.
    • FEASIBLE_POINT: the result vector is a feasible point.
    • NEARLY_FEASIBLE_POINT: the result vector is feasible if some constraint tolerances are relaxed.
    • INFEASIBLE_POINT: the result vector is an infeasible point.
    • INFEASIBILITY_CERTIFICATE: the result vector is an infeasibility certificate. If the PrimalStatus is INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate of dual infeasibility. If the DualStatus is INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal infeasibility.
    • NEARLY_INFEASIBILITY_CERTIFICATE: the result satisfies a relaxed criterion for a certificate of infeasibility.
    • REDUCTION_CERTIFICATE: the result vector is an ill-posed certificate; see this article for details. If the PrimalStatus is REDUCTION_CERTIFICATE, then the primal result vector is a proof that the dual problem is ill-posed. If the DualStatus is REDUCTION_CERTIFICATE, then the dual result vector is a proof that the primal is ill-posed.
    • NEARLY_REDUCTION_CERTIFICATE: the result satisfies a relaxed criterion for an ill-posed certificate.
    • UNKNOWN_RESULT_STATUS: the result vector contains a solution with an unknown interpretation.
    • OTHER_RESULT_STATUS: the result vector contains a solution with an interpretation not covered by one of the statuses defined above
    source
    MathOptInterface.INFEASIBILITY_CERTIFICATEConstant
    INFEASIBILITY_CERTIFICATE::ResultStatusCode

    An instance of the ResultStatusCode enum.

    INFEASIBILITY_CERTIFICATE: the result vector is an infeasibility certificate. If the PrimalStatus is INFEASIBILITY_CERTIFICATE, then the primal result vector is a certificate of dual infeasibility. If the DualStatus is INFEASIBILITY_CERTIFICATE, then the dual result vector is a proof of primal infeasibility.

    source
    MathOptInterface.REDUCTION_CERTIFICATEConstant
    REDUCTION_CERTIFICATE::ResultStatusCode

    An instance of the ResultStatusCode enum.

    REDUCTION_CERTIFICATE: the result vector is an ill-posed certificate; see this article for details. If the PrimalStatus is REDUCTION_CERTIFICATE, then the primal result vector is a proof that the dual problem is ill-posed. If the DualStatus is REDUCTION_CERTIFICATE, then the dual result vector is a proof that the primal is ill-posed.

    source

    Conflict Status

    MathOptInterface.compute_conflict!Function
    compute_conflict!(optimizer::AbstractOptimizer)

    Computes a minimal subset of constraints such that the model with the other constraint removed is still infeasible.

    Some solvers call a set of conflicting constraints an Irreducible Inconsistent Subsystem (IIS).

    See also ConflictStatus and ConstraintConflictStatus.

    Note

    If the model is modified after a call to compute_conflict!, the implementor is not obliged to purge the conflict. Any calls to the above attributes may return values for the original conflict without a warning. Similarly, when modifying the model, the conflict can be discarded.

    source
    MathOptInterface.ConflictStatusCodeType
    ConflictStatusCode

    An Enum of possible values for the ConflictStatus attribute. This attribute is meant to explain the reason why the conflict finder stopped executing in the most recent call to compute_conflict!.

    Possible values are:

    • COMPUTE_CONFLICT_NOT_CALLED: the function compute_conflict! has not yet been called
    • NO_CONFLICT_EXISTS: there is no conflict because the problem is feasible
    • NO_CONFLICT_FOUND: the solver could not find a conflict
    • CONFLICT_FOUND: at least one conflict could be found
    source
    MathOptInterface.ConflictParticipationStatusCodeType
    ConflictParticipationStatusCode

    An Enum of possible values for the ConstraintConflictStatus attribute. This attribute is meant to indicate whether a given constraint participates or not in the last computed conflict.

    Values

    Possible values are:

    • NOT_IN_CONFLICT: the constraint does not participate in the conflict
    • IN_CONFLICT: the constraint participates in the conflict
    • MAYBE_IN_CONFLICT: the constraint may participate in the conflict, the solver was not able to prove that the constraint can be excluded from the conflict
    source
    diff --git a/previews/PR3919/moi/reference/modification/index.html b/previews/PR3919/moi/reference/modification/index.html index 159d83169a5..bb614f0f092 100644 --- a/previews/PR3919/moi/reference/modification/index.html +++ b/previews/PR3919/moi/reference/modification/index.html @@ -97,4 +97,4 @@ )

    A struct used to request a change in the quadratic coefficient of a ScalarQuadraticFunction.

    Scaling factors

    A ScalarQuadraticFunction has an implicit 0.5 scaling factor in front of the Q matrix. This modification applies to terms in the Q matrix.

    If variable_1 == variable_2, this modification sets the corresponding diagonal element of the Q matrix to new_coefficient.

    If variable_1 != variable_2, this modification is equivalent to setting both the corresponding upper- and lower-triangular elements of the Q matrix to new_coefficient.

    As a consequence:

    • to modify the term x^2 to become 2x^2, new_coefficient must be 4
    • to modify the term xy to become 2xy, new_coefficient must be 2
    source +) where {T}

    A struct used to request a change in the linear coefficients of a single variable in a vector-valued function.

    New coefficients are specified by (output_index, coefficient) tuples.

    Applicable to VectorAffineFunction and VectorQuadraticFunction.

    source diff --git a/previews/PR3919/moi/reference/nonlinear/index.html b/previews/PR3919/moi/reference/nonlinear/index.html index c52a1723771..349045659dd 100644 --- a/previews/PR3919/moi/reference/nonlinear/index.html +++ b/previews/PR3919/moi/reference/nonlinear/index.html @@ -425,4 +425,4 @@ :(x[MOI.VariableIndex(1)] * x[MOI.VariableIndex(2)] * x[MOI.VariableIndex(3)] * x[MOI.VariableIndex(4)] >= 25.0) julia> MOI.constraint_expr(evaluator, 2) -:(x[MOI.VariableIndex(1)] ^ 2 + x[MOI.VariableIndex(2)] ^ 2 + x[MOI.VariableIndex(3)] ^ 2 + x[MOI.VariableIndex(4)] ^ 2 == 40.0)source +:(x[MOI.VariableIndex(1)] ^ 2 + x[MOI.VariableIndex(2)] ^ 2 + x[MOI.VariableIndex(3)] ^ 2 + x[MOI.VariableIndex(4)] ^ 2 == 40.0)source diff --git a/previews/PR3919/moi/reference/standard_form/index.html b/previews/PR3919/moi/reference/standard_form/index.html index bbd30e9c46e..38a33195375 100644 --- a/previews/PR3919/moi/reference/standard_form/index.html +++ b/previews/PR3919/moi/reference/standard_form/index.html @@ -944,4 +944,4 @@ MOI.VectorOfVariables([t; vec(X)]), MOI.RootDetConeSquare(2), ) -MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables, MathOptInterface.RootDetConeSquare}(1)source +MathOptInterface.ConstraintIndex{MathOptInterface.VectorOfVariables, MathOptInterface.RootDetConeSquare}(1)source diff --git a/previews/PR3919/moi/reference/variables/index.html b/previews/PR3919/moi/reference/variables/index.html index 3fcc434e314..c92b6cd67ec 100644 --- a/previews/PR3919/moi/reference/variables/index.html +++ b/previews/PR3919/moi/reference/variables/index.html @@ -63,4 +63,4 @@ )::Bool

    Return a Bool indicating whether model supports constraining a variable to belong to a set of type S either on creation of the variable with add_constrained_variable or after the variable is created with add_constraint.

    By default, this function falls back to supports_add_constrained_variables(model, Reals) && supports_constraint(model, MOI.VariableIndex, S) which is the correct definition for most models.

    Example

    Suppose that a solver supports only two kind of variables: binary variables and continuous variables with a lower bound. If the solver decides not to support VariableIndex-in-Binary and VariableIndex-in-GreaterThan constraints, it only has to implement add_constrained_variable for these two sets which prevents the user to add both a binary constraint and a lower bound on the same variable. Moreover, if the user adds a VariableIndex-in-GreaterThan constraint, implementing this interface (that is, supports_add_constrained_variables) enables the constraint to be transparently bridged into a supported constraint.

    source
    MathOptInterface.supports_add_constrained_variablesFunction
    supports_add_constrained_variables(
         model::ModelLike,
         S::Type{<:AbstractVectorSet}
    -)::Bool

    Return a Bool indicating whether model supports constraining a vector of variables to belong to a set of type S either on creation of the vector of variables with add_constrained_variables or after the variable is created with add_constraint.

    By default, if S is Reals then this function returns true and otherwise, it falls back to supports_add_constrained_variables(model, Reals) && supports_constraint(model, MOI.VectorOfVariables, S) which is the correct definition for most models.

    Example

    In the standard conic form (see Duality), the variables are grouped into several cones and the constraints are affine equality constraints. If Reals is not one of the cones supported by the solvers then it needs to implement supports_add_constrained_variables(::Optimizer, ::Type{Reals}) = false as free variables are not supported. The solvers should then implement supports_add_constrained_variables(::Optimizer, ::Type{<:SupportedCones}) = true where SupportedCones is the union of all cone types that are supported; it does not have to implement the method supports_constraint(::Type{VectorOfVariables}, Type{<:SupportedCones}) as it should return false and it's the default. This prevents the user to constrain the same variable in two different cones. When a VectorOfVariables-in-S is added, the variables of the vector have already been created so they already belong to given cones. If bridges are enabled, the constraint will therefore be bridged by adding slack variables in S and equality constraints ensuring that the slack variables are equal to the corresponding variables of the given constraint function.

    Note that there may also be sets for which !supports_add_constrained_variables(model, S) and supports_constraint(model, MOI.VectorOfVariables, S). For instance, suppose a solver supports positive semidefinite variable constraints and two types of variables: binary variables and nonnegative variables. Then the solver should support adding VectorOfVariables-in-PositiveSemidefiniteConeTriangle constraints, but it should not support creating variables constrained to belong to the PositiveSemidefiniteConeTriangle because the variables in PositiveSemidefiniteConeTriangle should first be created as either binary or non-negative.

    source
    MathOptInterface.is_validMethod
    is_valid(model::ModelLike, index::Index)::Bool

    Return a Bool indicating whether this index refers to a valid object in the model model.

    source
    MathOptInterface.deleteMethod
    delete(model::ModelLike, index::Index)

    Delete the referenced object from the model. Throw DeleteNotAllowed if if index cannot be deleted.

    The following modifications also take effect if Index is VariableIndex:

    • If index used in the objective function, it is removed from the function, that is, it is substituted for zero.
    • For each func-in-set constraint of the model:
      • If func isa VariableIndex and func == index then the constraint is deleted.
      • If func isa VectorOfVariables and index in func.variables then
        • if length(func.variables) == 1 is one, the constraint is deleted;
        • if length(func.variables) > 1 and supports_dimension_update(set) then then the variable is removed from func and set is replaced by update_dimension(set, MOI.dimension(set) - 1).
        • Otherwise, a DeleteNotAllowed error is thrown.
      • Otherwise, the variable is removed from func, that is, it is substituted for zero.
    source
    MathOptInterface.deleteMethod
    delete(model::ModelLike, indices::Vector{R<:Index}) where {R}

    Delete the referenced objects in the vector indices from the model. It may be assumed that R is a concrete type. The default fallback sequentially deletes the individual items in indices, although specialized implementations may be more efficient.

    source

    Attributes

    MathOptInterface.VariableNameType
    VariableName()

    A variable attribute for a string identifying the variable. It is valid for two variables to have the same name; however, variables with duplicate names cannot be looked up using get. It has a default value of "" if not set`.

    source
    MathOptInterface.VariablePrimalStartType
    VariablePrimalStart()

    A variable attribute for the initial assignment to some primal variable's value that the optimizer may use to warm-start the solve. May be a number or nothing (unset).

    source
    MathOptInterface.VariablePrimalType
    VariablePrimal(result_index::Int = 1)

    A variable attribute for the assignment to some primal variable's value in result result_index. If result_index is omitted, it is 1 by default.

    If the solver does not have a primal value for the variable because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a dual solution is available), the result is undefined. Users should first check PrimalStatus before accessing the VariablePrimal attribute.

    See ResultCount for information on how the results are ordered.

    source
    MathOptInterface.VariableBasisStatusType
    VariableBasisStatus(result_index::Int = 1)

    A variable attribute for the BasisStatusCode of a variable in result result_index, with respect to an available optimal solution basis.

    If the solver does not have a basis status for the variable because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a dual solution is available), the result is undefined. Users should first check PrimalStatus before accessing the VariableBasisStatus attribute.

    See ResultCount for information on how the results are ordered.

    source
    +)::Bool

    Return a Bool indicating whether model supports constraining a vector of variables to belong to a set of type S either on creation of the vector of variables with add_constrained_variables or after the variable is created with add_constraint.

    By default, if S is Reals then this function returns true and otherwise, it falls back to supports_add_constrained_variables(model, Reals) && supports_constraint(model, MOI.VectorOfVariables, S) which is the correct definition for most models.

    Example

    In the standard conic form (see Duality), the variables are grouped into several cones and the constraints are affine equality constraints. If Reals is not one of the cones supported by the solvers then it needs to implement supports_add_constrained_variables(::Optimizer, ::Type{Reals}) = false as free variables are not supported. The solvers should then implement supports_add_constrained_variables(::Optimizer, ::Type{<:SupportedCones}) = true where SupportedCones is the union of all cone types that are supported; it does not have to implement the method supports_constraint(::Type{VectorOfVariables}, Type{<:SupportedCones}) as it should return false and it's the default. This prevents the user to constrain the same variable in two different cones. When a VectorOfVariables-in-S is added, the variables of the vector have already been created so they already belong to given cones. If bridges are enabled, the constraint will therefore be bridged by adding slack variables in S and equality constraints ensuring that the slack variables are equal to the corresponding variables of the given constraint function.

    Note that there may also be sets for which !supports_add_constrained_variables(model, S) and supports_constraint(model, MOI.VectorOfVariables, S). For instance, suppose a solver supports positive semidefinite variable constraints and two types of variables: binary variables and nonnegative variables. Then the solver should support adding VectorOfVariables-in-PositiveSemidefiniteConeTriangle constraints, but it should not support creating variables constrained to belong to the PositiveSemidefiniteConeTriangle because the variables in PositiveSemidefiniteConeTriangle should first be created as either binary or non-negative.

    source
    MathOptInterface.is_validMethod
    is_valid(model::ModelLike, index::Index)::Bool

    Return a Bool indicating whether this index refers to a valid object in the model model.

    source
    MathOptInterface.deleteMethod
    delete(model::ModelLike, index::Index)

    Delete the referenced object from the model. Throw DeleteNotAllowed if if index cannot be deleted.

    The following modifications also take effect if Index is VariableIndex:

    • If index used in the objective function, it is removed from the function, that is, it is substituted for zero.
    • For each func-in-set constraint of the model:
      • If func isa VariableIndex and func == index then the constraint is deleted.
      • If func isa VectorOfVariables and index in func.variables then
        • if length(func.variables) == 1 is one, the constraint is deleted;
        • if length(func.variables) > 1 and supports_dimension_update(set) then then the variable is removed from func and set is replaced by update_dimension(set, MOI.dimension(set) - 1).
        • Otherwise, a DeleteNotAllowed error is thrown.
      • Otherwise, the variable is removed from func, that is, it is substituted for zero.
    source
    MathOptInterface.deleteMethod
    delete(model::ModelLike, indices::Vector{R<:Index}) where {R}

    Delete the referenced objects in the vector indices from the model. It may be assumed that R is a concrete type. The default fallback sequentially deletes the individual items in indices, although specialized implementations may be more efficient.

    source

    Attributes

    MathOptInterface.VariableNameType
    VariableName()

    A variable attribute for a string identifying the variable. It is valid for two variables to have the same name; however, variables with duplicate names cannot be looked up using get. It has a default value of "" if not set`.

    source
    MathOptInterface.VariablePrimalStartType
    VariablePrimalStart()

    A variable attribute for the initial assignment to some primal variable's value that the optimizer may use to warm-start the solve. May be a number or nothing (unset).

    source
    MathOptInterface.VariablePrimalType
    VariablePrimal(result_index::Int = 1)

    A variable attribute for the assignment to some primal variable's value in result result_index. If result_index is omitted, it is 1 by default.

    If the solver does not have a primal value for the variable because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a dual solution is available), the result is undefined. Users should first check PrimalStatus before accessing the VariablePrimal attribute.

    See ResultCount for information on how the results are ordered.

    source
    MathOptInterface.VariableBasisStatusType
    VariableBasisStatus(result_index::Int = 1)

    A variable attribute for the BasisStatusCode of a variable in result result_index, with respect to an available optimal solution basis.

    If the solver does not have a basis status for the variable because the result_index is beyond the available solutions (whose number is indicated by the ResultCount attribute), getting this attribute must throw a ResultIndexBoundsError. Otherwise, if the result is unavailable for another reason (for instance, only a dual solution is available), the result is undefined. Users should first check PrimalStatus before accessing the VariableBasisStatus attribute.

    See ResultCount for information on how the results are ordered.

    source
    diff --git a/previews/PR3919/moi/release_notes/index.html b/previews/PR3919/moi/release_notes/index.html index 7aa441ed977..b7ace858c36 100644 --- a/previews/PR3919/moi/release_notes/index.html +++ b/previews/PR3919/moi/release_notes/index.html @@ -31,4 +31,4 @@ end write(path, s) end -end

    v0.9.22 (May 22, 2021)

    This release contains backports from the ongoing development of the v0.10 release.

    • Improved type inference in Utilities, Bridges and FileFormats submodules to reduce latency.
    • Improved performance of Utilities.is_canonical.
    • Fixed Utilities.pass_nonvariable_constraints with bridged variables.
    • Fixed performance regression of Utilities.Model.
    • Fixed ordering of objective setting in parser.

    v0.9.21 (April 23, 2021)

    • Added supports_shift_constant.
    • Improve performance of bridging quadratic constraints.
    • Add precompilation statements.
    • Large improvements to the documentation.
    • Fix a variety of inference issues, benefiting precompilation and reducing initial latency.
    • RawParameters are now ignored when resetting a CachingOptimizer. Previously, changing the underlying optimizer after RawParameters were set would throw an error.
    • Utilities.AbstractModel is being refactored. This may break users interacting with private fields of a model generated using @model.

    v0.9.20 (February 20, 2021)

    • Improved performance of Utilities.ScalarFunctionIterator
    • Added support for compute_conflict to MOI layers
    • Added test with zero off-diagonal quadratic term in objective
    • Fixed double deletion of nested bridged SingleVariable/VectorOfVariables constraints
    • Fixed modification of un-set objective
    • Fixed function modification with duplicate terms
    • Made unit tests abort without failing if the problem class is not supported
    • Formatted code with JuliaFormatter
    • Clarified BasisStatusCode's docstring

    v0.9.19 (December 1, 2020)

    • Added CallbackNodeStatus attribute
    • Added bridge from GreaterThan or LessThan to Interval
    • Added tests for infeasibility certificates and double optimize
    • Fixed support for Julia v1.6
    • Re-organized MOI docs and added documentation for adding a test

    v0.9.18 (November 3, 2020)

    • Various improvements for working with complex numbers
    • Added GeoMeantoRelEntrBridge to bridge a GeometricMeanCone constraint to a relative entropy constraint

    v0.9.17 (September 21, 2020)

    • Fixed CleverDict with variable of negative index value
    • Implement supports_add_constrained_variable for MockOptimizer

    v0.9.16 (September 17, 2020)

    • Various fixes:
      • 32-bit support
      • CleverDict with abstract value type
      • Checks in test suite

    v0.9.15 (September 14, 2020)

    • Bridges improvements:
      • (R)SOCtoNonConvexQuad bridge
      • ZeroOne bridge
      • Use supports_add_constrained_variable in LazyBridgeOptimizer
      • Exposed VariableBridgeCost and ConstraintBridgeCost attributes
      • Prioritize constraining variables on creation according to these costs
      • Refactor bridge debugging
    • Large performance improvements across all submodules
    • Lots of documentation improvements
    • FileFormats improvements:
      • Update MathOptFormat to v0.5
      • Fix supported objectives in FileFormats
    • Testing improvements:
      • Add name option for basic_constraint_test
    • Bug fixes and missing methods
      • Add length for iterators
      • Fix bug with duplicate terms
      • Fix order of LinearOfConstraintIndices

    v0.9.14 (May 30, 2020)

    • Add a solver-independent interface for accessing the set of conflicting constraints an Irreducible Inconsistent Subsystem (#1056).
    • Bump JSONSchema dependency from v0.2 to v0.3 (#1090).
    • Documentation improvements:
      • Fix typos (#1054, #1060, #1061, #1064, #1069, #1070).
      • Remove the outdated recommendation for a package implementing MOI for a solver XXX to be called MathOptInterfaceXXX (#1087).
    • Utilities improvements:
      • Fix is_canonical for quadratic functions (#1081, #1089).
      • Implement add_constrained_variable[s] for CachingOptimizer so that it is added as constrained variables to the underlying optimizer (#1084).
      • Add support for custom objective functions for UniversalFallback (#1086).
      • Deterministic ordering of constraints in UniversalFallback (#1088).
    • Testing improvements:
      • Add NormOneCone/NormInfinityCone tests (#1045).
    • Bridges improvements:
      • Add bridges from Semiinteger and Semicontinuous (#1059).
      • Implement getting ConstraintSet for Variable.FlipSignBridge (#1066).
      • Fix setting ConstraintFunction for Constraint.ScalarizeBridge (#1093).
      • Fix NormOne/NormInf bridges with nonzero constants (#1045).
      • Fix StackOverflow in debug (#1063).
    • FileFormats improvements:
      • [SDPA] Implement the extension for integer variables (#1079).
      • [SDPA] Ignore comments after m and nblocks and detect dat-s extension (#1077).
      • [SDPA] No scaling of off-diagonal coefficient (#1076).
      • [SDPA] Add missing negation of constant (#1075).

    v0.9.13 (March 24, 2020)

    • Added tests for Semicontinuous and Semiinteger variables (#1033).
    • Added tests for using ExprGraphs from NLP evaluators (#1043).
    • Update version compatibilities of dependencies (#1034, #1051, #1052).
    • Fixed typos in documentation (#1044).

    v0.9.12 (February 28, 2020)

    • Fixed writing NLPBlock in MathOptFormat (#1037).
    • Fixed MockOptimizer for result attributes with non-one result index (#1039).
    • Updated test template with instantiate (#1032).

    v0.9.11 (February 21, 2020)

    • Add an option for the model created by Utilities.@model to be a subtype of AbstractOptimizer (#1031).
    • Described dual cone in docstrings of GeoMeanCone and RelativeEntropyCone (#1018, #1028).
    • Fixed typos in documentation (#1022, #1024).
    • Fixed warning of unsupported attribute (#1027).
    • Added more rootdet/logdet conic tests (#1026).
    • Implemented ConstraintDual for Constraint.GeoMeanBridge, Constraint.RootDetBridge and Constraint.LogDetBridge and test duals in tests with GeoMeanCone and RootDetConeTriangle and LogDetConeTriangle cones (#1025, #1026).

    v0.9.10 (January 31, 2020)

    • Added OptimizerWithAttributes grouping an optimizer constructor and a list of optimizer attributes (#1008).
    • Added RelativeEntropyCone with corresponding bridge into exponential cone constraints (#993).
    • Added NormSpectralCone and NormNuclearCone with corresponding bridges into positive semidefinite constraints (#976).
    • Added supports_constrained_variable(s) (#1004).
    • Added dual_set_type (#1002).
    • Added tests for vector specialized version of delete (#989, #1011).
    • Added PSD3 test (#1007).
    • Clarified dual solution of Tests.pow1v and Tests.pow1f (#1013).
    • Added support for EqualTo and Zero in Bridges.Constraint.SplitIntervalBridge (#1005).
    • Fixed Utilities.vectorize for empty vector (#1003).
    • Fixed free variables in LP writer (#1006).

    v0.9.9 (December 29, 2019)

    • Incorporated MathOptFormat.jl as the FileFormats submodule. FileFormats provides readers and writers for a number of standard file formats and MOF, a file format specialized for MOI (#969).
    • Improved performance of deletion of vector of variables in MOI.Utilities.Model (#983).
    • Updated to MutableArithmetics v0.2 (#981).
    • Added MutableArithmetics.promote_operation allocation tests (#975).
    • Fixed inference issue on Julia v1.1 (#982).

    v0.9.8 (December 19, 2019)

    • Implemented MutableArithmetics API (#924).
    • Fixed callbacks with CachingOptimizer (#959).
    • Fixed MOI.dimension for MOI.Complements (#948).
    • Added fallback for add_variables (#972).
    • Added is_diagonal_vectorized_index utility (#965).
    • Improved linear constraints display in manual (#963, #964).
    • Bridges improvements:
      • Added IndicatorSet to SOS1 bridge (#877).
      • Added support for starting values for Variable.VectorizeBridge (#944).
      • Fixed MOI.add_constraints with non-bridged variable constraint on bridged variable (#951).
      • Fixed corner cases and docstring of GeoMeanBridge (#961, #962, #966).
      • Fixed choice between variable or constraint bridges for constrained variables (#973).
      • Improve performance of bridge shortest path (#945, #946, #956).
      • Added docstring for test_delete_bridge (#954).
      • Added Variable bridge tests (#952).

    v0.9.7 (October 30, 2019)

    • Implemented _result_index_field for NLPBlockDual (#934).
    • Fixed copy of model with starting values for vector constraints (#941).
    • Bridges improvements:
      • Improved performance of add_bridge and added has_bridge (#935).
      • Added AbstractSetMapBridge for bridges between sets S1, S2 such that there is a linear map A such that A*S1 = S2 (#933).
      • Added support for starting values for FlipSignBridge, VectorizeBridge, ScalarizeBridge, SlackBridge, SplitIntervalBridge, RSOCBridge, SOCRBridge NormInfinityBridge, SOCtoPSDBridge and RSOCtoPSDBridge (#933, #936, #937, #938, #939).

    v0.9.6 (October 25, 2019)

    • Added complementarity constraints (#913).
    • Allowed ModelLike objects as value of attributes (#928).
    • Testing improvements:
      • Added dual_objective_value option to MOI.Test.TestConfig (#922).
      • Added InvalidIndex tests in basic_constraint_tests (#921).
      • Added tests for the constant term in indicator constraint (#929).
    • Bridges improvements:
      • Added support for starting values for Functionize bridges (#923).
      • Added variable indices context to variable bridges (#920).
      • Fixed a typo in printing o debug_supports (#927).

    v0.9.5 (October 9, 2019)

    • Clarified PrimalStatus/DualStatus to be NO_SOLUTION if result_index is out of bounds (#912).
    • Added tolerance for checks and use ResultCount + 1 for the result_index in MOI.Test.solve_result_status (#910, #917).
    • Use 0.5 instead of 2.0 for power in PowerCone in basic_constraint_test (#916).
    • Bridges improvements:
      • Added debug utilities for unsupported variable/constraint/objective (#861).
      • Fixed deletion of variables in bridged VectorOfVariables constraints (#909).
      • Fixed result_index with objective bridges (#911).

    v0.9.4 (October 2, 2019)

    • Added solver-independent MIP callbacks (#782).
    • Implements submit for Utilities.CachingOptimizer and Bridges.AbstractBridgeOptimizer (#906).
    • Added tests for result count of solution attributes (#901, #904).
    • Added NumberOfThreads attribute (#892).
    • Added Utilities.get_bounds to get the bounds on a variable (#890).
    • Added a note on duplicate coefficients in documentation (#581).
    • Added result index in ConstraintBasisStatus (#898).
    • Added extension dictionary to Utilities.Model (#884, #895).
    • Fixed deletion of constrained variables for CachingOptimizer (#905).
    • Implemented Utilities.shift_constraint for Test.UnknownScalarSet (#896).
    • Bridges improvements:
      • Added Variable.RSOCtoSOCBridge (#907).
      • Implemented MOI.get for ConstraintFunction/ConstraintSet for Bridges.Constraint.SquareBridge (#899).

    v0.9.3 (September 20, 2019)

    • Fixed ambiguity detected in Julia v1.3 (#891, #893).
    • Fixed missing sets from ListOfSupportedConstraints (#880).
    • Fixed copy of VectorOfVariables constraints with duplicate indices (#886).
    • Added extension dictionary to MOIU.Model (#884).
    • Implemented MOI.get for function and set for GeoMeanBridge (#888).
    • Updated documentation for SingleVariable indices and bridges (#885).
    • Testing improvements:
      • Added more comprehensive tests for names (#882).
      • Added tests for SingleVariable duals (#883).
      • Added tests for DualExponentialCone and DualPowerCone (#873).
    • Improvements for arbitrary coefficient type:
      • Fixed == for sets with mutable fields (#887).
      • Removed some Float64 assumptions in bridges (#878).
      • Automatic selection of Constraint.[Scalar|Vector]FunctionizeBridge (#889).

    v0.9.2 (September 5, 2019)

    • Implemented model printing for MOI.ModelLike and specialized it for models defined in MOI (864).
    • Generalized contlinear tests for arbitrary coefficient type (#855).
    • Fixed supports_constraint for Semiinteger and Semicontinuous and supports for ObjectiveFunction (#859).
    • Fixed Allocate-Load copy for single variable constraints (#856).
    • Bridges improvements:
      • Add objective bridges (#789).
      • Fixed Variable.RSOCtoPSDBridge for dimension 2 (#869).
      • Added Variable.SOCtoRSOCBridge (#865).
      • Added Constraint.SOCRBridge and disable MOI.Bridges.Constraint.SOCtoPSDBridge (#751).
      • Fixed added_constraint_types for Contraint.LogDetBridge and Constraint.RootDetBridge (#870).

    v0.9.1 (August 22, 2019)

    • Fix support for Julia v1.2 (#834).
    • L1 and L∞ norm epigraph cones and corresponding bridges to LP were added (#818).
    • Added tests to MOI.Test.nametest (#833).
    • Fix MOI.Test.soc3test for solvers not supporting infeasibility certificates (#839).
    • Implements operate for operators * and / between vector function and constant (#837).
    • Implements show for MOI.Utilities.IndexMap (#847).
    • Fix corner cases for mapping of variables in MOI.Utilities.CachingOptimizer and substitution of variables in MOI.Bridges.AbstractBridgeOptimizer (#848).
    • Fix transformation of constant terms for MOI.Bridges.Constraint.SOCtoPSDBridge and MOI.Bridges.Constraint.RSOCtoPSDBridge (#840).

    v0.9.0 (August 13, 2019)

    • Support for Julia v0.6 and v0.7 was dropped (#714, #717).
    • A MOI.Utilities.Model implementation of ModelLike, this should replace most use cases of MOI.Utilities.@model (#781).
    • add_constrained_variable and add_constrained_variables were added (#759).
    • Support for indicator constraints was added (#709, #712).
    • DualObjectiveValue attribute was added (#473).
    • RawParameter attribute was added (#733).
    • A dual_set function was added (#804).
    • A Benchmarks submodule was added to facilitate solver benchmarking (#769).
    • A submit function was added, this may for instance allow the user to submit solutions or cuts to the solver from a callback (#775).
    • The field of ObjectiveValue was renamed to result_index (#729).
    • The _constant and Utilities.getconstant function were renamed to constant
    • REDUCTION_CERTIFICATE result status was added (#734).
    • Abstract matrix sets were added (#731).
    • Testing improvements:
      • The testing guideline was updated (#728).
      • Quadratic tests were added (#697).
      • Unit tests for RawStatusString, SolveTime, Silent and SolverName were added (#726, #741).
      • A rotated second-order cone test was added (#759).
      • A power cone test was added (#768).
      • Tests for ZeroOne variables with variable bounds were added (#772).
      • An unbounded test was added (#773).
      • Existing tests had a few updates (#702, #703, #763).
    • Documentation improvements:
      • Added a section on CachingOptimizer (#777).
      • Added a section on UniversalFallback, Model and @model (#762).
      • Transition the knapsack example to a doctest with MockOptimizer (#786).
    • Utilities improvements:
      • A CleverDict utility was added for a vector that automatically transform into a dictionary once a first index is removed (#767).
      • The Utilities.constant function was renamed to Utilities.constant_vector (#740).
      • Implement optimizer attributes for CachingOptimizer (#745).
      • Rename Utilities.add_scalar_constraint to Utilities.normalize_and_add_constraint (#801).
      • operate with vcat, SingleVariable and VectorOfVariables now returns a VectorOfVariables (#616).
      • Fix a type piracy of operate (#784).
      • The load_constraint fallback signature was fixed (#760).
      • The set_dot function was extended to work with sparse arrays (#805).
    • Bridges improvements:
      • The bridges no longer store the constraint function and set before it is bridged, the bridges now have to implement ConstraintFunction and ConstraintSet if the user wants to recover them. As a consequence, the @bridge macro was removed (#722).
      • Bridge are now instantiated with a bridge_constraint function instead of using a constructor (#730).
      • Fix constraint attributes for bridges (#699).
      • Constraint bridges were moved to the Bridges/Constraint submodule so they should now inherit from MOI.Bridges.Constraint.Abstract and should implement MOI.Bridges.Constraint.concrete_bridge_type instead of MOI.Bridges.concrete_bridge_type (#756).
      • Variable bridges were added in (#759).
      • Various improvements (#746, #747).

    v0.8.4 (March 13, 2019)

    • Performance improvement in default_copy_to and bridge optimizer (#696).
    • Add Silent and implement setting optimizer attributes in caching and mock optimizers (#695).
    • Add Functionize bridges (SingleVariable and VectorOfVariables) (#659).
    • Minor typo fixes (#694).

    v0.8.3 (March 6, 2019)

    • Use zero constant in scalar constraint function of MOI.Test.copytest (#691).
    • Fix variable deletion with SingleVariable objective function (#690).
    • Fix LazyBridgeOptimizer with bridges that add no constraints (#689).
    • Error message improvements (#673, #685, #686, #688).
    • Documentation improvements (#682, #683, #687).
    • Basis status:
      • Remove VariableBasisStatus (#679).
      • Test ConstraintBasisStatus and implement it in bridges (#678).
    • Fix inference of NumberOfVariables and NumberOfConstraints (#677).
    • Implement division between a quadratic function and a number (#675).

    v0.8.2 (February 7, 2019)

    • Add RawStatusString attribute (#629).
    • Do not set names to the optimizer but only to the cache in CachingOptimizer (#638).
    • Make scalar MOI functions act as scalars in broadcast (#646).
    • Add function utilities:
      • Implement Base.zero (#634), Base.iszero (#643), add missing arithmetic operations (#644, #645) and fix division (#648).
      • Add a vectorize function that turns a vector of ScalarAffineFunction into a VectorAffineFunction (#642).
    • Improve support for starting values:
      • Show a warning in copy when starting values are not supported instead of throwing an error (#630).
      • Fix UniversalFallback for getting an variable or constraint attribute set to no indices (#623).
      • Add a test in contlineartest with partially set VariablePrimalStart.
    • Bridges improvements:
      • Fix StackOverFlow in LazyBridgeOptimizer when there is a cycle in the graph of bridges.
      • Add Slack bridges (#610, #650).
      • Add FlipSign bridges (#658).
    • Add tests with duplicate coefficients in ScalarAffineFunction and VectorAffineFunction (#639).
    • Use tolerance to compare VariablePrimal in rotatedsoc1 test (#632).
    • Use a zero constant in ScalarAffineFunction of constraints in psdt2 (#622).

    v0.8.1 (January 7, 2019)

    • Adding an NLP objective now overrides any objective set using the ObjectiveFunction attribute (#619).
    • Rename fullbridgeoptimizer into full_bridge_optimizer (#621).
    • Allow custom constraint types with full_bridge_optimizer (#617).
    • Add Vectorize bridge which transforms scalar linear constraints into vector linear constraints (#615).

    v0.8.0 (December 18, 2018)

    • Rename all enum values to follow the JuMP naming guidelines for constants, for example, Optimal becomes OPTIMAL, and DualInfeasible becomes DUAL_INFEASIBLE.
    • Rename CachingOptimizer methods for style compliance.
    • Add an MOI.TerminationStatusCode called ALMOST_DUAL_INFEASIBLE.

    v0.7.0 (December 13, 2018)

    • Test that MOI.TerminationStatus is MOI.OptimizeNotCalled before MOI.optimize! is called.
    • Check supports_default_copy_to in tests (#594).
    • Key pieces of information like optimality, infeasibility, etc., are now reported through TerminationStatusCode. It is typically no longer necessary to check the result statuses in addition to the termination status.
    • Add perspective dimension to log-det cone (#593).

    v0.6.4 (November 27, 2018)

    • Add OptimizeNotCalled termination status (#577) and improve documentation of other statuses (#575).
    • Add a solver naming guideline (#578).
    • Make FeasibilitySense the default ObjectiveSense (#579).
    • Fix Utilities.@model and Bridges.@bridge macros for functions and sets defined outside MOI (#582).
    • Document solver-specific attributes (#580) and implement them in Utilities.CachingOptimizer (#565).

    v0.6.3 (November 16, 2018)

    • Variables and constraints are now allowed to have duplicate names. An error is thrown only on lookup. This change breaks some existing tests. (#549)
    • Attributes may now be partially set (some values could be nothing). (#563)
    • Performance improvements in Utilities.Model (#549, #567, #568)
    • Fix bug in QuadtoSOC (#558).
    • New supports_default_copy_to method that optimizers should implement to control caching behavior.
    • Documentation improvements.

    v0.6.2 (October 26, 2018)

    • Improve hygiene of @model macro (#544).
    • Fix bug in copy tests (#543).
    • Fix bug in UniversalFallback attribute getter (#540).
    • Allow all correct solutions for solve_blank_obj unit test (#537).
    • Add errors for Allocate-Load and bad constraints (#534).
    • [performance] Add specialized implementation of hash for VariableIndex (#533).
    • [performance] Construct the name to object dictionaries lazily in model (#535).
    • Add the QuadtoSOC bridge which transforms ScalarQuadraticFunction constraints into RotatedSecondOrderCone (#483).

    v0.6.1 (September 22, 2018)

    • Enable PositiveSemidefiniteConeSquare set and quadratic functions in MOIB.fullbridgeoptimizer (#524).
    • Add warning in the bridge between PositiveSemidefiniteConeSquare and PositiveSemidefiniteConeTriangle when the matrix is almost symmetric (#522).
    • Modify MOIT.copytest to not add multiples constraints on the same variable (#521).
    • Add missing keyword argument in one of MOIU.add_scalar_constraint methods (#520).

    v0.6.0 (August 30, 2018)

    • The MOIU.@model and MOIB.@bridge macros now support functions and sets defined in external modules. As a consequence, function and set names in the macro arguments need to be prefixed by module name.
    • Rename functions according to the JuMP style guide:
      • copy! with keyword arguments copynames and warnattributes -> copy_to with keyword arguments copy_names and warn_attributes;
      • set! -> set;
      • addvariable[s]! -> add_variable[s];
      • supportsconstraint -> supports_constraint;
      • addconstraint[s]! -> add_constraint[s];
      • isvalid -> is_valid;
      • isempty -> is_empty;
      • Base.delete! -> delete;
      • modify! -> modify;
      • transform! -> transform;
      • initialize! -> initialize;
      • write -> write_to_file; and
      • read! -> read_from_file.
    • Remove free! (use Base.finalize instead).
    • Add the SquarePSD bridge which transforms PositiveSemidefiniteConeTriangle constraints into PositiveSemidefiniteConeTriangle.
    • Add result fallback for ConstraintDual of variable-wise constraint, ConstraintPrimal and ObjectiveValue.
    • Add tests for ObjectiveBound.
    • Add test for empty rows in vector linear constraint.
    • Rework errors: CannotError has been renamed NotAllowedError and the distinction between UnsupportedError and NotAllowedError is now about whether the element is not supported (for example, it cannot be copied a model containing this element) or the operation is not allowed (either because it is not implemented, because it cannot be performed in the current state of the model, or because it cannot be performed for a specific index)
    • canget is removed. NoSolution is added as a result status to indicate that the solver does not have either a primal or dual solution available (See #479).

    v0.5.0 (August 5, 2018)

    • Fix names with CachingOptimizer.
    • Cleanup thanks to @mohamed82008.
    • Added a universal fallback for constraints.
    • Fast utilities for function canonicalization thanks to @rdeits.
    • Renamed dimension field to side_dimension in the context of matrix-like sets.
    • New and improved tests for cases like duplicate terms and ObjectiveBound.
    • Removed cantransform, canaddconstraint, canaddvariable, canset, canmodify, and candelete functions from the API. They are replaced by a new set of errors that are thrown: Subtypes of UnsupportedError indicate unsupported operations, while subtypes of CannotError indicate operations that cannot be performed in the current state.
    • The API for copy! is updated to remove the CopyResult type.
    • Updates for the new JuMP style guide.

    v0.4.1 (June 28, 2018)

    • Fixes vector function modification on 32 bits.
    • Fixes Bellman-Ford algorithm for bridges.
    • Added an NLP test with FeasibilitySense.
    • Update modification documentation.

    v0.4.0 (June 23, 2018)

    • Helper constructors for VectorAffineTerm and VectorQuadraticTerm.
    • Added modify_lhs to TestConfig.
    • Additional unit tests for optimizers.
    • Added a type parameter to CachingOptimizer for the optimizer field.
    • New API for problem modification (#388)
    • Tests pass without deprecation warnings on Julia 0.7.
    • Small fixes and documentation updates.

    v0.3.0 (May 25, 2018)

    • Functions have been redefined to use arrays-of-structs instead of structs-of-arrays.
    • Improvements to MockOptimizer.
    • Significant changes to Bridges.
    • New and improved unit tests.
    • Fixes for Julia 0.7.

    v0.2.0 (April 24, 2018)

    • Improvements to and better coverage of Tests.
    • Documentation fixes.
    • SolverName attribute.
    • Changes to the NLP interface (new definition of variable order and arrays of structs for bound pairs and sparsity patterns).
    • Addition of NLP tests.
    • Introduction of UniversalFallback.
    • copynames keyword argument to MOI.copy!.
    • Add Bridges submodule.

    v0.1.0 (February 28, 2018)

    • Initial public release.
    • The framework for MOI was developed at the JuMP-dev workshop at MIT in June 2017 as a sorely needed replacement for MathProgBase.
    +end

    v0.9.22 (May 22, 2021)

    This release contains backports from the ongoing development of the v0.10 release.

    • Improved type inference in Utilities, Bridges and FileFormats submodules to reduce latency.
    • Improved performance of Utilities.is_canonical.
    • Fixed Utilities.pass_nonvariable_constraints with bridged variables.
    • Fixed performance regression of Utilities.Model.
    • Fixed ordering of objective setting in parser.

    v0.9.21 (April 23, 2021)

    • Added supports_shift_constant.
    • Improve performance of bridging quadratic constraints.
    • Add precompilation statements.
    • Large improvements to the documentation.
    • Fix a variety of inference issues, benefiting precompilation and reducing initial latency.
    • RawParameters are now ignored when resetting a CachingOptimizer. Previously, changing the underlying optimizer after RawParameters were set would throw an error.
    • Utilities.AbstractModel is being refactored. This may break users interacting with private fields of a model generated using @model.

    v0.9.20 (February 20, 2021)

    • Improved performance of Utilities.ScalarFunctionIterator
    • Added support for compute_conflict to MOI layers
    • Added test with zero off-diagonal quadratic term in objective
    • Fixed double deletion of nested bridged SingleVariable/VectorOfVariables constraints
    • Fixed modification of un-set objective
    • Fixed function modification with duplicate terms
    • Made unit tests abort without failing if the problem class is not supported
    • Formatted code with JuliaFormatter
    • Clarified BasisStatusCode's docstring

    v0.9.19 (December 1, 2020)

    • Added CallbackNodeStatus attribute
    • Added bridge from GreaterThan or LessThan to Interval
    • Added tests for infeasibility certificates and double optimize
    • Fixed support for Julia v1.6
    • Re-organized MOI docs and added documentation for adding a test

    v0.9.18 (November 3, 2020)

    • Various improvements for working with complex numbers
    • Added GeoMeantoRelEntrBridge to bridge a GeometricMeanCone constraint to a relative entropy constraint

    v0.9.17 (September 21, 2020)

    • Fixed CleverDict with variable of negative index value
    • Implement supports_add_constrained_variable for MockOptimizer

    v0.9.16 (September 17, 2020)

    • Various fixes:
      • 32-bit support
      • CleverDict with abstract value type
      • Checks in test suite

    v0.9.15 (September 14, 2020)

    • Bridges improvements:
      • (R)SOCtoNonConvexQuad bridge
      • ZeroOne bridge
      • Use supports_add_constrained_variable in LazyBridgeOptimizer
      • Exposed VariableBridgeCost and ConstraintBridgeCost attributes
      • Prioritize constraining variables on creation according to these costs
      • Refactor bridge debugging
    • Large performance improvements across all submodules
    • Lots of documentation improvements
    • FileFormats improvements:
      • Update MathOptFormat to v0.5
      • Fix supported objectives in FileFormats
    • Testing improvements:
      • Add name option for basic_constraint_test
    • Bug fixes and missing methods
      • Add length for iterators
      • Fix bug with duplicate terms
      • Fix order of LinearOfConstraintIndices

    v0.9.14 (May 30, 2020)

    • Add a solver-independent interface for accessing the set of conflicting constraints an Irreducible Inconsistent Subsystem (#1056).
    • Bump JSONSchema dependency from v0.2 to v0.3 (#1090).
    • Documentation improvements:
      • Fix typos (#1054, #1060, #1061, #1064, #1069, #1070).
      • Remove the outdated recommendation for a package implementing MOI for a solver XXX to be called MathOptInterfaceXXX (#1087).
    • Utilities improvements:
      • Fix is_canonical for quadratic functions (#1081, #1089).
      • Implement add_constrained_variable[s] for CachingOptimizer so that it is added as constrained variables to the underlying optimizer (#1084).
      • Add support for custom objective functions for UniversalFallback (#1086).
      • Deterministic ordering of constraints in UniversalFallback (#1088).
    • Testing improvements:
      • Add NormOneCone/NormInfinityCone tests (#1045).
    • Bridges improvements:
      • Add bridges from Semiinteger and Semicontinuous (#1059).
      • Implement getting ConstraintSet for Variable.FlipSignBridge (#1066).
      • Fix setting ConstraintFunction for Constraint.ScalarizeBridge (#1093).
      • Fix NormOne/NormInf bridges with nonzero constants (#1045).
      • Fix StackOverflow in debug (#1063).
    • FileFormats improvements:
      • [SDPA] Implement the extension for integer variables (#1079).
      • [SDPA] Ignore comments after m and nblocks and detect dat-s extension (#1077).
      • [SDPA] No scaling of off-diagonal coefficient (#1076).
      • [SDPA] Add missing negation of constant (#1075).

    v0.9.13 (March 24, 2020)

    • Added tests for Semicontinuous and Semiinteger variables (#1033).
    • Added tests for using ExprGraphs from NLP evaluators (#1043).
    • Update version compatibilities of dependencies (#1034, #1051, #1052).
    • Fixed typos in documentation (#1044).

    v0.9.12 (February 28, 2020)

    • Fixed writing NLPBlock in MathOptFormat (#1037).
    • Fixed MockOptimizer for result attributes with non-one result index (#1039).
    • Updated test template with instantiate (#1032).

    v0.9.11 (February 21, 2020)

    • Add an option for the model created by Utilities.@model to be a subtype of AbstractOptimizer (#1031).
    • Described dual cone in docstrings of GeoMeanCone and RelativeEntropyCone (#1018, #1028).
    • Fixed typos in documentation (#1022, #1024).
    • Fixed warning of unsupported attribute (#1027).
    • Added more rootdet/logdet conic tests (#1026).
    • Implemented ConstraintDual for Constraint.GeoMeanBridge, Constraint.RootDetBridge and Constraint.LogDetBridge and test duals in tests with GeoMeanCone and RootDetConeTriangle and LogDetConeTriangle cones (#1025, #1026).

    v0.9.10 (January 31, 2020)

    • Added OptimizerWithAttributes grouping an optimizer constructor and a list of optimizer attributes (#1008).
    • Added RelativeEntropyCone with corresponding bridge into exponential cone constraints (#993).
    • Added NormSpectralCone and NormNuclearCone with corresponding bridges into positive semidefinite constraints (#976).
    • Added supports_constrained_variable(s) (#1004).
    • Added dual_set_type (#1002).
    • Added tests for vector specialized version of delete (#989, #1011).
    • Added PSD3 test (#1007).
    • Clarified dual solution of Tests.pow1v and Tests.pow1f (#1013).
    • Added support for EqualTo and Zero in Bridges.Constraint.SplitIntervalBridge (#1005).
    • Fixed Utilities.vectorize for empty vector (#1003).
    • Fixed free variables in LP writer (#1006).

    v0.9.9 (December 29, 2019)

    • Incorporated MathOptFormat.jl as the FileFormats submodule. FileFormats provides readers and writers for a number of standard file formats and MOF, a file format specialized for MOI (#969).
    • Improved performance of deletion of vector of variables in MOI.Utilities.Model (#983).
    • Updated to MutableArithmetics v0.2 (#981).
    • Added MutableArithmetics.promote_operation allocation tests (#975).
    • Fixed inference issue on Julia v1.1 (#982).

    v0.9.8 (December 19, 2019)

    • Implemented MutableArithmetics API (#924).
    • Fixed callbacks with CachingOptimizer (#959).
    • Fixed MOI.dimension for MOI.Complements (#948).
    • Added fallback for add_variables (#972).
    • Added is_diagonal_vectorized_index utility (#965).
    • Improved linear constraints display in manual (#963, #964).
    • Bridges improvements:
      • Added IndicatorSet to SOS1 bridge (#877).
      • Added support for starting values for Variable.VectorizeBridge (#944).
      • Fixed MOI.add_constraints with non-bridged variable constraint on bridged variable (#951).
      • Fixed corner cases and docstring of GeoMeanBridge (#961, #962, #966).
      • Fixed choice between variable or constraint bridges for constrained variables (#973).
      • Improve performance of bridge shortest path (#945, #946, #956).
      • Added docstring for test_delete_bridge (#954).
      • Added Variable bridge tests (#952).

    v0.9.7 (October 30, 2019)

    • Implemented _result_index_field for NLPBlockDual (#934).
    • Fixed copy of model with starting values for vector constraints (#941).
    • Bridges improvements:
      • Improved performance of add_bridge and added has_bridge (#935).
      • Added AbstractSetMapBridge for bridges between sets S1, S2 such that there is a linear map A such that A*S1 = S2 (#933).
      • Added support for starting values for FlipSignBridge, VectorizeBridge, ScalarizeBridge, SlackBridge, SplitIntervalBridge, RSOCBridge, SOCRBridge NormInfinityBridge, SOCtoPSDBridge and RSOCtoPSDBridge (#933, #936, #937, #938, #939).

    v0.9.6 (October 25, 2019)

    • Added complementarity constraints (#913).
    • Allowed ModelLike objects as value of attributes (#928).
    • Testing improvements:
      • Added dual_objective_value option to MOI.Test.TestConfig (#922).
      • Added InvalidIndex tests in basic_constraint_tests (#921).
      • Added tests for the constant term in indicator constraint (#929).
    • Bridges improvements:
      • Added support for starting values for Functionize bridges (#923).
      • Added variable indices context to variable bridges (#920).
      • Fixed a typo in printing o debug_supports (#927).

    v0.9.5 (October 9, 2019)

    • Clarified PrimalStatus/DualStatus to be NO_SOLUTION if result_index is out of bounds (#912).
    • Added tolerance for checks and use ResultCount + 1 for the result_index in MOI.Test.solve_result_status (#910, #917).
    • Use 0.5 instead of 2.0 for power in PowerCone in basic_constraint_test (#916).
    • Bridges improvements:
      • Added debug utilities for unsupported variable/constraint/objective (#861).
      • Fixed deletion of variables in bridged VectorOfVariables constraints (#909).
      • Fixed result_index with objective bridges (#911).

    v0.9.4 (October 2, 2019)

    • Added solver-independent MIP callbacks (#782).
    • Implements submit for Utilities.CachingOptimizer and Bridges.AbstractBridgeOptimizer (#906).
    • Added tests for result count of solution attributes (#901, #904).
    • Added NumberOfThreads attribute (#892).
    • Added Utilities.get_bounds to get the bounds on a variable (#890).
    • Added a note on duplicate coefficients in documentation (#581).
    • Added result index in ConstraintBasisStatus (#898).
    • Added extension dictionary to Utilities.Model (#884, #895).
    • Fixed deletion of constrained variables for CachingOptimizer (#905).
    • Implemented Utilities.shift_constraint for Test.UnknownScalarSet (#896).
    • Bridges improvements:
      • Added Variable.RSOCtoSOCBridge (#907).
      • Implemented MOI.get for ConstraintFunction/ConstraintSet for Bridges.Constraint.SquareBridge (#899).

    v0.9.3 (September 20, 2019)

    • Fixed ambiguity detected in Julia v1.3 (#891, #893).
    • Fixed missing sets from ListOfSupportedConstraints (#880).
    • Fixed copy of VectorOfVariables constraints with duplicate indices (#886).
    • Added extension dictionary to MOIU.Model (#884).
    • Implemented MOI.get for function and set for GeoMeanBridge (#888).
    • Updated documentation for SingleVariable indices and bridges (#885).
    • Testing improvements:
      • Added more comprehensive tests for names (#882).
      • Added tests for SingleVariable duals (#883).
      • Added tests for DualExponentialCone and DualPowerCone (#873).
    • Improvements for arbitrary coefficient type:
      • Fixed == for sets with mutable fields (#887).
      • Removed some Float64 assumptions in bridges (#878).
      • Automatic selection of Constraint.[Scalar|Vector]FunctionizeBridge (#889).

    v0.9.2 (September 5, 2019)

    • Implemented model printing for MOI.ModelLike and specialized it for models defined in MOI (864).
    • Generalized contlinear tests for arbitrary coefficient type (#855).
    • Fixed supports_constraint for Semiinteger and Semicontinuous and supports for ObjectiveFunction (#859).
    • Fixed Allocate-Load copy for single variable constraints (#856).
    • Bridges improvements:
      • Add objective bridges (#789).
      • Fixed Variable.RSOCtoPSDBridge for dimension 2 (#869).
      • Added Variable.SOCtoRSOCBridge (#865).
      • Added Constraint.SOCRBridge and disable MOI.Bridges.Constraint.SOCtoPSDBridge (#751).
      • Fixed added_constraint_types for Contraint.LogDetBridge and Constraint.RootDetBridge (#870).

    v0.9.1 (August 22, 2019)

    • Fix support for Julia v1.2 (#834).
    • L1 and L∞ norm epigraph cones and corresponding bridges to LP were added (#818).
    • Added tests to MOI.Test.nametest (#833).
    • Fix MOI.Test.soc3test for solvers not supporting infeasibility certificates (#839).
    • Implements operate for operators * and / between vector function and constant (#837).
    • Implements show for MOI.Utilities.IndexMap (#847).
    • Fix corner cases for mapping of variables in MOI.Utilities.CachingOptimizer and substitution of variables in MOI.Bridges.AbstractBridgeOptimizer (#848).
    • Fix transformation of constant terms for MOI.Bridges.Constraint.SOCtoPSDBridge and MOI.Bridges.Constraint.RSOCtoPSDBridge (#840).

    v0.9.0 (August 13, 2019)

    • Support for Julia v0.6 and v0.7 was dropped (#714, #717).
    • A MOI.Utilities.Model implementation of ModelLike, this should replace most use cases of MOI.Utilities.@model (#781).
    • add_constrained_variable and add_constrained_variables were added (#759).
    • Support for indicator constraints was added (#709, #712).
    • DualObjectiveValue attribute was added (#473).
    • RawParameter attribute was added (#733).
    • A dual_set function was added (#804).
    • A Benchmarks submodule was added to facilitate solver benchmarking (#769).
    • A submit function was added, this may for instance allow the user to submit solutions or cuts to the solver from a callback (#775).
    • The field of ObjectiveValue was renamed to result_index (#729).
    • The _constant and Utilities.getconstant function were renamed to constant
    • REDUCTION_CERTIFICATE result status was added (#734).
    • Abstract matrix sets were added (#731).
    • Testing improvements:
      • The testing guideline was updated (#728).
      • Quadratic tests were added (#697).
      • Unit tests for RawStatusString, SolveTime, Silent and SolverName were added (#726, #741).
      • A rotated second-order cone test was added (#759).
      • A power cone test was added (#768).
      • Tests for ZeroOne variables with variable bounds were added (#772).
      • An unbounded test was added (#773).
      • Existing tests had a few updates (#702, #703, #763).
    • Documentation improvements:
      • Added a section on CachingOptimizer (#777).
      • Added a section on UniversalFallback, Model and @model (#762).
      • Transition the knapsack example to a doctest with MockOptimizer (#786).
    • Utilities improvements:
      • A CleverDict utility was added for a vector that automatically transform into a dictionary once a first index is removed (#767).
      • The Utilities.constant function was renamed to Utilities.constant_vector (#740).
      • Implement optimizer attributes for CachingOptimizer (#745).
      • Rename Utilities.add_scalar_constraint to Utilities.normalize_and_add_constraint (#801).
      • operate with vcat, SingleVariable and VectorOfVariables now returns a VectorOfVariables (#616).
      • Fix a type piracy of operate (#784).
      • The load_constraint fallback signature was fixed (#760).
      • The set_dot function was extended to work with sparse arrays (#805).
    • Bridges improvements:
      • The bridges no longer store the constraint function and set before it is bridged, the bridges now have to implement ConstraintFunction and ConstraintSet if the user wants to recover them. As a consequence, the @bridge macro was removed (#722).
      • Bridge are now instantiated with a bridge_constraint function instead of using a constructor (#730).
      • Fix constraint attributes for bridges (#699).
      • Constraint bridges were moved to the Bridges/Constraint submodule so they should now inherit from MOI.Bridges.Constraint.Abstract and should implement MOI.Bridges.Constraint.concrete_bridge_type instead of MOI.Bridges.concrete_bridge_type (#756).
      • Variable bridges were added in (#759).
      • Various improvements (#746, #747).

    v0.8.4 (March 13, 2019)

    • Performance improvement in default_copy_to and bridge optimizer (#696).
    • Add Silent and implement setting optimizer attributes in caching and mock optimizers (#695).
    • Add Functionize bridges (SingleVariable and VectorOfVariables) (#659).
    • Minor typo fixes (#694).

    v0.8.3 (March 6, 2019)

    • Use zero constant in scalar constraint function of MOI.Test.copytest (#691).
    • Fix variable deletion with SingleVariable objective function (#690).
    • Fix LazyBridgeOptimizer with bridges that add no constraints (#689).
    • Error message improvements (#673, #685, #686, #688).
    • Documentation improvements (#682, #683, #687).
    • Basis status:
      • Remove VariableBasisStatus (#679).
      • Test ConstraintBasisStatus and implement it in bridges (#678).
    • Fix inference of NumberOfVariables and NumberOfConstraints (#677).
    • Implement division between a quadratic function and a number (#675).

    v0.8.2 (February 7, 2019)

    • Add RawStatusString attribute (#629).
    • Do not set names to the optimizer but only to the cache in CachingOptimizer (#638).
    • Make scalar MOI functions act as scalars in broadcast (#646).
    • Add function utilities:
      • Implement Base.zero (#634), Base.iszero (#643), add missing arithmetic operations (#644, #645) and fix division (#648).
      • Add a vectorize function that turns a vector of ScalarAffineFunction into a VectorAffineFunction (#642).
    • Improve support for starting values:
      • Show a warning in copy when starting values are not supported instead of throwing an error (#630).
      • Fix UniversalFallback for getting an variable or constraint attribute set to no indices (#623).
      • Add a test in contlineartest with partially set VariablePrimalStart.
    • Bridges improvements:
      • Fix StackOverFlow in LazyBridgeOptimizer when there is a cycle in the graph of bridges.
      • Add Slack bridges (#610, #650).
      • Add FlipSign bridges (#658).
    • Add tests with duplicate coefficients in ScalarAffineFunction and VectorAffineFunction (#639).
    • Use tolerance to compare VariablePrimal in rotatedsoc1 test (#632).
    • Use a zero constant in ScalarAffineFunction of constraints in psdt2 (#622).

    v0.8.1 (January 7, 2019)

    • Adding an NLP objective now overrides any objective set using the ObjectiveFunction attribute (#619).
    • Rename fullbridgeoptimizer into full_bridge_optimizer (#621).
    • Allow custom constraint types with full_bridge_optimizer (#617).
    • Add Vectorize bridge which transforms scalar linear constraints into vector linear constraints (#615).

    v0.8.0 (December 18, 2018)

    • Rename all enum values to follow the JuMP naming guidelines for constants, for example, Optimal becomes OPTIMAL, and DualInfeasible becomes DUAL_INFEASIBLE.
    • Rename CachingOptimizer methods for style compliance.
    • Add an MOI.TerminationStatusCode called ALMOST_DUAL_INFEASIBLE.

    v0.7.0 (December 13, 2018)

    • Test that MOI.TerminationStatus is MOI.OptimizeNotCalled before MOI.optimize! is called.
    • Check supports_default_copy_to in tests (#594).
    • Key pieces of information like optimality, infeasibility, etc., are now reported through TerminationStatusCode. It is typically no longer necessary to check the result statuses in addition to the termination status.
    • Add perspective dimension to log-det cone (#593).

    v0.6.4 (November 27, 2018)

    • Add OptimizeNotCalled termination status (#577) and improve documentation of other statuses (#575).
    • Add a solver naming guideline (#578).
    • Make FeasibilitySense the default ObjectiveSense (#579).
    • Fix Utilities.@model and Bridges.@bridge macros for functions and sets defined outside MOI (#582).
    • Document solver-specific attributes (#580) and implement them in Utilities.CachingOptimizer (#565).

    v0.6.3 (November 16, 2018)

    • Variables and constraints are now allowed to have duplicate names. An error is thrown only on lookup. This change breaks some existing tests. (#549)
    • Attributes may now be partially set (some values could be nothing). (#563)
    • Performance improvements in Utilities.Model (#549, #567, #568)
    • Fix bug in QuadtoSOC (#558).
    • New supports_default_copy_to method that optimizers should implement to control caching behavior.
    • Documentation improvements.

    v0.6.2 (October 26, 2018)

    • Improve hygiene of @model macro (#544).
    • Fix bug in copy tests (#543).
    • Fix bug in UniversalFallback attribute getter (#540).
    • Allow all correct solutions for solve_blank_obj unit test (#537).
    • Add errors for Allocate-Load and bad constraints (#534).
    • [performance] Add specialized implementation of hash for VariableIndex (#533).
    • [performance] Construct the name to object dictionaries lazily in model (#535).
    • Add the QuadtoSOC bridge which transforms ScalarQuadraticFunction constraints into RotatedSecondOrderCone (#483).

    v0.6.1 (September 22, 2018)

    • Enable PositiveSemidefiniteConeSquare set and quadratic functions in MOIB.fullbridgeoptimizer (#524).
    • Add warning in the bridge between PositiveSemidefiniteConeSquare and PositiveSemidefiniteConeTriangle when the matrix is almost symmetric (#522).
    • Modify MOIT.copytest to not add multiples constraints on the same variable (#521).
    • Add missing keyword argument in one of MOIU.add_scalar_constraint methods (#520).

    v0.6.0 (August 30, 2018)

    • The MOIU.@model and MOIB.@bridge macros now support functions and sets defined in external modules. As a consequence, function and set names in the macro arguments need to be prefixed by module name.
    • Rename functions according to the JuMP style guide:
      • copy! with keyword arguments copynames and warnattributes -> copy_to with keyword arguments copy_names and warn_attributes;
      • set! -> set;
      • addvariable[s]! -> add_variable[s];
      • supportsconstraint -> supports_constraint;
      • addconstraint[s]! -> add_constraint[s];
      • isvalid -> is_valid;
      • isempty -> is_empty;
      • Base.delete! -> delete;
      • modify! -> modify;
      • transform! -> transform;
      • initialize! -> initialize;
      • write -> write_to_file; and
      • read! -> read_from_file.
    • Remove free! (use Base.finalize instead).
    • Add the SquarePSD bridge which transforms PositiveSemidefiniteConeTriangle constraints into PositiveSemidefiniteConeTriangle.
    • Add result fallback for ConstraintDual of variable-wise constraint, ConstraintPrimal and ObjectiveValue.
    • Add tests for ObjectiveBound.
    • Add test for empty rows in vector linear constraint.
    • Rework errors: CannotError has been renamed NotAllowedError and the distinction between UnsupportedError and NotAllowedError is now about whether the element is not supported (for example, it cannot be copied a model containing this element) or the operation is not allowed (either because it is not implemented, because it cannot be performed in the current state of the model, or because it cannot be performed for a specific index)
    • canget is removed. NoSolution is added as a result status to indicate that the solver does not have either a primal or dual solution available (See #479).

    v0.5.0 (August 5, 2018)

    • Fix names with CachingOptimizer.
    • Cleanup thanks to @mohamed82008.
    • Added a universal fallback for constraints.
    • Fast utilities for function canonicalization thanks to @rdeits.
    • Renamed dimension field to side_dimension in the context of matrix-like sets.
    • New and improved tests for cases like duplicate terms and ObjectiveBound.
    • Removed cantransform, canaddconstraint, canaddvariable, canset, canmodify, and candelete functions from the API. They are replaced by a new set of errors that are thrown: Subtypes of UnsupportedError indicate unsupported operations, while subtypes of CannotError indicate operations that cannot be performed in the current state.
    • The API for copy! is updated to remove the CopyResult type.
    • Updates for the new JuMP style guide.

    v0.4.1 (June 28, 2018)

    • Fixes vector function modification on 32 bits.
    • Fixes Bellman-Ford algorithm for bridges.
    • Added an NLP test with FeasibilitySense.
    • Update modification documentation.

    v0.4.0 (June 23, 2018)

    • Helper constructors for VectorAffineTerm and VectorQuadraticTerm.
    • Added modify_lhs to TestConfig.
    • Additional unit tests for optimizers.
    • Added a type parameter to CachingOptimizer for the optimizer field.
    • New API for problem modification (#388)
    • Tests pass without deprecation warnings on Julia 0.7.
    • Small fixes and documentation updates.

    v0.3.0 (May 25, 2018)

    • Functions have been redefined to use arrays-of-structs instead of structs-of-arrays.
    • Improvements to MockOptimizer.
    • Significant changes to Bridges.
    • New and improved unit tests.
    • Fixes for Julia 0.7.

    v0.2.0 (April 24, 2018)

    • Improvements to and better coverage of Tests.
    • Documentation fixes.
    • SolverName attribute.
    • Changes to the NLP interface (new definition of variable order and arrays of structs for bound pairs and sparsity patterns).
    • Addition of NLP tests.
    • Introduction of UniversalFallback.
    • copynames keyword argument to MOI.copy!.
    • Add Bridges submodule.

    v0.1.0 (February 28, 2018)

    • Initial public release.
    • The framework for MOI was developed at the JuMP-dev workshop at MIT in June 2017 as a sorely needed replacement for MathProgBase.
    diff --git a/previews/PR3919/moi/submodules/Benchmarks/overview/index.html b/previews/PR3919/moi/submodules/Benchmarks/overview/index.html index 05eee99e634..78452724661 100644 --- a/previews/PR3919/moi/submodules/Benchmarks/overview/index.html +++ b/previews/PR3919/moi/submodules/Benchmarks/overview/index.html @@ -21,4 +21,4 @@ MOI.Benchmarks.compare_against_baseline( suite, "current"; directory = "/tmp", verbose = true -)

    This comparison will create a report detailing improvements and regressions.

    +)

    This comparison will create a report detailing improvements and regressions.

    diff --git a/previews/PR3919/moi/submodules/Benchmarks/reference/index.html b/previews/PR3919/moi/submodules/Benchmarks/reference/index.html index c774e2fc0e3..47a11faad12 100644 --- a/previews/PR3919/moi/submodules/Benchmarks/reference/index.html +++ b/previews/PR3919/moi/submodules/Benchmarks/reference/index.html @@ -37,4 +37,4 @@ "glpk_master"; directory = "/tmp", verbose = true, - )source + )source diff --git a/previews/PR3919/moi/submodules/Bridges/implementation/index.html b/previews/PR3919/moi/submodules/Bridges/implementation/index.html index bfa051f9b73..35c634bfbc4 100644 --- a/previews/PR3919/moi/submodules/Bridges/implementation/index.html +++ b/previews/PR3919/moi/submodules/Bridges/implementation/index.html @@ -33,4 +33,4 @@ Subject to: ScalarAffineFunction{Int64}-in-LessThan{Int64} - (0) - (1) x <= (-1) + (0) - (1) x <= (-1) diff --git a/previews/PR3919/moi/submodules/Bridges/list_of_bridges/index.html b/previews/PR3919/moi/submodules/Bridges/list_of_bridges/index.html index b64d47eadd2..dfb895717f5 100644 --- a/previews/PR3919/moi/submodules/Bridges/list_of_bridges/index.html +++ b/previews/PR3919/moi/submodules/Bridges/list_of_bridges/index.html @@ -129,4 +129,4 @@ & & & x_{11} & x_{12} & x_{13} \\ & & & & x_{22} & x_{23} \\ & & & & & x_{33} -\end{bmatrix}\]

    is positive semidefinite.

    The bridge achieves this reformulation by adding a new set of variables in MOI.PositiveSemidefiniteConeTriangle(6), and then adding three groups of equality constraints to:

    • constrain the two x blocks to be equal
    • force the diagonal of the y blocks to be 0
    • force the lower triangular of the y block to be the negative of the upper triangle.
    source
    MathOptInterface.Bridges.Variable.RSOCtoPSDBridgeType
    RSOCtoPSDBridge{T} <: Bridges.Variable.AbstractBridge

    RSOCtoPSDBridge implements the following reformulation:

    • $||x||_2^2 \le 2tu$ where $t, u \ge 0$ into $Y \succeq 0$, with the substitution rule: $Y = \left[\begin{array}{c c}t & x^\top \\ x & 2u \mathbf{I}\end{array}\right].$

    Additional bounds are added to ensure the off-diagonals of the $2uI$ submatrix are 0, and linear constraints are added to ensure the diagonal of $2uI$ takes the same values.

    As a special case, if $|x|| = 0$, then RSOCtoPSDBridge reformulates into $(t, u) \in \mathbb{R}_+$.

    Source node

    RSOCtoPSDBridge supports:

    Target nodes

    RSOCtoPSDBridge creates:

    source
    MathOptInterface.Bridges.Variable.RSOCtoSOCBridgeType
    RSOCtoSOCBridge{T} <: Bridges.Variable.AbstractBridge

    RSOCtoSOCBridge implements the following reformulation:

    • $||x||_2^2 \le 2tu$ into $||v||_2 \le w$, with the substitution rules $t = \frac{w}{\sqrt 2} + \frac{v_1}{\sqrt 2}$, $u = \frac{w}{\sqrt 2} - \frac{v_1}{\sqrt 2}$, and $x = (v_2,\ldots,v_N)$.

    Source node

    RSOCtoSOCBridge supports:

    Target node

    RSOCtoSOCBridge creates:

    source
    MathOptInterface.Bridges.Variable.SOCtoRSOCBridgeType
    SOCtoRSOCBridge{T} <: Bridges.Variable.AbstractBridge

    SOCtoRSOCBridge implements the following reformulation:

    • $||x||_2 \le t$ into $2uv \ge ||w||_2^2$, with the substitution rules $t = \frac{u}{\sqrt 2} + \frac{v}{\sqrt 2}$, $x = (\frac{u}{\sqrt 2} - \frac{v}{\sqrt 2}, w)$.

    Assumptions

    • SOCtoRSOCBridge assumes that $|x| \ge 1$.

    Source node

    SOCtoRSOCBridge supports:

    Target node

    SOCtoRSOCBridge creates:

    source
    MathOptInterface.Bridges.Variable.SetMapBridgeType
    abstract type SetMapBridge{T,S1,S2} <: AbstractBridge end

    Consider two type of sets, S1 and S2, and a linear mapping A such that the image of a set of type S1 under A is a set of type S2.

    A SetMapBridge{T,S1,S2} is a bridge that substitutes constrained variables in S2 into the image through A of constrained variables in S1.

    The linear map A is described by:

    Implementing a method for these two functions is sufficient to bridge constrained variables. However, in order for the getters and setters of attributes such as dual solutions and starting values to work as well, a method for the following functions must be implemented:

    See the docstrings of each function to see which feature would be missing if it was not implemented for a given bridge.

    source
    MathOptInterface.Bridges.Variable.VectorizeBridgeType
    VectorizeBridge{T,S} <: Bridges.Variable.AbstractBridge

    VectorizeBridge implements the following reformulations:

    • $x \ge a$ into $[y] \in \mathbb{R}_+$ with the substitution rule $x = a + y$
    • $x \le a$ into $[y] \in \mathbb{R}_-$ with the substitution rule $x = a + y$
    • $x == a$ into $[y] \in \{0\}$ with the substitution rule $x = a + y$

    where T is the coefficient type of a + y.

    Source node

    VectorizeBridge supports:

    Target nodes

    VectorizeBridge creates:

    source
    MathOptInterface.Bridges.Variable.ZerosBridgeType
    ZerosBridge{T} <: Bridges.Variable.AbstractBridge

    ZerosBridge implements the following reformulation:

    • $x \in \{0\}$ into the substitution rule $x = 0$,

    where T is the coefficient type of 0.

    Source node

    ZerosBridge supports:

    Target nodes

    ZerosBridge does not create target nodes. It replaces all instances of x with 0 via substitution. This means that no variables are created in the underlying model.

    Caveats

    The bridged variables are similar to parameters with zero values. Parameters with non-zero values can be created with constrained variables in MOI.EqualTo by combining a VectorizeBridge and this bridge.

    However, functions modified by ZerosBridge cannot be unbridged. That is, for a given function, we cannot determine if the bridged variables were used.

    A related implication is that this bridge does not support MOI.ConstraintDual. However, if a MOI.Utilities.CachingOptimizer is used, the dual can be determined by the bridged optimizer using MOI.Utilities.get_fallback because the caching optimizer records the unbridged function.

    source
    +\end{bmatrix}\]

    is positive semidefinite.

    The bridge achieves this reformulation by adding a new set of variables in MOI.PositiveSemidefiniteConeTriangle(6), and then adding three groups of equality constraints to:

    • constrain the two x blocks to be equal
    • force the diagonal of the y blocks to be 0
    • force the lower triangular of the y block to be the negative of the upper triangle.
    source
    MathOptInterface.Bridges.Variable.RSOCtoPSDBridgeType
    RSOCtoPSDBridge{T} <: Bridges.Variable.AbstractBridge

    RSOCtoPSDBridge implements the following reformulation:

    • $||x||_2^2 \le 2tu$ where $t, u \ge 0$ into $Y \succeq 0$, with the substitution rule: $Y = \left[\begin{array}{c c}t & x^\top \\ x & 2u \mathbf{I}\end{array}\right].$

    Additional bounds are added to ensure the off-diagonals of the $2uI$ submatrix are 0, and linear constraints are added to ensure the diagonal of $2uI$ takes the same values.

    As a special case, if $|x|| = 0$, then RSOCtoPSDBridge reformulates into $(t, u) \in \mathbb{R}_+$.

    Source node

    RSOCtoPSDBridge supports:

    Target nodes

    RSOCtoPSDBridge creates:

    source
    MathOptInterface.Bridges.Variable.RSOCtoSOCBridgeType
    RSOCtoSOCBridge{T} <: Bridges.Variable.AbstractBridge

    RSOCtoSOCBridge implements the following reformulation:

    • $||x||_2^2 \le 2tu$ into $||v||_2 \le w$, with the substitution rules $t = \frac{w}{\sqrt 2} + \frac{v_1}{\sqrt 2}$, $u = \frac{w}{\sqrt 2} - \frac{v_1}{\sqrt 2}$, and $x = (v_2,\ldots,v_N)$.

    Source node

    RSOCtoSOCBridge supports:

    Target node

    RSOCtoSOCBridge creates:

    source
    MathOptInterface.Bridges.Variable.SOCtoRSOCBridgeType
    SOCtoRSOCBridge{T} <: Bridges.Variable.AbstractBridge

    SOCtoRSOCBridge implements the following reformulation:

    • $||x||_2 \le t$ into $2uv \ge ||w||_2^2$, with the substitution rules $t = \frac{u}{\sqrt 2} + \frac{v}{\sqrt 2}$, $x = (\frac{u}{\sqrt 2} - \frac{v}{\sqrt 2}, w)$.

    Assumptions

    • SOCtoRSOCBridge assumes that $|x| \ge 1$.

    Source node

    SOCtoRSOCBridge supports:

    Target node

    SOCtoRSOCBridge creates:

    source
    MathOptInterface.Bridges.Variable.SetMapBridgeType
    abstract type SetMapBridge{T,S1,S2} <: AbstractBridge end

    Consider two type of sets, S1 and S2, and a linear mapping A such that the image of a set of type S1 under A is a set of type S2.

    A SetMapBridge{T,S1,S2} is a bridge that substitutes constrained variables in S2 into the image through A of constrained variables in S1.

    The linear map A is described by:

    Implementing a method for these two functions is sufficient to bridge constrained variables. However, in order for the getters and setters of attributes such as dual solutions and starting values to work as well, a method for the following functions must be implemented:

    See the docstrings of each function to see which feature would be missing if it was not implemented for a given bridge.

    source
    MathOptInterface.Bridges.Variable.VectorizeBridgeType
    VectorizeBridge{T,S} <: Bridges.Variable.AbstractBridge

    VectorizeBridge implements the following reformulations:

    • $x \ge a$ into $[y] \in \mathbb{R}_+$ with the substitution rule $x = a + y$
    • $x \le a$ into $[y] \in \mathbb{R}_-$ with the substitution rule $x = a + y$
    • $x == a$ into $[y] \in \{0\}$ with the substitution rule $x = a + y$

    where T is the coefficient type of a + y.

    Source node

    VectorizeBridge supports:

    Target nodes

    VectorizeBridge creates:

    source
    MathOptInterface.Bridges.Variable.ZerosBridgeType
    ZerosBridge{T} <: Bridges.Variable.AbstractBridge

    ZerosBridge implements the following reformulation:

    • $x \in \{0\}$ into the substitution rule $x = 0$,

    where T is the coefficient type of 0.

    Source node

    ZerosBridge supports:

    Target nodes

    ZerosBridge does not create target nodes. It replaces all instances of x with 0 via substitution. This means that no variables are created in the underlying model.

    Caveats

    The bridged variables are similar to parameters with zero values. Parameters with non-zero values can be created with constrained variables in MOI.EqualTo by combining a VectorizeBridge and this bridge.

    However, functions modified by ZerosBridge cannot be unbridged. That is, for a given function, we cannot determine if the bridged variables were used.

    A related implication is that this bridge does not support MOI.ConstraintDual. However, if a MOI.Utilities.CachingOptimizer is used, the dual can be determined by the bridged optimizer using MOI.Utilities.get_fallback because the caching optimizer records the unbridged function.

    source
    diff --git a/previews/PR3919/moi/submodules/Bridges/overview/index.html b/previews/PR3919/moi/submodules/Bridges/overview/index.html index 4bdeaf1d90b..ffde4317339 100644 --- a/previews/PR3919/moi/submodules/Bridges/overview/index.html +++ b/previews/PR3919/moi/submodules/Bridges/overview/index.html @@ -66,4 +66,4 @@ julia> MOI.get(inner_optimizer, MOI.ListOfConstraintTypesPresent()) 1-element Vector{Tuple{Type, Type}}: - (MathOptInterface.VariableIndex, MathOptInterface.Interval{Float64}) + (MathOptInterface.VariableIndex, MathOptInterface.Interval{Float64}) diff --git a/previews/PR3919/moi/submodules/Bridges/reference/index.html b/previews/PR3919/moi/submodules/Bridges/reference/index.html index 24e126efcad..c99f5d56b24 100644 --- a/previews/PR3919/moi/submodules/Bridges/reference/index.html +++ b/previews/PR3919/moi/submodules/Bridges/reference/index.html @@ -221,4 +221,4 @@ cost::Int, )

    As an alternative to variable_node, add a virtual edge to graph that represents adding a free variable, followed by a constraint of type constraint_node, with bridging cost cost.

    Why is this needed?

    Variables can either be added as a variable constrained on creation, or as a free variable which then has a constraint added to it.

    source
    MathOptInterface.Bridges.bridge_indexFunction
    bridge_index(graph::Graph, node::VariableNode)::Int
     bridge_index(graph::Graph, node::ConstraintNode)::Int
    -bridge_index(graph::Graph, node::ObjectiveNode)::Int

    Return the optimal index of the bridge to chose from node.

    source
    MathOptInterface.Bridges.is_variable_edge_bestFunction
    is_variable_edge_best(graph::Graph, node::VariableNode)::Bool

    Return a Bool indicating whether node should be added as a variable constrained on creation, or as a free variable followed by a constraint.

    source
    +bridge_index(graph::Graph, node::ObjectiveNode)::Int

    Return the optimal index of the bridge to chose from node.

    source
    MathOptInterface.Bridges.is_variable_edge_bestFunction
    is_variable_edge_best(graph::Graph, node::VariableNode)::Bool

    Return a Bool indicating whether node should be added as a variable constrained on creation, or as a free variable followed by a constraint.

    source
    diff --git a/previews/PR3919/moi/submodules/FileFormats/overview/index.html b/previews/PR3919/moi/submodules/FileFormats/overview/index.html index f4f37aa34b5..fc2aecb0d54 100644 --- a/previews/PR3919/moi/submodules/FileFormats/overview/index.html +++ b/previews/PR3919/moi/submodules/FileFormats/overview/index.html @@ -158,4 +158,4 @@ path: [variables][1] instance: Dict{String, Any}("NaMe" => "x") schema key: required -schema value: Any["name"] +schema value: Any["name"] diff --git a/previews/PR3919/moi/submodules/FileFormats/reference/index.html b/previews/PR3919/moi/submodules/FileFormats/reference/index.html index fa539f22689..8482d8a2c9c 100644 --- a/previews/PR3919/moi/submodules/FileFormats/reference/index.html +++ b/previews/PR3919/moi/submodules/FileFormats/reference/index.html @@ -26,4 +26,4 @@ )

    Parse the .sol file filename created by solving model and return a SolFileResults struct.

    The returned struct supports the MOI.get API for querying result attributes such as MOI.TerminationStatus, MOI.VariablePrimal, and MOI.ConstraintDual.

    source
    SolFileResults(
         raw_status::String,
         termination_status::MOI.TerminationStatusCode,
    -)

    Return a SolFileResults struct with MOI.RawStatusString set to raw_status, MOI.TerminationStatus set to termination_status, and MOI.PrimalStatus and MOI.DualStatus set to NO_SOLUTION.

    All other attributes are un-set.

    source
    +)

    Return a SolFileResults struct with MOI.RawStatusString set to raw_status, MOI.TerminationStatus set to termination_status, and MOI.PrimalStatus and MOI.DualStatus set to NO_SOLUTION.

    All other attributes are un-set.

    source diff --git a/previews/PR3919/moi/submodules/Nonlinear/overview/index.html b/previews/PR3919/moi/submodules/Nonlinear/overview/index.html index 5623419ce03..e8134a055fa 100644 --- a/previews/PR3919/moi/submodules/Nonlinear/overview/index.html +++ b/previews/PR3919/moi/submodules/Nonlinear/overview/index.html @@ -184,4 +184,4 @@ Node(NODE_VARIABLE, 1, 1), ], [2.0], - );

    The ordering of the nodes in the tape must satisfy two rules:

    • The children of a node must appear after the parent. This means that the tape is ordered topologically, so that a reverse pass of the nodes evaluates all children nodes before their parent
    • The arguments for a CALL node are ordered in the tape based on the order in which they appear in the function call.

    Design goals

    This is less readable than the other options, but does this data structure meet our design goals?

    Instead of a heap-allocated object for each node, we only have two Vectors for each expression, nodes and values, as well as two constant vectors for the OPERATORS. In addition, all fields are concretely typed, and there are no Union or Any types.

    For our third goal, it is not easy to identify the children of a node, but it is easy to identify the parent of any node. Therefore, we can use Nonlinear.adjacency_matrix to compute a sparse matrix that maps parents to their children.

    The design in practice

    In practice, Node and Expression are exactly Nonlinear.Node and Nonlinear.Expression. However, Nonlinear.NodeType has more fields to account for comparison operators such as :>= and :<=, logic operators such as :&& and :||, nonlinear parameters, and nested subexpressions.

    Moreover, instead of storing the operators as global constants, they are stored in Nonlinear.OperatorRegistry, and it also stores a vector of logic operators and a vector of comparison operators. In addition to Nonlinear.DEFAULT_UNIVARIATE_OPERATORS and Nonlinear.DEFAULT_MULTIVARIATE_OPERATORS, you can register user-defined functions using Nonlinear.register_operator.

    Nonlinear.Model is a struct that stores the Nonlinear.OperatorRegistry, as well as a list of parameters and subexpressions in the model.

    ReverseAD

    Nonlinear.ReverseAD is a submodule for computing derivatives of a nonlinear optimization problem using sparse reverse-mode automatic differentiation (AD).

    This section does not attempt to explain how sparse reverse-mode AD works, but instead explains why MOI contains its own implementation, and highlights notable differences from similar packages.

    Warning

    Don't use the API in ReverseAD to compute derivatives. Instead, create a Nonlinear.Evaluator object with Nonlinear.SparseReverseMode as the backend, and then query the MOI API methods.

    Design goals

    The JuliaDiff organization maintains a list of packages for doing AD in Julia. At last count, there were at least ten packages——not including ReverseAD——for reverse-mode AD in Julia. ReverseAD exists because it has a different set of design goals.

    • Goal: handle scale and sparsity. The types of nonlinear optimization problems that MOI represents can be large scale (10^5 or more functions across 10^5 or more variables) with very sparse derivatives. The ability to compute a sparse Hessian matrix is essential. To the best of our knowledge, ReverseAD is the only reverse-mode AD system in Julia that handles sparsity by default.
    • Goal: limit the scope to improve robustness. Most other AD packages accept arbitrary Julia functions as input and then trace an expression graph using operator overloading. This means they must deal (or detect and ignore) with control flow, I/O, and other vagaries of Julia. In contrast, ReverseAD only accepts functions in the form of Nonlinear.Expression, which greatly limits the range of syntax that it must deal with. By reducing the scope of what we accept as input to functions relevant for mathematical optimization, we can provide a simpler implementation with various performance optimizations.
    • Goal: provide outputs which match what solvers expect. Other AD packages focus on differentiating individual Julia functions. In contrast, ReverseAD has a very specific use-case: to generate outputs needed by the MOI nonlinear API. This means it needs to efficiently compute sparse Hessians, and it needs subexpression handling to avoid recomputing subexpressions that are shared between functions.

    History

    ReverseAD started life as ReverseDiffSparse.jl, development of which began in early 2014(!). This was well before the other AD packages started development. Because we had a well-tested, working AD in JuMP, there was less motivation to contribute to and explore other AD packages. The lack of historical interaction also meant that other packages were not optimized for the types of problems that JuMP is built for (that is, large-scale sparse problems). When we first created MathOptInterface, we kept the AD in JuMP to simplify the transition, and post-poned the development of a first-class nonlinear interface in MathOptInterface.

    Prior to the introduction of Nonlinear, JuMP's nonlinear implementation was a confusing mix of functions and types spread across the code base and in the private _Derivatives submodule. This made it hard to swap the AD system for another. The main motivation for refactoring JuMP to create the Nonlinear submodule in MathOptInterface was to abstract the interface between JuMP and the AD system, allowing us to swap-in and test new AD systems in the future.

    + );

    The ordering of the nodes in the tape must satisfy two rules:

    • The children of a node must appear after the parent. This means that the tape is ordered topologically, so that a reverse pass of the nodes evaluates all children nodes before their parent
    • The arguments for a CALL node are ordered in the tape based on the order in which they appear in the function call.

    Design goals

    This is less readable than the other options, but does this data structure meet our design goals?

    Instead of a heap-allocated object for each node, we only have two Vectors for each expression, nodes and values, as well as two constant vectors for the OPERATORS. In addition, all fields are concretely typed, and there are no Union or Any types.

    For our third goal, it is not easy to identify the children of a node, but it is easy to identify the parent of any node. Therefore, we can use Nonlinear.adjacency_matrix to compute a sparse matrix that maps parents to their children.

    The design in practice

    In practice, Node and Expression are exactly Nonlinear.Node and Nonlinear.Expression. However, Nonlinear.NodeType has more fields to account for comparison operators such as :>= and :<=, logic operators such as :&& and :||, nonlinear parameters, and nested subexpressions.

    Moreover, instead of storing the operators as global constants, they are stored in Nonlinear.OperatorRegistry, and it also stores a vector of logic operators and a vector of comparison operators. In addition to Nonlinear.DEFAULT_UNIVARIATE_OPERATORS and Nonlinear.DEFAULT_MULTIVARIATE_OPERATORS, you can register user-defined functions using Nonlinear.register_operator.

    Nonlinear.Model is a struct that stores the Nonlinear.OperatorRegistry, as well as a list of parameters and subexpressions in the model.

    ReverseAD

    Nonlinear.ReverseAD is a submodule for computing derivatives of a nonlinear optimization problem using sparse reverse-mode automatic differentiation (AD).

    This section does not attempt to explain how sparse reverse-mode AD works, but instead explains why MOI contains its own implementation, and highlights notable differences from similar packages.

    Warning

    Don't use the API in ReverseAD to compute derivatives. Instead, create a Nonlinear.Evaluator object with Nonlinear.SparseReverseMode as the backend, and then query the MOI API methods.

    Design goals

    The JuliaDiff organization maintains a list of packages for doing AD in Julia. At last count, there were at least ten packages——not including ReverseAD——for reverse-mode AD in Julia. ReverseAD exists because it has a different set of design goals.

    • Goal: handle scale and sparsity. The types of nonlinear optimization problems that MOI represents can be large scale (10^5 or more functions across 10^5 or more variables) with very sparse derivatives. The ability to compute a sparse Hessian matrix is essential. To the best of our knowledge, ReverseAD is the only reverse-mode AD system in Julia that handles sparsity by default.
    • Goal: limit the scope to improve robustness. Most other AD packages accept arbitrary Julia functions as input and then trace an expression graph using operator overloading. This means they must deal (or detect and ignore) with control flow, I/O, and other vagaries of Julia. In contrast, ReverseAD only accepts functions in the form of Nonlinear.Expression, which greatly limits the range of syntax that it must deal with. By reducing the scope of what we accept as input to functions relevant for mathematical optimization, we can provide a simpler implementation with various performance optimizations.
    • Goal: provide outputs which match what solvers expect. Other AD packages focus on differentiating individual Julia functions. In contrast, ReverseAD has a very specific use-case: to generate outputs needed by the MOI nonlinear API. This means it needs to efficiently compute sparse Hessians, and it needs subexpression handling to avoid recomputing subexpressions that are shared between functions.

    History

    ReverseAD started life as ReverseDiffSparse.jl, development of which began in early 2014(!). This was well before the other AD packages started development. Because we had a well-tested, working AD in JuMP, there was less motivation to contribute to and explore other AD packages. The lack of historical interaction also meant that other packages were not optimized for the types of problems that JuMP is built for (that is, large-scale sparse problems). When we first created MathOptInterface, we kept the AD in JuMP to simplify the transition, and post-poned the development of a first-class nonlinear interface in MathOptInterface.

    Prior to the introduction of Nonlinear, JuMP's nonlinear implementation was a confusing mix of functions and types spread across the code base and in the private _Derivatives submodule. This made it hard to swap the AD system for another. The main motivation for refactoring JuMP to create the Nonlinear submodule in MathOptInterface was to abstract the interface between JuMP and the AD system, allowing us to swap-in and test new AD systems in the future.

    diff --git a/previews/PR3919/moi/submodules/Nonlinear/reference/index.html b/previews/PR3919/moi/submodules/Nonlinear/reference/index.html index 138a0ba0774..d3cd7b2b568 100644 --- a/previews/PR3919/moi/submodules/Nonlinear/reference/index.html +++ b/previews/PR3919/moi/submodules/Nonlinear/reference/index.html @@ -236,4 +236,4 @@ julia> MOI.initialize(evaluator, Symbol[]) julia> MOI.Nonlinear.ordinal_index(evaluator, c2) # Returns 1 -1source +1source diff --git a/previews/PR3919/moi/submodules/Test/overview/index.html b/previews/PR3919/moi/submodules/Test/overview/index.html index 2e3cd044be7..0703bed9618 100644 --- a/previews/PR3919/moi/submodules/Test/overview/index.html +++ b/previews/PR3919/moi/submodules/Test/overview/index.html @@ -167,4 +167,4 @@ ), ) return -end

    Finally, you also need to implement Test.version_added. If we added this test when the latest released version of MOI was v0.10.5, define:

    version_added(::typeof(test_unit_optimize!_twice)) = v"0.10.6"

    Step 6

    Commit the changes to git from ~/.julia/dev/MathOptInterface and submit the PR for review.

    Tip

    If you need help writing a test, open an issue on GitHub, or ask the Developer Chatroom.

    +end

    Finally, you also need to implement Test.version_added. If we added this test when the latest released version of MOI was v0.10.5, define:

    version_added(::typeof(test_unit_optimize!_twice)) = v"0.10.6"

    Step 6

    Commit the changes to git from ~/.julia/dev/MathOptInterface and submit the PR for review.

    Tip

    If you need help writing a test, open an issue on GitHub, or ask the Developer Chatroom.

    diff --git a/previews/PR3919/moi/submodules/Test/reference/index.html b/previews/PR3919/moi/submodules/Test/reference/index.html index 799621ee001..0a3374a02dd 100644 --- a/previews/PR3919/moi/submodules/Test/reference/index.html +++ b/previews/PR3919/moi/submodules/Test/reference/index.html @@ -63,4 +63,4 @@ \text{subject to}\ & x_1 * x_2 * x_3 * x_4 \ge 25 \\ & x_1^2 + x_2^2 + x_3^2 + x_4^2 = 40 \\ & 1 \le x_1, x_2, x_3, x_4 \le 5 -\end{aligned}\]

    The optimal solution is [1.000, 4.743, 3.821, 1.379].

    source +\end{aligned}\]

    The optimal solution is [1.000, 4.743, 3.821, 1.379].

    source diff --git a/previews/PR3919/moi/submodules/Utilities/overview/index.html b/previews/PR3919/moi/submodules/Utilities/overview/index.html index 38e428af534..1f6b99292ce 100644 --- a/previews/PR3919/moi/submodules/Utilities/overview/index.html +++ b/previews/PR3919/moi/submodules/Utilities/overview/index.html @@ -378,4 +378,4 @@ index_map = MOI.copy_to(dest, src) for (F, S) in MOI.get(src, MOI.ListOfConstraintTypesPresent()) function_barrier(dest, src, index_map[F, S]) -end +end diff --git a/previews/PR3919/moi/submodules/Utilities/reference/index.html b/previews/PR3919/moi/submodules/Utilities/reference/index.html index e47de422895..70ab2c0fe80 100644 --- a/previews/PR3919/moi/submodules/Utilities/reference/index.html +++ b/previews/PR3919/moi/submodules/Utilities/reference/index.html @@ -91,7 +91,7 @@ typeof(CleverDicts.key_to_index), typeof(CleverDicts.index_to_key), } -end

    A struct storing F-in-S constraints as a mapping between the constraint indices to the corresponding tuple of function and set.

    source
    MathOptInterface.Utilities.@struct_of_constraints_by_function_typesMacro
    Utilities.@struct_of_constraints_by_function_types(name, func_types...)

    Given a vector of n function types (F1, F2,..., Fn) in func_types, defines a subtype of StructOfConstraints of name name and which type parameters {T, C1, C2, ..., Cn}. It contains n field where the ith field has type Ci and stores the constraints of function type Fi.

    The expression Fi can also be a union in which case any constraint for which the function type is in the union is stored in the field with type Ci.

    source
    MathOptInterface.Utilities.@struct_of_constraints_by_set_typesMacro
    Utilities.@struct_of_constraints_by_set_types(name, func_types...)

    Given a vector of n set types (S1, S2,..., Sn) in func_types, defines a subtype of StructOfConstraints of name name and which type parameters {T, C1, C2, ..., Cn}. It contains n field where the ith field has type Ci and stores the constraints of set type Si. The expression Si can also be a union in which case any constraint for which the set type is in the union is stored in the field with type Ci. This can be useful if Ci is a MatrixOfConstraints in order to concatenate the coefficients of constraints of several different set types in the same matrix.

    source
    MathOptInterface.Utilities.struct_of_constraint_codeFunction
    struct_of_constraint_code(struct_name, types, field_types = nothing)

    Given a vector of n Union{SymbolFun,_UnionSymbolFS{SymbolFun}} or Union{SymbolSet,_UnionSymbolFS{SymbolSet}} in types, defines a subtype of StructOfConstraints of name name and which type parameters {T, F1, F2, ..., Fn} if field_types is nothing and a {T} otherwise. It contains n field where the ith field has type Ci if field_types is nothing and type field_types[i] otherwise. If types is vector of Union{SymbolFun,_UnionSymbolFS{SymbolFun}} (resp. Union{SymbolSet,_UnionSymbolFS{SymbolSet}}) then the constraints of that function (resp. set) type are stored in the corresponding field.

    This function is used by the macros @model, @struct_of_constraints_by_function_types and @struct_of_constraints_by_set_types.

    source

    Caching optimizer

    MathOptInterface.Utilities.CachingOptimizerType
    CachingOptimizer

    CachingOptimizer is an intermediate layer that stores a cache of the model and links it with an optimizer. It supports incremental model construction and modification even when the optimizer doesn't.

    Constructors

        CachingOptimizer(cache::MOI.ModelLike, optimizer::AbstractOptimizer)

    Creates a CachingOptimizer in AUTOMATIC mode, with the optimizer optimizer.

    The type of the optimizer returned is CachingOptimizer{typeof(optimizer), typeof(cache)} so it does not support the function reset_optimizer(::CachingOptimizer, new_optimizer) if the type of new_optimizer is different from the type of optimizer.

        CachingOptimizer(cache::MOI.ModelLike, mode::CachingOptimizerMode)

    Creates a CachingOptimizer in the NO_OPTIMIZER state and mode mode.

    The type of the optimizer returned is CachingOptimizer{MOI.AbstractOptimizer,typeof(cache)} so it does support the function reset_optimizer(::CachingOptimizer, new_optimizer) if the type of new_optimizer is different from the type of optimizer.

    About the type

    States

    A CachingOptimizer may be in one of three possible states (CachingOptimizerState):

    • NO_OPTIMIZER: The CachingOptimizer does not have any optimizer.
    • EMPTY_OPTIMIZER: The CachingOptimizer has an empty optimizer. The optimizer is not synchronized with the cached model.
    • ATTACHED_OPTIMIZER: The CachingOptimizer has an optimizer, and it is synchronized with the cached model.

    Modes

    A CachingOptimizer has two modes of operation (CachingOptimizerMode):

    • MANUAL: The only methods that change the state of the CachingOptimizer are Utilities.reset_optimizer, Utilities.drop_optimizer, and Utilities.attach_optimizer. Attempting to perform an operation in the incorrect state results in an error.
    • AUTOMATIC: The CachingOptimizer changes its state when necessary. For example, optimize! will automatically call attach_optimizer (an optimizer must have been previously set). Attempting to add a constraint or perform a modification not supported by the optimizer results in a drop to EMPTY_OPTIMIZER mode.
    source
    MathOptInterface.Utilities.attach_optimizerFunction
    attach_optimizer(model::CachingOptimizer)

    Attaches the optimizer to model, copying all model data into it. Can be called only from the EMPTY_OPTIMIZER state. If the copy succeeds, the CachingOptimizer will be in state ATTACHED_OPTIMIZER after the call, otherwise an error is thrown; see MOI.copy_to for more details on which errors can be thrown.

    source
    MOIU.attach_optimizer(model::GenericModel)

    Call MOIU.attach_optimizer on the backend of model.

    Cannot be called in direct mode.

    source
    MathOptInterface.Utilities.reset_optimizerFunction
    reset_optimizer(m::CachingOptimizer, optimizer::MOI.AbstractOptimizer)

    Sets or resets m to have the given empty optimizer optimizer.

    Can be called from any state. An assertion error will be thrown if optimizer is not empty.

    The CachingOptimizer m will be in state EMPTY_OPTIMIZER after the call.

    source
    reset_optimizer(m::CachingOptimizer)

    Detaches and empties the current optimizer. Can be called from ATTACHED_OPTIMIZER or EMPTY_OPTIMIZER state. The CachingOptimizer will be in state EMPTY_OPTIMIZER after the call.

    source
    MOIU.reset_optimizer(model::GenericModel, optimizer::MOI.AbstractOptimizer)

    Call MOIU.reset_optimizer on the backend of model.

    Cannot be called in direct mode.

    source
    MOIU.reset_optimizer(model::GenericModel)

    Call MOIU.reset_optimizer on the backend of model.

    Cannot be called in direct mode.

    source
    MathOptInterface.Utilities.drop_optimizerFunction
    drop_optimizer(m::CachingOptimizer)

    Drops the optimizer, if one is present. Can be called from any state. The CachingOptimizer will be in state NO_OPTIMIZER after the call.

    source
    MOIU.drop_optimizer(model::GenericModel)

    Call MOIU.drop_optimizer on the backend of model.

    Cannot be called in direct mode.

    source

    Mock optimizer

    Printing

    MathOptInterface.Utilities.latex_formulationFunction
    latex_formulation(model::MOI.ModelLike; kwargs...)

    Wrap model in a type so that it can be pretty-printed as text/latex in a notebook like IJulia, or in Documenter.

    To render the model, end the cell with latex_formulation(model), or call display(latex_formulation(model)) in to force the display of the model from inside a function.

    Possible keyword arguments are:

    • simplify_coefficients : Simplify coefficients if possible by omitting them or removing trailing zeros.
    • default_name : The name given to variables with an empty name.
    • print_types : Print the MOI type of each function and set for clarity.
    source

    Copy utilities

    MathOptInterface.Utilities.ModelFilterType
    ModelFilter(filter::Function, model::MOI.ModelLike)

    A layer to filter out various components of model.

    The filter function takes a single argument, which is each element from the list returned by the attributes below. It returns true if the element should be visible in the filtered model and false otherwise.

    The components that are filtered are:

    • Entire constraint types via:
      • MOI.ListOfConstraintTypesPresent
    • Individual constraints via:
      • MOI.ListOfConstraintIndices{F,S}
    • Specific attributes via:
      • MOI.ListOfModelAttributesSet
      • MOI.ListOfConstraintAttributesSet
      • MOI.ListOfVariableAttributesSet
    Warning

    The list of attributes filtered may change in a future release. You should write functions that are generic and not limited to the five types listed above. Thus, you should probably define a fallback filter(::Any) = true.

    See below for examples of how this works.

    Note

    This layer has a limited scope. It is intended by be used in conjunction with MOI.copy_to.

    Example: copy model excluding integer constraints

    Use the do syntax to provide a single function.

    filtered_src = MOI.Utilities.ModelFilter(src) do item
    +end

    A struct storing F-in-S constraints as a mapping between the constraint indices to the corresponding tuple of function and set.

    source
    MathOptInterface.Utilities.@struct_of_constraints_by_function_typesMacro
    Utilities.@struct_of_constraints_by_function_types(name, func_types...)

    Given a vector of n function types (F1, F2,..., Fn) in func_types, defines a subtype of StructOfConstraints of name name and which type parameters {T, C1, C2, ..., Cn}. It contains n field where the ith field has type Ci and stores the constraints of function type Fi.

    The expression Fi can also be a union in which case any constraint for which the function type is in the union is stored in the field with type Ci.

    source
    MathOptInterface.Utilities.@struct_of_constraints_by_set_typesMacro
    Utilities.@struct_of_constraints_by_set_types(name, func_types...)

    Given a vector of n set types (S1, S2,..., Sn) in func_types, defines a subtype of StructOfConstraints of name name and which type parameters {T, C1, C2, ..., Cn}. It contains n field where the ith field has type Ci and stores the constraints of set type Si. The expression Si can also be a union in which case any constraint for which the set type is in the union is stored in the field with type Ci. This can be useful if Ci is a MatrixOfConstraints in order to concatenate the coefficients of constraints of several different set types in the same matrix.

    source
    MathOptInterface.Utilities.struct_of_constraint_codeFunction
    struct_of_constraint_code(struct_name, types, field_types = nothing)

    Given a vector of n Union{SymbolFun,_UnionSymbolFS{SymbolFun}} or Union{SymbolSet,_UnionSymbolFS{SymbolSet}} in types, defines a subtype of StructOfConstraints of name name and which type parameters {T, F1, F2, ..., Fn} if field_types is nothing and a {T} otherwise. It contains n field where the ith field has type Ci if field_types is nothing and type field_types[i] otherwise. If types is vector of Union{SymbolFun,_UnionSymbolFS{SymbolFun}} (resp. Union{SymbolSet,_UnionSymbolFS{SymbolSet}}) then the constraints of that function (resp. set) type are stored in the corresponding field.

    This function is used by the macros @model, @struct_of_constraints_by_function_types and @struct_of_constraints_by_set_types.

    source

    Caching optimizer

    MathOptInterface.Utilities.CachingOptimizerType
    CachingOptimizer

    CachingOptimizer is an intermediate layer that stores a cache of the model and links it with an optimizer. It supports incremental model construction and modification even when the optimizer doesn't.

    Constructors

        CachingOptimizer(cache::MOI.ModelLike, optimizer::AbstractOptimizer)

    Creates a CachingOptimizer in AUTOMATIC mode, with the optimizer optimizer.

    The type of the optimizer returned is CachingOptimizer{typeof(optimizer), typeof(cache)} so it does not support the function reset_optimizer(::CachingOptimizer, new_optimizer) if the type of new_optimizer is different from the type of optimizer.

        CachingOptimizer(cache::MOI.ModelLike, mode::CachingOptimizerMode)

    Creates a CachingOptimizer in the NO_OPTIMIZER state and mode mode.

    The type of the optimizer returned is CachingOptimizer{MOI.AbstractOptimizer,typeof(cache)} so it does support the function reset_optimizer(::CachingOptimizer, new_optimizer) if the type of new_optimizer is different from the type of optimizer.

    About the type

    States

    A CachingOptimizer may be in one of three possible states (CachingOptimizerState):

    • NO_OPTIMIZER: The CachingOptimizer does not have any optimizer.
    • EMPTY_OPTIMIZER: The CachingOptimizer has an empty optimizer. The optimizer is not synchronized with the cached model.
    • ATTACHED_OPTIMIZER: The CachingOptimizer has an optimizer, and it is synchronized with the cached model.

    Modes

    A CachingOptimizer has two modes of operation (CachingOptimizerMode):

    • MANUAL: The only methods that change the state of the CachingOptimizer are Utilities.reset_optimizer, Utilities.drop_optimizer, and Utilities.attach_optimizer. Attempting to perform an operation in the incorrect state results in an error.
    • AUTOMATIC: The CachingOptimizer changes its state when necessary. For example, optimize! will automatically call attach_optimizer (an optimizer must have been previously set). Attempting to add a constraint or perform a modification not supported by the optimizer results in a drop to EMPTY_OPTIMIZER mode.
    source
    MathOptInterface.Utilities.attach_optimizerFunction
    attach_optimizer(model::CachingOptimizer)

    Attaches the optimizer to model, copying all model data into it. Can be called only from the EMPTY_OPTIMIZER state. If the copy succeeds, the CachingOptimizer will be in state ATTACHED_OPTIMIZER after the call, otherwise an error is thrown; see MOI.copy_to for more details on which errors can be thrown.

    source
    MOIU.attach_optimizer(model::GenericModel)

    Call MOIU.attach_optimizer on the backend of model.

    Cannot be called in direct mode.

    source
    MathOptInterface.Utilities.reset_optimizerFunction
    reset_optimizer(m::CachingOptimizer, optimizer::MOI.AbstractOptimizer)

    Sets or resets m to have the given empty optimizer optimizer.

    Can be called from any state. An assertion error will be thrown if optimizer is not empty.

    The CachingOptimizer m will be in state EMPTY_OPTIMIZER after the call.

    source
    reset_optimizer(m::CachingOptimizer)

    Detaches and empties the current optimizer. Can be called from ATTACHED_OPTIMIZER or EMPTY_OPTIMIZER state. The CachingOptimizer will be in state EMPTY_OPTIMIZER after the call.

    source
    MOIU.reset_optimizer(model::GenericModel, optimizer::MOI.AbstractOptimizer)

    Call MOIU.reset_optimizer on the backend of model.

    Cannot be called in direct mode.

    source
    MOIU.reset_optimizer(model::GenericModel)

    Call MOIU.reset_optimizer on the backend of model.

    Cannot be called in direct mode.

    source
    MathOptInterface.Utilities.drop_optimizerFunction
    drop_optimizer(m::CachingOptimizer)

    Drops the optimizer, if one is present. Can be called from any state. The CachingOptimizer will be in state NO_OPTIMIZER after the call.

    source
    MOIU.drop_optimizer(model::GenericModel)

    Call MOIU.drop_optimizer on the backend of model.

    Cannot be called in direct mode.

    source

    Mock optimizer

    Printing

    MathOptInterface.Utilities.latex_formulationFunction
    latex_formulation(model::MOI.ModelLike; kwargs...)

    Wrap model in a type so that it can be pretty-printed as text/latex in a notebook like IJulia, or in Documenter.

    To render the model, end the cell with latex_formulation(model), or call display(latex_formulation(model)) in to force the display of the model from inside a function.

    Possible keyword arguments are:

    • simplify_coefficients : Simplify coefficients if possible by omitting them or removing trailing zeros.
    • default_name : The name given to variables with an empty name.
    • print_types : Print the MOI type of each function and set for clarity.
    source

    Copy utilities

    MathOptInterface.Utilities.ModelFilterType
    ModelFilter(filter::Function, model::MOI.ModelLike)

    A layer to filter out various components of model.

    The filter function takes a single argument, which is each element from the list returned by the attributes below. It returns true if the element should be visible in the filtered model and false otherwise.

    The components that are filtered are:

    • Entire constraint types via:
      • MOI.ListOfConstraintTypesPresent
    • Individual constraints via:
      • MOI.ListOfConstraintIndices{F,S}
    • Specific attributes via:
      • MOI.ListOfModelAttributesSet
      • MOI.ListOfConstraintAttributesSet
      • MOI.ListOfVariableAttributesSet
    Warning

    The list of attributes filtered may change in a future release. You should write functions that are generic and not limited to the five types listed above. Thus, you should probably define a fallback filter(::Any) = true.

    See below for examples of how this works.

    Note

    This layer has a limited scope. It is intended by be used in conjunction with MOI.copy_to.

    Example: copy model excluding integer constraints

    Use the do syntax to provide a single function.

    filtered_src = MOI.Utilities.ModelFilter(src) do item
         return item != (MOI.VariableIndex, MOI.Integer)
     end
     MOI.copy_to(dest, filtered_src)

    Example: copy model excluding names

    Use type dispatch to simplify the implementation:

    my_filter(::Any) = true  # Note the generic fallback
    @@ -343,4 +343,4 @@
     For performance, it is recommended that the inner loop lies in a separate
     function to guarantee type-stability.
     
    -If you want an iterator of all current outer keys, use [`outer_keys`](@ref).
    source
    +If you want an iterator of all current outer keys, use [`outer_keys`](@ref).source diff --git a/previews/PR3919/moi/tutorials/bridging_constraint/index.html b/previews/PR3919/moi/tutorials/bridging_constraint/index.html index eb11974bae3..b0e2a340c38 100644 --- a/previews/PR3919/moi/tutorials/bridging_constraint/index.html +++ b/previews/PR3919/moi/tutorials/bridging_constraint/index.html @@ -103,4 +103,4 @@ end

    Bridge deletion

    When a bridge is deleted, the constraints it added must be deleted too.

    function delete(model::ModelLike, bridge::SignBridge)
         delete(model, bridge.constraint)
         return
    -end
    +end diff --git a/previews/PR3919/moi/tutorials/example/index.html b/previews/PR3919/moi/tutorials/example/index.html index 6d47c73afa7..10db798fcf5 100644 --- a/previews/PR3919/moi/tutorials/example/index.html +++ b/previews/PR3919/moi/tutorials/example/index.html @@ -46,4 +46,4 @@ 3-element Vector{Float64}: 1.0 1.0 - 1.0 + 1.0 diff --git a/previews/PR3919/moi/tutorials/implementing/index.html b/previews/PR3919/moi/tutorials/implementing/index.html index bd7ba3395a5..d02b328c6fa 100644 --- a/previews/PR3919/moi/tutorials/implementing/index.html +++ b/previews/PR3919/moi/tutorials/implementing/index.html @@ -115,4 +115,4 @@ n = # Code to get NumberOfObjectives return n end

    Then, the user can write:

    model = Gurobi.Optimizer()
    -MOI.set(model, Gurobi.NumberofObjectives(), 3)
    +MOI.set(model, Gurobi.NumberofObjectives(), 3) diff --git a/previews/PR3919/moi/tutorials/latency/index.html b/previews/PR3919/moi/tutorials/latency/index.html index 9aa2d04526f..5e90083218c 100644 --- a/previews/PR3919/moi/tutorials/latency/index.html +++ b/previews/PR3919/moi/tutorials/latency/index.html @@ -130,4 +130,4 @@ end

    You can create a flame-graph via

    using SnoopCompile
     tinf = @snoopi_deep example_diet(GLPK.Optimizer, true)
     using ProfileView
    -ProfileView.view(flamegraph(tinf))

    Here's how things looked in mid-August 2021: flamegraph

    There are a few opportunities for improvement (non-red flames, particularly on the right). But the main problem is a large red (non-precompilable due to method ownership) flame.

    +ProfileView.view(flamegraph(tinf))

    Here's how things looked in mid-August 2021: flamegraph

    There are a few opportunities for improvement (non-red flames, particularly on the right). But the main problem is a large red (non-precompilable due to method ownership) flame.

    diff --git a/previews/PR3919/moi/tutorials/manipulating_expressions/index.html b/previews/PR3919/moi/tutorials/manipulating_expressions/index.html index 3c2aedd9d37..d60db6a8263 100644 --- a/previews/PR3919/moi/tutorials/manipulating_expressions/index.html +++ b/previews/PR3919/moi/tutorials/manipulating_expressions/index.html @@ -23,4 +23,4 @@ 2-element Vector{MathOptInterface.ScalarAffineFunction{Int64}}: (2) + (1) MOI.VariableIndex(1) (4) + (2) MOI.VariableIndex(1)
    Note

    Utilities.eachscalar returns an iterator on the dimensions, which serves the same purpose as Utilities.scalarize.

    output_dimension returns the number of dimensions of the output of a function:

    julia> MOI.output_dimension(g)
    -2
    +2 diff --git a/previews/PR3919/moi/tutorials/mathprogbase/index.html b/previews/PR3919/moi/tutorials/mathprogbase/index.html index d3310cf3479..956a771dfbf 100644 --- a/previews/PR3919/moi/tutorials/mathprogbase/index.html +++ b/previews/PR3919/moi/tutorials/mathprogbase/index.html @@ -55,4 +55,4 @@ objval = objective_value(model), sol = value.(x) ) -end +end diff --git a/previews/PR3919/packages/Alpine/index.html b/previews/PR3919/packages/Alpine/index.html index eec39b8453a..ddcaef43dfc 100644 --- a/previews/PR3919/packages/Alpine/index.html +++ b/previews/PR3919/packages/Alpine/index.html @@ -46,4 +46,4 @@ author={Kim, Jongeun and Richard, Jean-Philippe P. and Tawarmalani, Mohit}, eprinttype={Optimization Online}, date={2022} -} +} diff --git a/previews/PR3919/packages/AmplNLWriter/index.html b/previews/PR3919/packages/AmplNLWriter/index.html index e5dd52b2f2d..e15e486e308 100644 --- a/previews/PR3919/packages/AmplNLWriter/index.html +++ b/previews/PR3919/packages/AmplNLWriter/index.html @@ -12,4 +12,4 @@ import Bonmin_jll model = Model(() -> AmplNLWriter.Optimizer(Bonmin_jll.amplexe)) set_attribute(model, "bonmin.nlp_log_level", 0)

    opt files

    Some options need to be specified via an .opt file.

    This file must be located in the current working directory whenever the model is solved.

    The .opt file must be named after the name of the solver, for example, bonmin.opt, and each line must contain an option name and the desired value, separated by a space.

    For example, to set the absolute and relative tolerances in Couenne to 1 and 0.05 respectively, the couenne.opt file should contain:

    allowable_gap 1
    -allowable_fraction_gap 0.05
    +allowable_fraction_gap 0.05 diff --git a/previews/PR3919/packages/BARON/index.html b/previews/PR3919/packages/BARON/index.html index 44c444bb5f0..a57d334f1ed 100644 --- a/previews/PR3919/packages/BARON/index.html +++ b/previews/PR3919/packages/BARON/index.html @@ -6,4 +6,4 @@

    BARON.jl

    Build Status codecov

    BARON.jl is a wrapper for BARON by The Optimization Firm.

    Affiliation

    This wrapper is maintained by the JuMP community and is not officially supported by The Optimization Firm.

    Getting help

    If you need help, please ask a question on the JuMP community forum.

    If you have a reproducible example of a bug, please open a GitHub issue.

    License

    BARON.jl is licensed under the MIT License.

    The underlying solver is a closed-source commercial product for which you must obtain a license from The Optimization Firm, although a small trial version is available for free.

    Installation

    First, download a copy of the BARON solver and unpack the executable in a location of your choosing.

    Once installed, set the BARON_EXEC environment variable pointing to the BARON executable (full path, including file name as it differs across platforms), and run Pkg.add("BARON"). For example:

    ENV["BARON_EXEC"] = "/path/to/baron.exe"
     using Pkg
     Pkg.add("BARON")

    The baronlice.txt license file should be placed in the same directory as the BARON executable, or in your current working directory.

    Use with JuMP

    using JuMP, BARON
    -model = Model(BARON.Optimizer)

    MathOptInterface API

    The BARON optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    +model = Model(BARON.Optimizer)

    MathOptInterface API

    The BARON optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    diff --git a/previews/PR3919/packages/BilevelJuMP/index.html b/previews/PR3919/packages/BilevelJuMP/index.html index 7babf034b06..88bdfd8d2ce 100644 --- a/previews/PR3919/packages/BilevelJuMP/index.html +++ b/previews/PR3919/packages/BilevelJuMP/index.html @@ -34,4 +34,4 @@ objective_value(model) # = 3 * (3.5 * 8/15) + 8/15 # = 6.13... value(x) # = 3.5 * 8/15 # = 1.86... -value(y) # = 8/15 # = 0.53... +value(y) # = 8/15 # = 0.53... diff --git a/previews/PR3919/packages/CATrustRegionMethod/index.html b/previews/PR3919/packages/CATrustRegionMethod/index.html index 4d62eb9943e..c3c4c3d5cfa 100644 --- a/previews/PR3919/packages/CATrustRegionMethod/index.html +++ b/previews/PR3919/packages/CATrustRegionMethod/index.html @@ -18,4 +18,4 @@ # Retrieve the solver instance optimizer = backend(model).optimizer.model # Algorithm stats (total function evalation, ...) -algorithm_counter = optimizer.inner.algorithm_counter

    CUTEst test set

    To test our solver on CUTEst test set, please use the script:

    solve_cutest.jl

    To see the meaning of each argument:

    $ julia --project=. scripts/solve_cutest.jl --help

    Here is a simple example:

    $ julia --project=. scripts/solve_cutest.jl --output_dir ./scripts/benchmark/results/cutest --default_problems true

    Plots for CUTEst test set

    $ julia --project=. scripts/plot_CUTEst_results.jl --output_dir ./scripts/benchmark/results/cutest

    Instructions for reproducing our experiments

    CUTEst test set

    $ julia --project=. scripts/solve_cutest.jl --output_dir ./scripts/benchmark/results/cutest --default_problems true
    $ julia --project=. scripts/solve_cutest.jl --output_dir ./scripts/benchmark/results/cutest --default_problems true --θ 0.0
    $ julia --project=. scripts/run_ablation_study.jl --output_dir ./scripts/benchmark/results_ablation_study/cutest --default_problems true

    Examples

    Examples can be found under the test directory

    References

    Citing

    ```markdown If you use our method in your research, you are kindly asked to cite the relevant papers:

    @article{hamad2024simple, title={A simple and practical adaptive trust-region method}, author={Hamad, Fadi and Hinder, Oliver}, journal={arXiv preprint arXiv:2412.02079}, year={2024} }

    @article{hamad2022consistently, title={A consistently adaptive trust-region method}, author={Hamad, Fadi and Hinder, Oliver}, journal={Advances in Neural Information Processing Systems}, volume={35}, pages={6640–6653}, year={2022} }

    +algorithm_counter = optimizer.inner.algorithm_counter

    CUTEst test set

    To test our solver on CUTEst test set, please use the script:

    solve_cutest.jl

    To see the meaning of each argument:

    $ julia --project=. scripts/solve_cutest.jl --help

    Here is a simple example:

    $ julia --project=. scripts/solve_cutest.jl --output_dir ./scripts/benchmark/results/cutest --default_problems true

    Plots for CUTEst test set

    $ julia --project=. scripts/plot_CUTEst_results.jl --output_dir ./scripts/benchmark/results/cutest

    Instructions for reproducing our experiments

    CUTEst test set

    $ julia --project=. scripts/solve_cutest.jl --output_dir ./scripts/benchmark/results/cutest --default_problems true
    $ julia --project=. scripts/solve_cutest.jl --output_dir ./scripts/benchmark/results/cutest --default_problems true --θ 0.0
    $ julia --project=. scripts/run_ablation_study.jl --output_dir ./scripts/benchmark/results_ablation_study/cutest --default_problems true

    Examples

    Examples can be found under the test directory

    References

    Citing

    ```markdown If you use our method in your research, you are kindly asked to cite the relevant papers:

    @article{hamad2024simple, title={A simple and practical adaptive trust-region method}, author={Hamad, Fadi and Hinder, Oliver}, journal={arXiv preprint arXiv:2412.02079}, year={2024} }

    @article{hamad2022consistently, title={A consistently adaptive trust-region method}, author={Hamad, Fadi and Hinder, Oliver}, journal={Advances in Neural Information Processing Systems}, volume={35}, pages={6640–6653}, year={2022} }

    diff --git a/previews/PR3919/packages/CDCS/index.html b/previews/PR3919/packages/CDCS/index.html index c7d2aee78e5..91adf0e97b4 100644 --- a/previews/PR3919/packages/CDCS/index.html +++ b/previews/PR3919/packages/CDCS/index.html @@ -27,4 +27,4 @@ mat"cdcsInstall" end -julia> mat"savepath" +julia> mat"savepath" diff --git a/previews/PR3919/packages/CDDLib/index.html b/previews/PR3919/packages/CDDLib/index.html index 867db5f025e..73df13b5208 100644 --- a/previews/PR3919/packages/CDDLib/index.html +++ b/previews/PR3919/packages/CDDLib/index.html @@ -6,4 +6,4 @@

    CDDLib

    CDDLib.jl is a wrapper for cddlib.

    CDDLib.jl can be used with C API of cddlib, the higher level interface of Polyhedra.jl, or as a linear programming solver with JuMP or MathOptInterface.

    Problem description

    As written in the README of cddlib:

    The C-library cddlib is a C implementation of the Double Description Method of Motzkin et al. for generating all vertices (that is, extreme points) and extreme rays of a general convex polyhedron in R^d given by a system of linear inequalities:

    P = { x=(x1, ..., xd)^T :  b - A  x  >= 0 }

    where A is a given m x d real matrix, b is a given m-vector and 0 is the m-vector of all zeros.

    The program can be used for the reverse operation (that is, convex hull computation). This means that one can move back and forth between an inequality representation and a generator (that is, vertex and ray) representation of a polyhedron with cdd. Also, cdd can solve a linear programming problem, that is, a problem of maximizing and minimizing a linear function over P.

    License

    CDDLib.jl is licensed under the GPL v2 license.

    The underlying solver, cddlib/cddlib is also licensed under the GPL v2 license.

    Installation

    Install CDDLib.jl using the Julia package manager:

    import Pkg
     Pkg.add("CDDLib")

    Building the package will download binaries of cddlib that are provided by cddlib_jll.jl.

    Use with JuMP

    Use CDDLib.Optimizer{Float64} to use CDDLib.jl with JuMP:

    using JuMP, CDDLib
     model = Model(CDDLib.Optimizer{Float64})

    When using CDDLib.jl with MathOptInterface, you can pass a different number type:

    using MathOptInterface, CDDLib
    -model = CDDLib.Optimizer{Rational{BigInt}}()

    Debugging

    CDDLib.jl uses two global Boolean variables to enable debugging outputs: debug and log.

    You can query the value of debug and log with get_debug and get_log, and set their values with set_debug and set_log.

    +model = CDDLib.Optimizer{Rational{BigInt}}()

    Debugging

    CDDLib.jl uses two global Boolean variables to enable debugging outputs: debug and log.

    You can query the value of debug and log with get_debug and get_log, and set their values with set_debug and set_log.

    diff --git a/previews/PR3919/packages/COPT/index.html b/previews/PR3919/packages/COPT/index.html index 52375ba7c7a..4c41d3c1c04 100644 --- a/previews/PR3919/packages/COPT/index.html +++ b/previews/PR3919/packages/COPT/index.html @@ -39,4 +39,4 @@ @show value.(X) @show value.(z) @show shadow_price(c1) -@show shadow_price(c2) +@show shadow_price(c2) diff --git a/previews/PR3919/packages/COSMO/index.html b/previews/PR3919/packages/COSMO/index.html index 02bd3574494..b1520990f1a 100644 --- a/previews/PR3919/packages/COSMO/index.html +++ b/previews/PR3919/packages/COSMO/index.html @@ -34,4 +34,4 @@ publisher = {Springer}, doi = {10.1007/s10957-021-01896-x}, url = {https://doi.org/10.1007/s10957-021-01896-x} -}

    The article is available under Open Access here.

    Contributing

    • Contributions are always welcome. Our style guide can be found here.
    • Current issues, tasks and future ideas are listed in Issues. Please report any issues or bugs that you encounter.
    • As an open source project we are also interested in any projects and applications that use COSMO. Please let us know by opening a GitHub issue.

    Python - Interface

    COSMO can also be called from Python. Take a look at: cosmo-python

    Licence 🔍

    This project is licensed under the Apache License - see the LICENSE.md file for details.

    +}

    The article is available under Open Access here.

    Contributing

    • Contributions are always welcome. Our style guide can be found here.
    • Current issues, tasks and future ideas are listed in Issues. Please report any issues or bugs that you encounter.
    • As an open source project we are also interested in any projects and applications that use COSMO. Please let us know by opening a GitHub issue.

    Python - Interface

    COSMO can also be called from Python. Take a look at: cosmo-python

    Licence 🔍

    This project is licensed under the Apache License - see the LICENSE.md file for details.

    diff --git a/previews/PR3919/packages/CPLEX/index.html b/previews/PR3919/packages/CPLEX/index.html index fd7685c8413..c8799d2cf6f 100644 --- a/previews/PR3919/packages/CPLEX/index.html +++ b/previews/PR3919/packages/CPLEX/index.html @@ -163,4 +163,4 @@ x_optimal = value.(x) y_optimal = value.(y) println("x: $(x_optimal), y: $(y_optimal)") -end +end diff --git a/previews/PR3919/packages/CSDP/index.html b/previews/PR3919/packages/CSDP/index.html index 853ee88fc74..ba1e6b6fbce 100644 --- a/previews/PR3919/packages/CSDP/index.html +++ b/previews/PR3919/packages/CSDP/index.html @@ -10,4 +10,4 @@ A(X) = a X ⪰ 0

    where A(X) = [⟨A_1, X⟩, ..., ⟨A_m, X⟩]. The corresponding dual is:

    min ⟨a, y⟩
          A'(y) - C = Z
    -             Z ⪰ 0

    where A'(y) = y_1A_1 + ... + y_mA_m

    Termination criteria

    CSDP will terminate successfully (or partially) in the following cases:

    • If CSDP finds X, Z ⪰ 0 such that the following 3 tolerances are satisfied:
      • primal feasibility tolerance: ||A(x) - a||_2 / (1 + ||a||_2) < axtol
      • dual feasibility tolerance: ||A'(y) - C - Z||_F / (1 + ||C||_F) < atytol
      • relative duality gap tolerance: gap / (1 + |⟨a, y⟩| + |⟨C, X⟩|) < objtol
        • objective duality gap: if usexygap is 0, gap = ⟨a, y⟩ - ⟨C, X⟩
        • XY duality gap: if usexygap is 1, gap = ⟨Z, X⟩
      then it returns 0.
    • If CSDP finds y and Z ⪰ 0 such that -⟨a, y⟩ / ||A'(y) - Z||_F > pinftol, it returns 1 with y such that ⟨a, y⟩ = -1.
    • If CSDP finds X ⪰ 0 such that ⟨C, X⟩ / ||A(X)||_2 > dinftol, it returns 2 with X such that ⟨C, X⟩ = 1.
    • If CSDP finds X, Z ⪰ 0 such that the following 3 tolerances are satisfied with 1000*axtol, 1000*atytol and 1000*objtol but at least one of them is not satisfied with axtol, atytol and objtol and cannot make progress, then it returns 3.

    In addition, if the printlevel option is at least 1, the following will be printed:

    • If the return code is 1, CSDP will print ⟨a, y⟩ and ||A'(y) - Z||_F
    • If the return code is 2, CSDP will print ⟨C, X⟩ and ||A(X)||_F
    • Otherwise, CSDP will print
      • the primal/dual objective value,
      • the relative primal/dual infeasibility,
      • the objective duality gap ⟨a, y⟩ - ⟨C, X⟩ and objective relative duality gap (⟨a, y⟩ - ⟨C, X⟩) / (1 + |⟨a, y⟩| + |⟨C, X⟩|),
      • the XY duality gap ⟨Z, X⟩ and XY relative duality gap ⟨Z, X⟩ / (1 + |⟨a, y⟩| + |⟨C, X⟩|)
      • and the DIMACS error measures.

    In theory, for feasible primal and dual solutions, ⟨a, y⟩ - ⟨C, X⟩ = ⟨Z, X⟩, so the objective and XY duality gap should be equivalent. However, in practice, there are sometimes solution which satisfy primal and dual feasibility tolerances but have objective duality gap which are not close to XY duality gap. In some cases, the objective duality gap may even become negative (hence the tweakgap option). This is the reason usexygap is 1 by default.

    CSDP considers that X ⪰ 0 (resp. Z ⪰ 0) is satisfied when the Cholesky factorizations can be computed. In practice, this is somewhat more conservative than simply requiring all eigenvalues to be nonnegative.

    Status

    The table below shows how the different CSDP statuses are converted to the MathOptInterface statuses.

    CSDP codeStateDescriptionMOI status
    0SuccessSDP solvedMOI.OPTIMAL
    1SuccessThe problem is primal infeasible, and we have a certificateMOI.INFEASIBLE
    2SuccessThe problem is dual infeasible, and we have a certificateMOI.DUAL_INFEASIBLE
    3Partial SuccessA solution has been found, but full accuracy was not achievedMOI.ALMOST_OPTIMAL
    4FailureMaximum iterations reachedMOI.ITERATION_LIMIT
    5FailureStuck at edge of primal feasibilityMOI.SLOW_PROGRESS
    6FailureStuck at edge of dual infeasibilityMOI.SLOW_PROGRESS
    7FailureLack of progressMOI.SLOW_PROGRESS
    8FailureX, Z, or O was singularMOI.NUMERICAL_ERROR
    9FailureDetected NaN or Inf valuesMOI.NUMERICAL_ERROR
    + Z ⪰ 0

    where A'(y) = y_1A_1 + ... + y_mA_m

    Termination criteria

    CSDP will terminate successfully (or partially) in the following cases:

    • If CSDP finds X, Z ⪰ 0 such that the following 3 tolerances are satisfied:
      • primal feasibility tolerance: ||A(x) - a||_2 / (1 + ||a||_2) < axtol
      • dual feasibility tolerance: ||A'(y) - C - Z||_F / (1 + ||C||_F) < atytol
      • relative duality gap tolerance: gap / (1 + |⟨a, y⟩| + |⟨C, X⟩|) < objtol
        • objective duality gap: if usexygap is 0, gap = ⟨a, y⟩ - ⟨C, X⟩
        • XY duality gap: if usexygap is 1, gap = ⟨Z, X⟩
      then it returns 0.
    • If CSDP finds y and Z ⪰ 0 such that -⟨a, y⟩ / ||A'(y) - Z||_F > pinftol, it returns 1 with y such that ⟨a, y⟩ = -1.
    • If CSDP finds X ⪰ 0 such that ⟨C, X⟩ / ||A(X)||_2 > dinftol, it returns 2 with X such that ⟨C, X⟩ = 1.
    • If CSDP finds X, Z ⪰ 0 such that the following 3 tolerances are satisfied with 1000*axtol, 1000*atytol and 1000*objtol but at least one of them is not satisfied with axtol, atytol and objtol and cannot make progress, then it returns 3.

    In addition, if the printlevel option is at least 1, the following will be printed:

    • If the return code is 1, CSDP will print ⟨a, y⟩ and ||A'(y) - Z||_F
    • If the return code is 2, CSDP will print ⟨C, X⟩ and ||A(X)||_F
    • Otherwise, CSDP will print
      • the primal/dual objective value,
      • the relative primal/dual infeasibility,
      • the objective duality gap ⟨a, y⟩ - ⟨C, X⟩ and objective relative duality gap (⟨a, y⟩ - ⟨C, X⟩) / (1 + |⟨a, y⟩| + |⟨C, X⟩|),
      • the XY duality gap ⟨Z, X⟩ and XY relative duality gap ⟨Z, X⟩ / (1 + |⟨a, y⟩| + |⟨C, X⟩|)
      • and the DIMACS error measures.

    In theory, for feasible primal and dual solutions, ⟨a, y⟩ - ⟨C, X⟩ = ⟨Z, X⟩, so the objective and XY duality gap should be equivalent. However, in practice, there are sometimes solution which satisfy primal and dual feasibility tolerances but have objective duality gap which are not close to XY duality gap. In some cases, the objective duality gap may even become negative (hence the tweakgap option). This is the reason usexygap is 1 by default.

    CSDP considers that X ⪰ 0 (resp. Z ⪰ 0) is satisfied when the Cholesky factorizations can be computed. In practice, this is somewhat more conservative than simply requiring all eigenvalues to be nonnegative.

    Status

    The table below shows how the different CSDP statuses are converted to the MathOptInterface statuses.

    CSDP codeStateDescriptionMOI status
    0SuccessSDP solvedMOI.OPTIMAL
    1SuccessThe problem is primal infeasible, and we have a certificateMOI.INFEASIBLE
    2SuccessThe problem is dual infeasible, and we have a certificateMOI.DUAL_INFEASIBLE
    3Partial SuccessA solution has been found, but full accuracy was not achievedMOI.ALMOST_OPTIMAL
    4FailureMaximum iterations reachedMOI.ITERATION_LIMIT
    5FailureStuck at edge of primal feasibilityMOI.SLOW_PROGRESS
    6FailureStuck at edge of dual infeasibilityMOI.SLOW_PROGRESS
    7FailureLack of progressMOI.SLOW_PROGRESS
    8FailureX, Z, or O was singularMOI.NUMERICAL_ERROR
    9FailureDetected NaN or Inf valuesMOI.NUMERICAL_ERROR
    diff --git a/previews/PR3919/packages/Cbc/index.html b/previews/PR3919/packages/Cbc/index.html index 1ad504f0d45..30c38eabd0a 100644 --- a/previews/PR3919/packages/Cbc/index.html +++ b/previews/PR3919/packages/Cbc/index.html @@ -9,4 +9,4 @@ set_attribute(model, "logLevel", 1)

    MathOptInterface API

    The COIN Branch-and-Cut (Cbc) optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    List of supported optimizer attributes:

    List of supported variable attributes:

    List of supported constraint attributes:

    Options

    Options are, unfortunately, not well documented.

    The following options are likely to be the most useful:

    ParameterExampleExplanation
    seconds60.0Solution timeout limit
    logLevel2Set to 0 to disable solution output
    maxSolutions1Terminate after this many feasible solutions have been found
    maxNodes1Terminate after this many branch-and-bound nodes have been evaluated
    allowableGap0.05Terminate after optimality gap is less than this value (on an absolute scale)
    ratioGap0.05Terminate after optimality gap is smaller than this relative fraction
    threads1Set the number of threads to use for parallel branch & bound

    The complete list of parameters can be found by running the cbc executable and typing ? at the prompt.

    Start the cbc executable from Julia as follows:

    using Cbc_jll
     Cbc_jll.cbc() do exe
         run(`$(exe)`)
    -end
    +end diff --git a/previews/PR3919/packages/Clarabel/index.html b/previews/PR3919/packages/Clarabel/index.html index 9b2b4ea4b13..0d20f5951c6 100644 --- a/previews/PR3919/packages/Clarabel/index.html +++ b/previews/PR3919/packages/Clarabel/index.html @@ -33,4 +33,4 @@

    eprint={2405.12762}, archivePrefix={arXiv}, primaryClass={math.OC} -}

    License 🔍

    This project is licensed under the Apache License 2.0 - see the LICENSE.md file for details.

    +}

    License 🔍

    This project is licensed under the Apache License 2.0 - see the LICENSE.md file for details.

    diff --git a/previews/PR3919/packages/Clp/index.html b/previews/PR3919/packages/Clp/index.html index 6f1983b6c9c..00e905c5fa0 100644 --- a/previews/PR3919/packages/Clp/index.html +++ b/previews/PR3919/packages/Clp/index.html @@ -7,4 +7,4 @@ Pkg.add("Clp")

    In addition to installing the Clp.jl package, this will also download and install the Clp binaries. You do not need to install Clp separately.

    To use a custom binary, read the Custom solver binaries section of the JuMP documentation.

    Use with JuMP

    To use Clp with JuMP, use Clp.Optimizer:

    using JuMP, Clp
     model = Model(Clp.Optimizer)
     set_attribute(model, "LogLevel", 1)
    -set_attribute(model, "Algorithm", 4)

    MathOptInterface API

    The Clp optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Options

    Options are, unfortunately, not well documented.

    The following options are likely to be the most useful:

    ParameterExampleExplanation
    PrimalTolerance1e-7Primal feasibility tolerance
    DualTolerance1e-7Dual feasibility tolerance
    DualObjectiveLimit1e308When using dual simplex (where the objective is monotonically changing), terminate when the objective exceeds this limit
    MaximumIterations2147483647Terminate after performing this number of simplex iterations
    MaximumSeconds-1.0Terminate after this many seconds have passed. A negative value means no time limit
    LogLevel1Set to 1, 2, 3, or 4 for increasing output. Set to 0 to disable output
    PresolveType0Set to 1 to disable presolve
    SolveType5Solution method: dual simplex (0), primal simplex (1), sprint (2), barrier with crossover (3), barrier without crossover (4), automatic (5)
    InfeasibleReturn0Set to 1 to return as soon as the problem is found to be infeasible (by default, an infeasibility proof is computed as well)
    Scaling30 -off, 1 equilibrium, 2 geometric, 3 auto, 4 dynamic(later)
    Perturbation100switch on perturbation (50), automatic (100), don't try perturbing (102)

    C API

    The C API can be accessed via Clp.Clp_XXX functions, where the names and arguments are identical to the C API.

    +set_attribute(model, "Algorithm", 4)

    MathOptInterface API

    The Clp optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Options

    Options are, unfortunately, not well documented.

    The following options are likely to be the most useful:

    ParameterExampleExplanation
    PrimalTolerance1e-7Primal feasibility tolerance
    DualTolerance1e-7Dual feasibility tolerance
    DualObjectiveLimit1e308When using dual simplex (where the objective is monotonically changing), terminate when the objective exceeds this limit
    MaximumIterations2147483647Terminate after performing this number of simplex iterations
    MaximumSeconds-1.0Terminate after this many seconds have passed. A negative value means no time limit
    LogLevel1Set to 1, 2, 3, or 4 for increasing output. Set to 0 to disable output
    PresolveType0Set to 1 to disable presolve
    SolveType5Solution method: dual simplex (0), primal simplex (1), sprint (2), barrier with crossover (3), barrier without crossover (4), automatic (5)
    InfeasibleReturn0Set to 1 to return as soon as the problem is found to be infeasible (by default, an infeasibility proof is computed as well)
    Scaling30 -off, 1 equilibrium, 2 geometric, 3 auto, 4 dynamic(later)
    Perturbation100switch on perturbation (50), automatic (100), don't try perturbing (102)

    C API

    The C API can be accessed via Clp.Clp_XXX functions, where the names and arguments are identical to the C API.

    diff --git a/previews/PR3919/packages/DAQP/index.html b/previews/PR3919/packages/DAQP/index.html index d17209a7aae..50ba81ff57f 100644 --- a/previews/PR3919/packages/DAQP/index.html +++ b/previews/PR3919/packages/DAQP/index.html @@ -5,4 +5,4 @@ gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash});

    DAQP.jl

    DAQP.jl is a Julia wrapper for the Quadratic Programming solver DAQP.

    License

    DAQP.jl is licensed under the MIT license.

    The underlying solver, darnstrom/daqp is licensed under the MIT license.

    Installation

    Install DAQP.jl using the Julia package manager:

    import Pkg
     Pkg.add("DAQP")

    Use with JuMP

    To use DAQP with JuMP, do:

    using JuMP, DAQP
    -model = Model(DAQP.Optimizer)

    Documentation

    General information about the solver is available at https://darnstrom.github.io/daqp/, and specifics for the Julia interface are available at https://darnstrom.github.io/daqp/start/julia.

    +model = Model(DAQP.Optimizer)

    Documentation

    General information about the solver is available at https://darnstrom.github.io/daqp/, and specifics for the Julia interface are available at https://darnstrom.github.io/daqp/start/julia.

    diff --git a/previews/PR3919/packages/DSDP/index.html b/previews/PR3919/packages/DSDP/index.html index 4d2375e2e9e..03be492df26 100644 --- a/previews/PR3919/packages/DSDP/index.html +++ b/previews/PR3919/packages/DSDP/index.html @@ -8,4 +8,4 @@ model = Model(DSDP.Optimizer)

    MathOptInterface API

    The DSDP optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Compile your own binaries

    In order to compile your own libdsdp.so to be used of DSDP.jl, use the following

    OB_DIR=$(julia --project=. -e 'import OpenBLAS32_jll; println(OpenBLAS32_jll.OpenBLAS32_jll.artifact_dir)')
     OB="-L${LIBOB_DIR}/lib -lopenblas"
     make DSDPCFLAGS="-g -Wall -fPIC -DPIC" LAPACKBLAS="$OB" dsdplibrary
    -make DSDPCFLAGS="-g -Wall -fPIC -DPIC" LAPACKBLAS="$OB" SH_LD="${CC} ${CFLAGS} -Wall -fPIC -DPIC -shared $OB" oshared
    +make DSDPCFLAGS="-g -Wall -fPIC -DPIC" LAPACKBLAS="$OB" SH_LD="${CC} ${CFLAGS} -Wall -fPIC -DPIC -shared $OB" oshared diff --git a/previews/PR3919/packages/DiffOpt/index.html b/previews/PR3919/packages/DiffOpt/index.html index d1b7206a617..b5afe1cc370 100644 --- a/previews/PR3919/packages/DiffOpt/index.html +++ b/previews/PR3919/packages/DiffOpt/index.html @@ -20,4 +20,4 @@ # fetch the gradients grad_exp = MOI.get(model, DiffOpt.ReverseConstraintFunction(), cons) # -3 x - 1 constant(grad_exp) # -1 -coefficient(grad_exp, x) # -3

    GSOC2020

    DiffOpt began as a NumFOCUS sponsored Google Summer of Code (2020) project

    +coefficient(grad_exp, x) # -3

    GSOC2020

    DiffOpt began as a NumFOCUS sponsored Google Summer of Code (2020) project

    diff --git a/previews/PR3919/packages/DisjunctiveProgramming/index.html b/previews/PR3919/packages/DisjunctiveProgramming/index.html index 9895cf4ca45..f04dd3957ba 100644 --- a/previews/PR3919/packages/DisjunctiveProgramming/index.html +++ b/previews/PR3919/packages/DisjunctiveProgramming/index.html @@ -8,4 +8,4 @@ author={Perez, Hector D and Joshi, Shivank and Grossmann, Ignacio E}, journal={arXiv preprint arXiv:2304.10492}, year={2023} -} +} diff --git a/previews/PR3919/packages/Dualization/index.html b/previews/PR3919/packages/Dualization/index.html index 29e93fddf29..8b90bb31de4 100644 --- a/previews/PR3919/packages/Dualization/index.html +++ b/previews/PR3919/packages/Dualization/index.html @@ -10,4 +10,4 @@ dual_model = dualize(model)

    To solve the dual formulation of a JuMP model, create a dual_optimizer:

    using JuMP, Dualization, SCS
     model = Model(dual_optimizer(SCS.Optimizer))
     # ... build model ...
    -optimize!(model)  # Solves the dual instead of the primal

    Documentation

    The documentation for Dualization.jl includes a detailed description of the dual reformulation, along with examples and an API reference.

    +optimize!(model) # Solves the dual instead of the primal

    Documentation

    The documentation for Dualization.jl includes a detailed description of the dual reformulation, along with examples and an API reference.

    diff --git a/previews/PR3919/packages/EAGO/index.html b/previews/PR3919/packages/EAGO/index.html index 98554a7c81a..866127ea95a 100644 --- a/previews/PR3919/packages/EAGO/index.html +++ b/previews/PR3919/packages/EAGO/index.html @@ -71,4 +71,4 @@ doi = {10.1080/10556788.2020.1786566}, URL = {https://doi.org/10.1080/10556788.2020.1786566}, eprint = {https://doi.org/10.1080/10556788.2020.1786566} -}

    References

    1. Mitsos, A., Chachuat, B., and Barton, P.I. McCormick-based relaxations of algorithms. SIAM Journal on Optimization. 20(2): 573—601 (2009).
    2. Khan, K.A., Watson, H.A.J., and Barton, P.I. Differentiable McCormick relaxations. Journal of Global Optimization. 67(4): 687—729 (2017).
    3. Stuber, M.D., Scott, J.K., and Barton, P.I.: Convex and concave relaxations of implicit functions. Optimization Methods and Software 30(3): 424—460 (2015).
    4. Wechsung, A., Scott, J.K., Watson, H.A.J., and Barton, P.I. Reverse propagation of McCormick relaxations. Journal of Global Optimization 63(1): 1—36 (2015).
    5. Bracken, J., and McCormick, G.P. Selected Applications of Nonlinear Programming. John Wiley and Sons, New York (1968).
    +}

    References

    1. Mitsos, A., Chachuat, B., and Barton, P.I. McCormick-based relaxations of algorithms. SIAM Journal on Optimization. 20(2): 573—601 (2009).
    2. Khan, K.A., Watson, H.A.J., and Barton, P.I. Differentiable McCormick relaxations. Journal of Global Optimization. 67(4): 687—729 (2017).
    3. Stuber, M.D., Scott, J.K., and Barton, P.I.: Convex and concave relaxations of implicit functions. Optimization Methods and Software 30(3): 424—460 (2015).
    4. Wechsung, A., Scott, J.K., Watson, H.A.J., and Barton, P.I. Reverse propagation of McCormick relaxations. Journal of Global Optimization 63(1): 1—36 (2015).
    5. Bracken, J., and McCormick, G.P. Selected Applications of Nonlinear Programming. John Wiley and Sons, New York (1968).
    diff --git a/previews/PR3919/packages/ECOS/index.html b/previews/PR3919/packages/ECOS/index.html index 72cd75ae710..807dfbdb4f3 100644 --- a/previews/PR3919/packages/ECOS/index.html +++ b/previews/PR3919/packages/ECOS/index.html @@ -6,4 +6,4 @@

    ECOS.jl

    Build Status codecov

    ECOS.jl is a wrapper for the ECOS solver.

    The wrapper has two components:

    Affiliation

    This wrapper is maintained by the JuMP community and is not a product of Embotech AG.

    License

    ECOS.jl is licensed under the MIT License.

    The underlying solver, embotech/ecos, is licensed under the GPL v3 license.

    Installation

    Install ECOS.jl using Pkg.add:

    import Pkg
     Pkg.add("ECOS")

    In addition to installing the ECOS.jl package, this will also download and install the ECOS binaries. You do not need to install ECOS separately.

    To use a custom binary, read the Custom solver binaries section of the JuMP documentation.

    Use with JuMP

    To use ECOS with JuMP, use ECOS.Optimizer:

    using JuMP, ECOS
     model = Model(ECOS.Optimizer)
    -set_attribute(model, "maxit", 100)

    MathOptInterface API

    The ECOS optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Options

    The following options are supported:

    ParameterExplanation
    gammascaling the final step length
    deltaregularization parameter
    epsregularization threshold
    feastolprimal/dual infeasibility tolerance
    abstolabsolute tolerance on duality gap
    reltolrelative tolerance on duality gap
    feastol_inaccprimal/dual infeasibility relaxed tolerance
    abstol_inaccabsolute relaxed tolerance on duality gap
    reltol_inaccrelative relaxed tolerance on duality gap
    nitrefnumber of iterative refinement steps
    maxitmaximum number of iterations
    verboseverbosity bool for PRINTLEVEL < 3
    +set_attribute(model, "maxit", 100)

    MathOptInterface API

    The ECOS optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Options

    The following options are supported:

    ParameterExplanation
    gammascaling the final step length
    deltaregularization parameter
    epsregularization threshold
    feastolprimal/dual infeasibility tolerance
    abstolabsolute tolerance on duality gap
    reltolrelative tolerance on duality gap
    feastol_inaccprimal/dual infeasibility relaxed tolerance
    abstol_inaccabsolute relaxed tolerance on duality gap
    reltol_inaccrelative relaxed tolerance on duality gap
    nitrefnumber of iterative refinement steps
    maxitmaximum number of iterations
    verboseverbosity bool for PRINTLEVEL < 3
    diff --git a/previews/PR3919/packages/GAMS/index.html b/previews/PR3919/packages/GAMS/index.html index 523f274a444..68aeb937316 100644 --- a/previews/PR3919/packages/GAMS/index.html +++ b/previews/PR3919/packages/GAMS/index.html @@ -22,4 +22,4 @@ MOI.get(model, GAMS.GeneratedConstraintName(), c[2]) # returns eq2 MOI.get(model, GAMS.OriginalConstraintName("eq1")) # returns c[1] -MOI.get(model, GAMS.OriginalConstraintName("eq10")) # returns nothing

    Note that JuMP direct-mode is used.

    +MOI.get(model, GAMS.OriginalConstraintName("eq10")) # returns nothing

    Note that JuMP direct-mode is used.

    diff --git a/previews/PR3919/packages/GLPK/index.html b/previews/PR3919/packages/GLPK/index.html index e6a9131c481..87afe0229ba 100644 --- a/previews/PR3919/packages/GLPK/index.html +++ b/previews/PR3919/packages/GLPK/index.html @@ -36,4 +36,4 @@ @test primal_status(model) == MOI.FEASIBLE_POINT @test value(x) == 1 @test value(y) == 2 -@show reasons

    C API

    The C API can be accessed via GLPK.glp_XXX functions, where the names and arguments are identical to the C API. See the /tests folder for inspiration.

    Thread safety

    GLPK is not thread-safe and should not be used with multithreading.

    +@show reasons

    C API

    The C API can be accessed via GLPK.glp_XXX functions, where the names and arguments are identical to the C API. See the /tests folder for inspiration.

    Thread safety

    GLPK is not thread-safe and should not be used with multithreading.

    diff --git a/previews/PR3919/packages/Gurobi/index.html b/previews/PR3919/packages/Gurobi/index.html index 5c985c32086..2a261dfeaf7 100644 --- a/previews/PR3919/packages/Gurobi/index.html +++ b/previews/PR3919/packages/Gurobi/index.html @@ -175,4 +175,4 @@ println(lower_bound(x[i])) end

    Common errors

    Using Gurobi v9.0 and you got an error like Q not PSD?

    You need to set the NonConvex parameter:

    model = Model(Gurobi.Optimizer)
     set_optimizer_attribute(model, "NonConvex", 2)

    Gurobi Error 1009: Version number is XX.X, license is for version XX.X

    Make sure that your license is correct for your Gurobi version. See the Gurobi documentation for details.

    Once you are sure that the license and Gurobi versions match, re-install Gurobi.jl by running:

    import Pkg
    -Pkg.build("Gurobi")
    +Pkg.build("Gurobi") diff --git a/previews/PR3919/packages/HiGHS/index.html b/previews/PR3919/packages/HiGHS/index.html index 583906df271..97015d26f79 100644 --- a/previews/PR3919/packages/HiGHS/index.html +++ b/previews/PR3919/packages/HiGHS/index.html @@ -11,4 +11,4 @@ set_attribute(model, "time_limit", 60.0)

    MathOptInterface API

    The HiGHS optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Options

    See the HiGHS documentation for a full list of the available options.

    C API

    The C API can be accessed via HiGHS.Highs_xxx functions, where the names and arguments are identical to the C API.

    Threads

    HiGHS uses a global scheduler that is shared between threads.

    Before changing the number of threads using MOI.Threads(), you must call Highs_resetGlobalScheduler(1):

    using JuMP, HiGHS
     model = Model(HiGHS.Optimizer)
     Highs_resetGlobalScheduler(1)
    -set_attribute(model, MOI.NumberOfThreads(), 1)

    If modifying the number of HiGHS threads across different Julia threads, be sure to read the docstring of Highs_resetGlobalScheduler. In particular, resetting the scheduler is not thread-safe.

    +set_attribute(model, MOI.NumberOfThreads(), 1)

    If modifying the number of HiGHS threads across different Julia threads, be sure to read the docstring of Highs_resetGlobalScheduler. In particular, resetting the scheduler is not thread-safe.

    diff --git a/previews/PR3919/packages/Hypatia/index.html b/previews/PR3919/packages/Hypatia/index.html index c50167cda80..856986997b9 100644 --- a/previews/PR3919/packages/Hypatia/index.html +++ b/previews/PR3919/packages/Hypatia/index.html @@ -42,4 +42,4 @@ volume={15}, pages={53--101}, doi={https://doi.org/10.1007/s12532-022-00226-0} -} +} diff --git a/previews/PR3919/packages/InfiniteOpt/index.html b/previews/PR3919/packages/InfiniteOpt/index.html index ae90a1fbe01..001ace58412 100644 --- a/previews/PR3919/packages/InfiniteOpt/index.html +++ b/previews/PR3919/packages/InfiniteOpt/index.html @@ -12,4 +12,4 @@ doi = {https://doi.org/10.1016/j.compchemeng.2021.107567}, url = {https://www.sciencedirect.com/science/article/pii/S0098135421003458}, author = {Joshua L. Pulsipher and Weiqi Zhang and Tyler J. Hongisto and Victor M. Zavala}, -}

    A pre-print version is freely available though arXiv.

    +}

    A pre-print version is freely available though arXiv.

    diff --git a/previews/PR3919/packages/Ipopt/index.html b/previews/PR3919/packages/Ipopt/index.html index 38ed89d2740..0da07d18231 100644 --- a/previews/PR3919/packages/Ipopt/index.html +++ b/previews/PR3919/packages/Ipopt/index.html @@ -124,4 +124,4 @@ LinearAlgebra.BLAS.lbt_forward(liblapack32) using Ipopt

    AppleAccelerate

    If you are using macOS ≥ v13.4 and you have AppleAccelerate.jl installed, add using AppleAccelerate to your code:

    using AppleAccelerate
     using Ipopt

    Display backends

    Check what backends are loaded using:

    import LinearAlgebra
    -LinearAlgebra.BLAS.lbt_get_config()
    +LinearAlgebra.BLAS.lbt_get_config() diff --git a/previews/PR3919/packages/Juniper/index.html b/previews/PR3919/packages/Juniper/index.html index 9470156bfe5..fd48dd97e9a 100644 --- a/previews/PR3919/packages/Juniper/index.html +++ b/previews/PR3919/packages/Juniper/index.html @@ -33,4 +33,4 @@ year="2018", publisher="Springer International Publishing", isbn="978-3-319-93031-2" -} +} diff --git a/previews/PR3919/packages/KNITRO/index.html b/previews/PR3919/packages/KNITRO/index.html index 88d0ee2d23c..5cef2f04141 100644 --- a/previews/PR3919/packages/KNITRO/index.html +++ b/previews/PR3919/packages/KNITRO/index.html @@ -10,4 +10,4 @@ set_attribute(model, "algorithm", 4)

    Use with AMPL

    To use KNITRO with AmplNLWriter.jl, use KNITRO.amplexe:

    using JuMP
     import AmplNLWriter
     import KNITRO
    -model = Model(() -> AmplNLWriter.Optimizer(KNITRO.amplexe, ["outlev=3"]))

    Use with other packages

    A variety of packages extend KNITRO.jl to support other optimization modeling systems. These include:

    MathOptInterface API

    The Knitro optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Options

    A list of available options is provided in the KNITRO reference manual.

    Low-level wrapper

    The complete C API can be accessed via KNITRO.KN_xx functions, where the names and arguments are identical to the C API.

    See the KNITRO documentation for details.

    As general rules when converting from Julia to C:

    • When KNITRO requires a Ptr{T} that holds one element, like double *, use a Ref{T}().
    • When KNITRO requires a Ptr{T} that holds multiple elements, use a Vector{T}.
    • When KNITRO requires a double, use Cdouble
    • When KNITRO requires an int, use Cint
    • When KNITRO requires a NULL, use C_NULL

    Extensive examples using the C wrapper can be found in examples/.

    Breaking changes

    KNITRO.jl v0.14.0 introduced a number of breaking changes to the low-level C API. The main changes were:

    1. removing Julia-specific functions like KN_set_param. Use the C API functions like KN_set_int_param and KN_set_double_param_by_name.
    2. removing intermediate methods that tried to make the C API more Julia-like. For example, we have removed the KN_add_var method that returned the index of the variable. There is now only the method from the C API.

    If you have trouble updating, please open a GitHub issue.

    Multi-threading

    Due to limitations in the interaction between Julia and C, KNITRO.jl disables multi-threading if the problem is nonlinear. This will override any options such as par_numthreads that you may have set.

    If you are using the low-level API, opt-in to enable multi-threading by calling KN_solve(model.env) instead of KN_solve(model), where model is the value returned by model = KN_new(). Note that calling KN_solve(model.env) is an advanced operation because it requires all callbacks you provide to be threadsafe.

    Read GitHub issue #93 for more details.

    +model = Model(() -> AmplNLWriter.Optimizer(KNITRO.amplexe, ["outlev=3"]))

    Use with other packages

    A variety of packages extend KNITRO.jl to support other optimization modeling systems. These include:

    MathOptInterface API

    The Knitro optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Options

    A list of available options is provided in the KNITRO reference manual.

    Low-level wrapper

    The complete C API can be accessed via KNITRO.KN_xx functions, where the names and arguments are identical to the C API.

    See the KNITRO documentation for details.

    As general rules when converting from Julia to C:

    • When KNITRO requires a Ptr{T} that holds one element, like double *, use a Ref{T}().
    • When KNITRO requires a Ptr{T} that holds multiple elements, use a Vector{T}.
    • When KNITRO requires a double, use Cdouble
    • When KNITRO requires an int, use Cint
    • When KNITRO requires a NULL, use C_NULL

    Extensive examples using the C wrapper can be found in examples/.

    Breaking changes

    KNITRO.jl v0.14.0 introduced a number of breaking changes to the low-level C API. The main changes were:

    1. removing Julia-specific functions like KN_set_param. Use the C API functions like KN_set_int_param and KN_set_double_param_by_name.
    2. removing intermediate methods that tried to make the C API more Julia-like. For example, we have removed the KN_add_var method that returned the index of the variable. There is now only the method from the C API.

    If you have trouble updating, please open a GitHub issue.

    Multi-threading

    Due to limitations in the interaction between Julia and C, KNITRO.jl disables multi-threading if the problem is nonlinear. This will override any options such as par_numthreads that you may have set.

    If you are using the low-level API, opt-in to enable multi-threading by calling KN_solve(model.env) instead of KN_solve(model), where model is the value returned by model = KN_new(). Note that calling KN_solve(model.env) is an advanced operation because it requires all callbacks you provide to be threadsafe.

    Read GitHub issue #93 for more details.

    diff --git a/previews/PR3919/packages/Loraine/index.html b/previews/PR3919/packages/Loraine/index.html index 9150dc36add..1a0931449b5 100644 --- a/previews/PR3919/packages/Loraine/index.html +++ b/previews/PR3919/packages/Loraine/index.html @@ -37,4 +37,4 @@ www={https://hal.science/hal-04076509/} note={Preprint hal-04076509} year={2023} -}
    • 1https://www.youtube.com/watch?v=0D2wNf1lVrI
    +}
    • 1https://www.youtube.com/watch?v=0D2wNf1lVrI
    diff --git a/previews/PR3919/packages/MAiNGO/index.html b/previews/PR3919/packages/MAiNGO/index.html index 2ca98a4f6ce..9e333325dc1 100644 --- a/previews/PR3919/packages/MAiNGO/index.html +++ b/previews/PR3919/packages/MAiNGO/index.html @@ -94,4 +94,4 @@ findMAiNGO(preferred=MAiNGO.C_API) # switch back to MAiNGO_jll findMAiNGO(preferred=MAiNGO.MAINGO_JLL)

    The findMAiNGO() function takes several optional arguments, which can be passed as keyword-arguments:

    • verbose: boolean, whether or not progress on finding MAiNGO is reported. (Default value: false)
    • preferred: either MAiNGO.MAINGOJLL or MAiNGO.CAPI, determines whether jll binaries or custom installation of MAiNGO is preferred. Note that the C-API is always preferred to the standalone version. If a custom standalone version should be used, set this value to C-API and pass an empty string as the capi argument (see next). (Default value: MAINGOJLL)
    • capi: string, path to C-API file. If set, this overrides the environment variable MAINGOLIB.
    • standalone: string, path to standalone executable file. If set, this overrides the environment variable MAINGO_EXEC.

    For example, to use the C-API at a new location, one could call:

    using MAiNGO
    -findMAiNGO(preferred=MAiNGO.C_API, c_api="path\\to\\c\\api\\shared_parser.dll")

    Currently working:

    • Integer and binary variables.
    • Affine, Quadratic and nonlinear constraints and objectives.
    • Operations: min,max,*,/,+,-,-(unary), exp,log,abs,sqrt,^
      • Other operations are easy to add if supported by MathOptInterface,ALE and MAiNGO.
    • Writing problem defined in JuMP syntax to an ALE problem.txt and calling MAiNGO.exe on a specified path.
    • Alternatively using a C-API to call MAiNGO.

    Restrictions compared to using the Python or C++ interface

    It is assumed that all variables are bounded. This interface assumes that integer variables are bounded between -1e6 and 1e6. For real variables these bounds are -1e8 and 1e8.

    Other functionality such as special support for growing datasets or MPI parallelization is not currently supported via this wrapper. Additionally, constraint formulations are simply passed from their representation in JuMP/MathOptInterface to MAiNGO. As such, there is no way to make use of advanced techniques such as defining constraints that are only used for the relaxations, using special relaxations for functions used in thermodynamics and process engineering or formulating reduced space formulations.

    Tests

    A subset of test cases for MathOptInterface solvers can be run by running the script ./test/runtests.jl. The current release was tested in the following combinations:

    • Julia 1.8.5 and MathOptInterface v1.18.0
    • Julia 1.9.4 and MathOptInterface v1.23.0.
    +findMAiNGO(preferred=MAiNGO.C_API, c_api="path\\to\\c\\api\\shared_parser.dll")

    Currently working:

    • Integer and binary variables.
    • Affine, Quadratic and nonlinear constraints and objectives.
    • Operations: min,max,*,/,+,-,-(unary), exp,log,abs,sqrt,^
      • Other operations are easy to add if supported by MathOptInterface,ALE and MAiNGO.
    • Writing problem defined in JuMP syntax to an ALE problem.txt and calling MAiNGO.exe on a specified path.
    • Alternatively using a C-API to call MAiNGO.

    Restrictions compared to using the Python or C++ interface

    It is assumed that all variables are bounded. This interface assumes that integer variables are bounded between -1e6 and 1e6. For real variables these bounds are -1e8 and 1e8.

    Other functionality such as special support for growing datasets or MPI parallelization is not currently supported via this wrapper. Additionally, constraint formulations are simply passed from their representation in JuMP/MathOptInterface to MAiNGO. As such, there is no way to make use of advanced techniques such as defining constraints that are only used for the relaxations, using special relaxations for functions used in thermodynamics and process engineering or formulating reduced space formulations.

    Tests

    A subset of test cases for MathOptInterface solvers can be run by running the script ./test/runtests.jl. The current release was tested in the following combinations:

    • Julia 1.8.5 and MathOptInterface v1.18.0
    • Julia 1.9.4 and MathOptInterface v1.23.0.
    diff --git a/previews/PR3919/packages/MadNLP/index.html b/previews/PR3919/packages/MadNLP/index.html index aca9cd19829..bed5149ef12 100644 --- a/previews/PR3919/packages/MadNLP/index.html +++ b/previews/PR3919/packages/MadNLP/index.html @@ -43,4 +43,4 @@ author={Shin, Sungho and Coffrin, Carleton and Sundar, Kaarthik and Zavala, Victor M}, journal={arXiv preprint arXiv:2010.02404}, year={2020} -}

    Supporting MadNLP.jl

    +}

    Supporting MadNLP.jl

    diff --git a/previews/PR3919/packages/Manopt/index.html b/previews/PR3919/packages/Manopt/index.html index 22f2fde9d22..083c0451d8b 100644 --- a/previews/PR3919/packages/Manopt/index.html +++ b/previews/PR3919/packages/Manopt/index.html @@ -30,4 +30,4 @@ TITLE = {Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds}, VOLUME = {49}, YEAR = {2023} -}

    as well. Note that all citations are in BibLaTeX format.

    Manopt.jl belongs to the Manopt family:

    Did you use Manopt.jl somewhere? Let us know! We'd love to collect those here as well.

    +}

    as well. Note that all citations are in BibLaTeX format.

    Manopt.jl belongs to the Manopt family:

    Did you use Manopt.jl somewhere? Let us know! We'd love to collect those here as well.

    diff --git a/previews/PR3919/packages/MathOptAI/index.html b/previews/PR3919/packages/MathOptAI/index.html index 8183ed89993..70e715c02b2 100644 --- a/previews/PR3919/packages/MathOptAI/index.html +++ b/previews/PR3919/packages/MathOptAI/index.html @@ -31,4 +31,4 @@ moai_SoftMax[7] moai_SoftMax[8] moai_SoftMax[9] - moai_SoftMax[10]

    Documentation

    Documentation is available at https://lanl-ansi.github.io/MathOptAI.jl.

    Getting help

    For help, questions, comments, and suggestions, please open a GitHub issue.

    Inspiration

    This project is mainly inspired by two existing projects:

    Other works, from which we took less inspiration, include:

    The 2024 paper of López-Flores et al. is an excellent summary of the state of the field at the time that we started development of MathOptAI.

    López-Flores, F.J., Ramírez-Márquez, C., Ponce-Ortega J.M. (2024). Process Systems Engineering Tools for Optimization of Trained Machine Learning Models: Comparative and Perspective. Industrial & Engineering Chemistry Research, 63(32), 13966-13979. DOI: 10.1021/acs.iecr.4c00632

    + moai_SoftMax[10]

    Documentation

    Documentation is available at https://lanl-ansi.github.io/MathOptAI.jl.

    Getting help

    For help, questions, comments, and suggestions, please open a GitHub issue.

    Inspiration

    This project is mainly inspired by two existing projects:

    Other works, from which we took less inspiration, include:

    The 2024 paper of López-Flores et al. is an excellent summary of the state of the field at the time that we started development of MathOptAI.

    López-Flores, F.J., Ramírez-Márquez, C., Ponce-Ortega J.M. (2024). Process Systems Engineering Tools for Optimization of Trained Machine Learning Models: Comparative and Perspective. Industrial & Engineering Chemistry Research, 63(32), 13966-13979. DOI: 10.1021/acs.iecr.4c00632

    diff --git a/previews/PR3919/packages/MathOptSymbolicAD/index.html b/previews/PR3919/packages/MathOptSymbolicAD/index.html index 237659f6706..b6adc03b880 100644 --- a/previews/PR3919/packages/MathOptSymbolicAD/index.html +++ b/previews/PR3919/packages/MathOptSymbolicAD/index.html @@ -18,4 +18,4 @@ optimize!(model)

    Background

    MathOptSymbolicAD is inspired by Hassan Hijazi's work on coin-or/gravity, a high-performance algebraic modeling language in C++.

    Hassan made the following observations:

    • For large scale models, symbolic differentiation is slower than other automatic differentiation techniques.
    • However, most large-scale nonlinear programs have a lot of structure.
    • Gravity asks the user to provide structure in the form of template constraints, where the user gives the symbolic form of the constraint as well as a set of data to convert from a symbolic form to the numerical form.
    • Instead of differentiating each constraint in its numerical form, we can compute one symbolic derivative of the constraint in symbolic form, and then plug in the data in to get the numerical derivative of each function.
    • As a final step, if users don't provide the structure, we can still infer it –perhaps with less accuracy–by comparing the expression tree of each constraint.

    The symbolic differentiation approach of Gravity works well when the problem is large with few unique constraints. For example, a model like:

    model = Model()
     @variable(model, 0 <= x[1:10_000] <= 1)
     @constraint(model, [i=1:10_000], sin(x[i]) <= 1)
    -@objective(model, Max, sum(x))

    is ideal, because although the Jacobian matrix has 10,000 rows, we can compute the derivative of sin(x[i]) as cos(x[i]), and then fill in the Jacobian by evaluating the derivative function instead of having to differentiation 10,000 expressions.

    The symbolic differentiation approach of Gravity works poorly if there are a large number of unique constraints in the model (which would require a lot of expressions to be symbolically differentiated), or if the nonlinear functions contain a large number of nonlinear terms (which would make the symbolic derivative expensive to compute).

    For more details, see Oscar's JuMP-dev 2022 talk, although note that the syntax has changed since the original recording.

    +@objective(model, Max, sum(x))

    is ideal, because although the Jacobian matrix has 10,000 rows, we can compute the derivative of sin(x[i]) as cos(x[i]), and then fill in the Jacobian by evaluating the derivative function instead of having to differentiation 10,000 expressions.

    The symbolic differentiation approach of Gravity works poorly if there are a large number of unique constraints in the model (which would require a lot of expressions to be symbolically differentiated), or if the nonlinear functions contain a large number of nonlinear terms (which would make the symbolic derivative expensive to compute).

    For more details, see Oscar's JuMP-dev 2022 talk, although note that the syntax has changed since the original recording.

    diff --git a/previews/PR3919/packages/MiniZinc/index.html b/previews/PR3919/packages/MiniZinc/index.html index a2fcf5a769e..bc45509decb 100644 --- a/previews/PR3919/packages/MiniZinc/index.html +++ b/previews/PR3919/packages/MiniZinc/index.html @@ -53,4 +53,4 @@ @constraint(model, x in MOI.AllDifferent(3)) @objective(model, Max, sum(i * x[i] for i in 1:3)) optimize!(model) -@show value.(x)

    MathOptInterface API

    The MiniZinc Optimizer{T} supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Options

    Set options using MOI.RawOptimizerAttribute in MOI or set_attribute in JuMP.

    MiniZinc.jl supports the following options:

    • model_filename::String = "": the location at which to write out the .mzn file during optimization. This option can be helpful during debugging. If left empty, a temporary file will be used instead.

    • MOI.SolutionLimit: set this option to a positive integer to return up to the limit number of solutions.

    +@show value.(x)

    MathOptInterface API

    The MiniZinc Optimizer{T} supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Options

    Set options using MOI.RawOptimizerAttribute in MOI or set_attribute in JuMP.

    MiniZinc.jl supports the following options:

    • model_filename::String = "": the location at which to write out the .mzn file during optimization. This option can be helpful during debugging. If left empty, a temporary file will be used instead.

    • MOI.SolutionLimit: set this option to a positive integer to return up to the limit number of solutions.

    diff --git a/previews/PR3919/packages/MosekTools/index.html b/previews/PR3919/packages/MosekTools/index.html index 94761da1319..f5afe1c872e 100644 --- a/previews/PR3919/packages/MosekTools/index.html +++ b/previews/PR3919/packages/MosekTools/index.html @@ -7,4 +7,4 @@ using MosekTools model = Model(Mosek.Optimizer) set_attribute(model, "QUIET", true) -set_attribute(model, "INTPNT_CO_TOL_DFEAS", 1e-7)

    Options

    The parameter QUIET is a special parameter that when set to true disables all Mosek printing output.

    All other parameters can be found in the Mosek documentation.

    Note that the prefix MSK_IPAR_ (for integer parameters), MSK_DPAR_ (for floating point parameters) or MSK_SPAR_ (for string parameters) are optional. If they are not given, they are inferred from the type of the value. For example, in the example above, as 1e-7 is a floating point number, the parameters name used is MSK_DPAR_INTPNT_CO_TOL_DFEAS.

    +set_attribute(model, "INTPNT_CO_TOL_DFEAS", 1e-7)

    Options

    The parameter QUIET is a special parameter that when set to true disables all Mosek printing output.

    All other parameters can be found in the Mosek documentation.

    Note that the prefix MSK_IPAR_ (for integer parameters), MSK_DPAR_ (for floating point parameters) or MSK_SPAR_ (for string parameters) are optional. If they are not given, they are inferred from the type of the value. For example, in the example above, as 1e-7 is a floating point number, the parameters name used is MSK_DPAR_INTPNT_CO_TOL_DFEAS.

    diff --git a/previews/PR3919/packages/MultiObjectiveAlgorithms/index.html b/previews/PR3919/packages/MultiObjectiveAlgorithms/index.html index fdb0cfc6e8f..563ec642fb9 100644 --- a/previews/PR3919/packages/MultiObjectiveAlgorithms/index.html +++ b/previews/PR3919/packages/MultiObjectiveAlgorithms/index.html @@ -9,4 +9,4 @@ import MultiObjectiveAlgorithms as MOA model = JuMP.Model(() -> MOA.Optimizer(HiGHS.Optimizer)) set_attribute(model, MOA.Algorithm(), MOA.Dichotomy()) -set_attribute(model, MOA.SolutionLimit(), 4)

    Replace HiGHS.Optimizer with an optimizer capable of solving a single-objective instance of your optimization problem.

    You may set additional optimizer attributes, the supported attributes depend on the choice of solution algorithm.

    Algorithm

    Set the algorithm using the MOA.Algorithm() attribute.

    The value must be one of the algorithms supported by MOA:

    • MOA.Chalmet()
    • MOA.Dichotomy()
    • MOA.DominguezRios()
    • MOA.EpsilonConstraint()
    • MOA.Hierarchical()
    • MOA.KirlikSayin()
    • MOA.Lexicographic() [default]
    • MOA.TambyVanderpooten()

    Consult their docstrings for details.

    Other optimizer attributes

    There are a number of optimizer attributes supported by the algorithms in MOA.

    Each algorithm supports only a subset of the attributes. Consult the algorithm's docstring for details on which attributes it supports, and how it uses them in the solution process.

    • MOA.EpsilonConstraintStep()
    • MOA.LexicographicAllPermutations()
    • MOA.ObjectiveAbsoluteTolerance(index::Int)
    • MOA.ObjectivePriority(index::Int)
    • MOA.ObjectiveRelativeTolerance(index::Int)
    • MOA.ObjectiveWeight(index::Int)
    • MOA.SolutionLimit()
    • MOI.TimeLimitSec()
    +set_attribute(model, MOA.SolutionLimit(), 4)

    Replace HiGHS.Optimizer with an optimizer capable of solving a single-objective instance of your optimization problem.

    You may set additional optimizer attributes, the supported attributes depend on the choice of solution algorithm.

    Algorithm

    Set the algorithm using the MOA.Algorithm() attribute.

    The value must be one of the algorithms supported by MOA:

    • MOA.Chalmet()
    • MOA.Dichotomy()
    • MOA.DominguezRios()
    • MOA.EpsilonConstraint()
    • MOA.Hierarchical()
    • MOA.KirlikSayin()
    • MOA.Lexicographic() [default]
    • MOA.TambyVanderpooten()

    Consult their docstrings for details.

    Other optimizer attributes

    There are a number of optimizer attributes supported by the algorithms in MOA.

    Each algorithm supports only a subset of the attributes. Consult the algorithm's docstring for details on which attributes it supports, and how it uses them in the solution process.

    • MOA.EpsilonConstraintStep()
    • MOA.LexicographicAllPermutations()
    • MOA.ObjectiveAbsoluteTolerance(index::Int)
    • MOA.ObjectivePriority(index::Int)
    • MOA.ObjectiveRelativeTolerance(index::Int)
    • MOA.ObjectiveWeight(index::Int)
    • MOA.SolutionLimit()
    • MOI.TimeLimitSec()
    diff --git a/previews/PR3919/packages/NEOSServer/index.html b/previews/PR3919/packages/NEOSServer/index.html index d76af090960..a06610029df 100644 --- a/previews/PR3919/packages/NEOSServer/index.html +++ b/previews/PR3919/packages/NEOSServer/index.html @@ -27,4 +27,4 @@ results = neos_getFinalResults(server, job)

    Use with JuMP

    Use NEOSServer.jl with JuMP as follows:

    using JuMP, NEOSServer
     model = Model() do
         return NEOSServer.Optimizer(; email = "me@mydomain.com", solver = "Ipopt")
    -end

    Note: NEOSServer.Optimizer is limited to the following solvers:

    • "CPLEX"
    • "FICO-Xpress"
    • "Ipopt"
    • "Knitro"
    • "MOSEK"
    • "OCTERACT"
    • "SNOPT"

    NEOS Limits

    NEOS currently limits jobs to an 8 hour time limit, 3 GB of memory, and a 16 MB submission file. If your model exceeds these limits, NEOSServer.jl may be unable to return useful information to the user.

    +end

    Note: NEOSServer.Optimizer is limited to the following solvers:

    • "CPLEX"
    • "FICO-Xpress"
    • "Ipopt"
    • "Knitro"
    • "MOSEK"
    • "OCTERACT"
    • "SNOPT"

    NEOS Limits

    NEOS currently limits jobs to an 8 hour time limit, 3 GB of memory, and a 16 MB submission file. If your model exceeds these limits, NEOSServer.jl may be unable to return useful information to the user.

    diff --git a/previews/PR3919/packages/NLopt/index.html b/previews/PR3919/packages/NLopt/index.html index fa52f61bb8b..e14d0260dce 100644 --- a/previews/PR3919/packages/NLopt/index.html +++ b/previews/PR3919/packages/NLopt/index.html @@ -120,4 +120,4 @@ opt = Opt(:LD_MMA, 2) # Define problem solutions[i] = optimize(opt, rand(2)) -end

    Author

    This module was initially written by Steven G. Johnson, with subsequent contributions by several other authors (see the git history).

    +end

    Author

    This module was initially written by Steven G. Johnson, with subsequent contributions by several other authors (see the git history).

    diff --git a/previews/PR3919/packages/OSQP/index.html b/previews/PR3919/packages/OSQP/index.html index 7b0543bdc11..dfed6f7d453 100644 --- a/previews/PR3919/packages/OSQP/index.html +++ b/previews/PR3919/packages/OSQP/index.html @@ -6,4 +6,4 @@

    OSQP.jl

    Build Status codecov.io

    OSQP.jl is a Julia wrapper for OSQP: the Operator Splitting QP Solver.

    License

    OSQP.jl is licensed under the Apache-2.0 license.

    The upstream solver, osqp/osqp is also licensed under the Apache-2.0 license.

    Installation

    Install OSQP.jl using the Julia package manager

    import Pkg
     Pkg.add("OSQP")

    Problem class

    The OSQP (Operator Splitting Quadratic Program) solver is a numerical optimization package for solving problems in the form

    minimize        0.5 x' P x + q' x
     
    -subject to      l <= A x <= u

    where x in R^n is the optimization variable. The objective function is defined by a positive semidefinite matrix P in S^n_+ and vector q in R^n. The linear constraints are defined by matrix A in R^{m x n} and vectors l in R^m U {-inf}^m, u in R^m U {+inf}^m.

    Documentation

    Detailed documentation is available at https://osqp.org/.

    +subject to l <= A x <= u

    where x in R^n is the optimization variable. The objective function is defined by a positive semidefinite matrix P in S^n_+ and vector q in R^n. The linear constraints are defined by matrix A in R^{m x n} and vectors l in R^m U {-inf}^m, u in R^m U {+inf}^m.

    Documentation

    Detailed documentation is available at https://osqp.org/.

    diff --git a/previews/PR3919/packages/Optim/index.html b/previews/PR3919/packages/Optim/index.html index 38ab361d675..fab4f3239d1 100644 --- a/previews/PR3919/packages/Optim/index.html +++ b/previews/PR3919/packages/Optim/index.html @@ -105,4 +105,4 @@ number = {24}, pages = {615}, doi = {10.21105/joss.00615} -} +} diff --git a/previews/PR3919/packages/PATHSolver/index.html b/previews/PR3919/packages/PATHSolver/index.html index 38d761e6c7e..5d32c5ddbcf 100644 --- a/previews/PR3919/packages/PATHSolver/index.html +++ b/previews/PR3919/packages/PATHSolver/index.html @@ -165,4 +165,4 @@ 0.8 1.2

    Thread safety

    PATH is not thread-safe and there are no known work-arounds. Do not run it in parallel using Threads.@threads. See issue #62 for more details.

    Factorization methods

    By default, PATHSolver.jl will download the LUSOL shared library. To use LUSOL, set the following options:

    model = Model(PATHSolver.Optimizer)
     set_optimizer_attribute(model, "factorization_method", "blu_lusol")
    -set_optimizer_attribute(model, "factorization_library_name", PATHSolver.LUSOL_LIBRARY_PATH)

    To use factorization_method umfpack you will need the umfpack shared library that is available directly from the developers of that code for academic use.

    Manual installation

    By default PATHSolver.jl will download a copy of the libpath library. If you already have one installed and want to use that, set the PATH_JL_LOCATION environment variable to point to the libpath50.xx library.

    +set_optimizer_attribute(model, "factorization_library_name", PATHSolver.LUSOL_LIBRARY_PATH)

    To use factorization_method umfpack you will need the umfpack shared library that is available directly from the developers of that code for academic use.

    Manual installation

    By default PATHSolver.jl will download a copy of the libpath library. If you already have one installed and want to use that, set the PATH_JL_LOCATION environment variable to point to the libpath50.xx library.

    diff --git a/previews/PR3919/packages/Pajarito/index.html b/previews/PR3919/packages/Pajarito/index.html index bc076ab3f8b..ff08d6b7cde 100644 --- a/previews/PR3919/packages/Pajarito/index.html +++ b/previews/PR3919/packages/Pajarito/index.html @@ -27,4 +27,4 @@ pages={249--293}, year={2020}, publisher={Springer} -}

    Note this paper describes a legacy MathProgBase version of Pajarito, which is available on the mathprogbase branch of this repository. Starting with version v0.8.0, Pajarito supports MathOptInterface instead of MathProgBase.

    +}

    Note this paper describes a legacy MathProgBase version of Pajarito, which is available on the mathprogbase branch of this repository. Starting with version v0.8.0, Pajarito supports MathOptInterface instead of MathProgBase.

    diff --git a/previews/PR3919/packages/ParametricOptInterface/index.html b/previews/PR3919/packages/ParametricOptInterface/index.html index cfe19671396..343121f091d 100644 --- a/previews/PR3919/packages/ParametricOptInterface/index.html +++ b/previews/PR3919/packages/ParametricOptInterface/index.html @@ -13,4 +13,4 @@ @objective(model, Min, 2x) optimize!(model) MOI.set(model, POI.ParameterValue(), p, 2.0) -optimize!(model)

    GSOC2020

    ParametricOptInterface began as a NumFOCUS sponsored Google Summer of Code (2020) project.

    +optimize!(model)

    GSOC2020

    ParametricOptInterface began as a NumFOCUS sponsored Google Summer of Code (2020) project.

    diff --git a/previews/PR3919/packages/Pavito/index.html b/previews/PR3919/packages/Pavito/index.html index 253c7340176..37e53b49a5e 100644 --- a/previews/PR3919/packages/Pavito/index.html +++ b/previews/PR3919/packages/Pavito/index.html @@ -13,4 +13,4 @@ "cont_solver" => optimizer_with_attributes(Ipopt.Optimizer, "print_level" => 0), ), -)

    The algorithm implemented by Pavito itself is relatively simple; most of the hard work is performed by the MILP solver passed as mip_solver and the NLP solver passed as cont_solver.

    The performance of Pavito depends on these two types of solvers.

    For better performance, you should use a commercial MILP solver such as CPLEX or Gurobi.

    Options

    The following optimizer attributes can set to a Pavito.Optimizer to modify its behavior:

    • log_level::Int Verbosity flag: 0 for quiet, higher for basic solve info
    • timeout::Float64 Time limit for algorithm (in seconds)
    • rel_gap::Float64 Relative optimality gap termination condition
    • mip_solver_drives::Bool Let MILP solver manage convergence ("branch and cut")
    • mip_solver::MOI.OptimizerWithAttributes MILP solver
    • cont_solver::MOI.OptimizerWithAttributes Continuous NLP solver

    Pavito is not yet numerically robust and may require tuning of parameters to improve convergence.

    If the default parameters don't work for you, please let us know by opening an issue.

    For improved Pavito performance, MILP solver integrality tolerance and feasibility tolerances should typically be tightened, for example to 1e-8.

    Bug reports and support

    Please report any issues via the GitHub issue tracker. All types of issues are welcome and encouraged; this includes bug reports, documentation typos, feature requests, etc. The Optimization (Mathematical) category on Discourse is appropriate for general discussion.

    +)

    The algorithm implemented by Pavito itself is relatively simple; most of the hard work is performed by the MILP solver passed as mip_solver and the NLP solver passed as cont_solver.

    The performance of Pavito depends on these two types of solvers.

    For better performance, you should use a commercial MILP solver such as CPLEX or Gurobi.

    Options

    The following optimizer attributes can set to a Pavito.Optimizer to modify its behavior:

    • log_level::Int Verbosity flag: 0 for quiet, higher for basic solve info
    • timeout::Float64 Time limit for algorithm (in seconds)
    • rel_gap::Float64 Relative optimality gap termination condition
    • mip_solver_drives::Bool Let MILP solver manage convergence ("branch and cut")
    • mip_solver::MOI.OptimizerWithAttributes MILP solver
    • cont_solver::MOI.OptimizerWithAttributes Continuous NLP solver

    Pavito is not yet numerically robust and may require tuning of parameters to improve convergence.

    If the default parameters don't work for you, please let us know by opening an issue.

    For improved Pavito performance, MILP solver integrality tolerance and feasibility tolerances should typically be tightened, for example to 1e-8.

    Bug reports and support

    Please report any issues via the GitHub issue tracker. All types of issues are welcome and encouraged; this includes bug reports, documentation typos, feature requests, etc. The Optimization (Mathematical) category on Discourse is appropriate for general discussion.

    diff --git a/previews/PR3919/packages/Percival/index.html b/previews/PR3919/packages/Percival/index.html index 69e5155534a..b1af9c73f0a 100644 --- a/previews/PR3919/packages/Percival/index.html +++ b/previews/PR3919/packages/Percival/index.html @@ -22,4 +22,4 @@ [1.0], [1.0], ) -output = percival(nlp, verbose = 1)

    Bug reports and discussions

    If you think you found a bug, feel free to open an issue. Focused suggestions and requests can also be opened as issues. Before opening a pull request, start an issue or a discussion on the topic, please.

    If you want to ask a question not suited for a bug report, feel free to start a discussion here. This forum is for general discussion about this repository and the JuliaSmoothOptimizers, so questions about any of our packages are welcome.

    +output = percival(nlp, verbose = 1)

    Bug reports and discussions

    If you think you found a bug, feel free to open an issue. Focused suggestions and requests can also be opened as issues. Before opening a pull request, start an issue or a discussion on the topic, please.

    If you want to ask a question not suited for a bug report, feel free to start a discussion here. This forum is for general discussion about this repository and the JuliaSmoothOptimizers, so questions about any of our packages are welcome.

    diff --git a/previews/PR3919/packages/PiecewiseLinearOpt/index.html b/previews/PR3919/packages/PiecewiseLinearOpt/index.html index f2ca182b336..7490b7fca2b 100644 --- a/previews/PR3919/packages/PiecewiseLinearOpt/index.html +++ b/previews/PR3919/packages/PiecewiseLinearOpt/index.html @@ -41,4 +41,4 @@ (u, v) -> exp(u + v); method = :DisaggLogarithmic, ) -@objective(model, Min, z)

    Methods

    Supported univariate formulations:

    • Convex combination (:CC)
    • Multiple choice (:MC)
    • Native SOS2 branching (:SOS2)
    • Incremental (:Incremental)
    • Logarithmic (:Logarithmic; default)
    • Disaggregated Logarithmic (:DisaggLogarithmic)
    • Binary zig-zag (:ZigZag)
    • General integer zig-zag (:ZigZagInteger)

    Supported bivariate formulations for entire constraint:

    • Convex combination (:CC)
    • Multiple choice (:MC)
    • Disaggregated Logarithmic (:DisaggLogarithmic)

    Also, you can use any univariate formulation for bivariate functions as well. They will be used to impose two axis-aligned SOS2 constraints, along with the "6-stencil" formulation for the triangle selection portion of the constraint. See the associated paper for more details. In particular, the following are also acceptable bivariate formulation choices:

    • Native SOS2 branching (:SOS2)
    • Incremental (:Incremental)
    • Logarithmic (:Logarithmic)
    • Binary zig-zag (:ZigZag)
    • General integer zig-zag (:ZigZagInteger)
    +@objective(model, Min, z)

    Methods

    Supported univariate formulations:

    • Convex combination (:CC)
    • Multiple choice (:MC)
    • Native SOS2 branching (:SOS2)
    • Incremental (:Incremental)
    • Logarithmic (:Logarithmic; default)
    • Disaggregated Logarithmic (:DisaggLogarithmic)
    • Binary zig-zag (:ZigZag)
    • General integer zig-zag (:ZigZagInteger)

    Supported bivariate formulations for entire constraint:

    • Convex combination (:CC)
    • Multiple choice (:MC)
    • Disaggregated Logarithmic (:DisaggLogarithmic)

    Also, you can use any univariate formulation for bivariate functions as well. They will be used to impose two axis-aligned SOS2 constraints, along with the "6-stencil" formulation for the triangle selection portion of the constraint. See the associated paper for more details. In particular, the following are also acceptable bivariate formulation choices:

    • Native SOS2 branching (:SOS2)
    • Incremental (:Incremental)
    • Logarithmic (:Logarithmic)
    • Binary zig-zag (:ZigZag)
    • General integer zig-zag (:ZigZagInteger)
    diff --git a/previews/PR3919/packages/Plasmo/index.html b/previews/PR3919/packages/Plasmo/index.html index 2c941228c70..cf2ce95f09d 100644 --- a/previews/PR3919/packages/Plasmo/index.html +++ b/previews/PR3919/packages/Plasmo/index.html @@ -50,4 +50,4 @@ volume = {125}, year = {2019}, doi = {10.1016/j.compchemeng.2019.03.009} -}

    A pre-print of this paper can be found here

    +}

    A pre-print of this paper can be found here

    diff --git a/previews/PR3919/packages/PolyJuMP/index.html b/previews/PR3919/packages/PolyJuMP/index.html index 42087a8394a..6271eb87cc6 100644 --- a/previews/PR3919/packages/PolyJuMP/index.html +++ b/previews/PR3919/packages/PolyJuMP/index.html @@ -17,4 +17,4 @@ model = Model(optimizer_with_attributes( PolyJuMP.KKT.Optimizer, "solver" => HomotopyContinuation.SemialgebraicSetsHCSolver(), -))

    Documentation

    Documentation for PolyJuMP.jl is included in the documentation for SumOfSquares.jl.

    +))

    Documentation

    Documentation for PolyJuMP.jl is included in the documentation for SumOfSquares.jl.

    diff --git a/previews/PR3919/packages/ProxSDP/index.html b/previews/PR3919/packages/ProxSDP/index.html index f9b59337ee9..f1ad042cda0 100644 --- a/previews/PR3919/packages/ProxSDP/index.html +++ b/previews/PR3919/packages/ProxSDP/index.html @@ -56,4 +56,4 @@ publisher = {Taylor & Francis}, doi = {10.1080/02331934.2020.1823387}, URL = {https://doi.org/10.1080/02331934.2020.1823387} -}

    The preprint version of the paper can be found here.

    Disclaimer

    • ProxSDP is a research software, therefore it should not be used in production.
    • Please open an issue if you find any problems, developers will try to fix and find alternatives.
    • There is no continuous development for 32-bit systems, the package should work, but might reach some issues.
    • ProxSDP assumes primal and dual feasibility.

    ROAD MAP

    • Support for exponential and power cones
    • Warm start
    +}

    The preprint version of the paper can be found here.

    Disclaimer

    • ProxSDP is a research software, therefore it should not be used in production.
    • Please open an issue if you find any problems, developers will try to fix and find alternatives.
    • There is no continuous development for 32-bit systems, the package should work, but might reach some issues.
    • ProxSDP assumes primal and dual feasibility.

    ROAD MAP

    • Support for exponential and power cones
    • Warm start
    diff --git a/previews/PR3919/packages/SCIP/index.html b/previews/PR3919/packages/SCIP/index.html index bcef18097a7..d687137d6e9 100644 --- a/previews/PR3919/packages/SCIP/index.html +++ b/previews/PR3919/packages/SCIP/index.html @@ -14,4 +14,4 @@ julia> Pkg.build("SCIP")

    Use with JuMP

    Use SCIP with JuMP as follows:

    using JuMP, SCIP
     model = Model(SCIP.Optimizer)
     set_attribute(model, "display/verblevel", 0)
    -set_attribute(model, "limits/gap", 0.05)

    Options

    See the SCIP documentation for a list of supported options.

    MathOptInterface API

    The SCIP optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Design considerations

    Wrapping the public API

    All of the public API methods are wrapped and available within the SCIP package. This includes the scip_*.h and pub_*.h headers that are collected in scip.h, as well as all default constraint handlers (cons_*.h.)

    The wrapped functions do not transform any data structures and work on the raw pointers (for example, SCIP* in C, Ptr{SCIP_} in Julia). Convenience wrapper functions based on Julia types are added as needed.

    Memory management

    Programming with SCIP requires dealing with variable and constraint objects that use reference counting for memory management.

    The SCIP.Optimizer wrapper type collects lists of SCIP_VAR* and SCIP_CONS* under the hood, and it releases all references when it is garbage collected itself (via finalize).

    When adding a variable (add_variable) or a constraint (add_linear_constraint), an integer index is returned. This index can be used to retrieve the SCIP_VAR* or SCIP_CONS* pointer via get_var and get_cons respectively.

    Supported nonlinear operators

    Supported operators in nonlinear expressions are as follows:

    • +
    • -
    • *
    • /
    • ^
    • sqrt
    • exp
    • log
    • abs
    • cos
    • sin
    +set_attribute(model, "limits/gap", 0.05)

    Options

    See the SCIP documentation for a list of supported options.

    MathOptInterface API

    The SCIP optimizer supports the following constraints and attributes.

    List of supported objective functions:

    List of supported variable types:

    List of supported constraint types:

    List of supported model attributes:

    Design considerations

    Wrapping the public API

    All of the public API methods are wrapped and available within the SCIP package. This includes the scip_*.h and pub_*.h headers that are collected in scip.h, as well as all default constraint handlers (cons_*.h.)

    The wrapped functions do not transform any data structures and work on the raw pointers (for example, SCIP* in C, Ptr{SCIP_} in Julia). Convenience wrapper functions based on Julia types are added as needed.

    Memory management

    Programming with SCIP requires dealing with variable and constraint objects that use reference counting for memory management.

    The SCIP.Optimizer wrapper type collects lists of SCIP_VAR* and SCIP_CONS* under the hood, and it releases all references when it is garbage collected itself (via finalize).

    When adding a variable (add_variable) or a constraint (add_linear_constraint), an integer index is returned. This index can be used to retrieve the SCIP_VAR* or SCIP_CONS* pointer via get_var and get_cons respectively.

    Supported nonlinear operators

    Supported operators in nonlinear expressions are as follows:

    • +
    • -
    • *
    • /
    • ^
    • sqrt
    • exp
    • log
    • abs
    • cos
    • sin
    diff --git a/previews/PR3919/packages/SCS/index.html b/previews/PR3919/packages/SCS/index.html index b5fffbb1e3d..9bed7fa1d88 100644 --- a/previews/PR3919/packages/SCS/index.html +++ b/previews/PR3919/packages/SCS/index.html @@ -53,4 +53,4 @@ julia> SCS.is_available(SCS.GpuIndirectSolver) true

    The GpuIndirectSolver is available on Linux x86_64 platform only.

    Low-level wrapper

    SCS.jl provides a low-level interface to solve a problem directly, without interfacing through MathOptInterface.

    This is an advanced interface with a risk of incorrect usage. For new users, we recommend that you use the JuMP or Convex interfaces instead.

    SCS solves a problem of the form:

    minimize        1/2 * x' * P * x + c' * x
     subject to      A * x + s = b
    -                s in K

    where K is a product cone of:

    • zero cone
    • positive orthant { x | x ≥ 0 }
    • box cone { (t,x) | t*l ≤ x ≤ t*u}
    • second-order cone (SOC) { (t,x) | ||x||_2 ≤ t }
    • semi-definite cone (SDC) { X | X is psd }
    • exponential cone { (x,y,z) | y e^(x/y) ≤ z, y>0 }
    • power cone { (x,y,z) | x^a * y^(1-a) ≥ |z|, x ≥ 0, y ≥ 0 }
    • dual power cone { (u,v,w) | (u/a)^a * (v/(1-a))^(1-a) ≥ |w|, u ≥ 0, v ≥ 0 }.

    To solve this problem with SCS, call SCS.scs_solve; see the docstring for details.

    + s in K

    where K is a product cone of:

    • zero cone
    • positive orthant { x | x ≥ 0 }
    • box cone { (t,x) | t*l ≤ x ≤ t*u}
    • second-order cone (SOC) { (t,x) | ||x||_2 ≤ t }
    • semi-definite cone (SDC) { X | X is psd }
    • exponential cone { (x,y,z) | y e^(x/y) ≤ z, y>0 }
    • power cone { (x,y,z) | x^a * y^(1-a) ≥ |z|, x ≥ 0, y ≥ 0 }
    • dual power cone { (u,v,w) | (u/a)^a * (v/(1-a))^(1-a) ≥ |w|, u ≥ 0, v ≥ 0 }.

    To solve this problem with SCS, call SCS.scs_solve; see the docstring for details.

    diff --git a/previews/PR3919/packages/SDDP/index.html b/previews/PR3919/packages/SDDP/index.html index 216513f6e50..2f1da058771 100644 --- a/previews/PR3919/packages/SDDP/index.html +++ b/previews/PR3919/packages/SDDP/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash}); -
    +
    diff --git a/previews/PR3919/packages/SDPA/index.html b/previews/PR3919/packages/SDPA/index.html index c5d0dd21780..078d3d2bfae 100644 --- a/previews/PR3919/packages/SDPA/index.html +++ b/previews/PR3919/packages/SDPA/index.html @@ -13,4 +13,4 @@ set_attribute(model, "Mode", SDPA.PARAMETER_STABLE_BUT_SLOW)

    Note that the parameters are set in the order they are given, so you can set a mode and then modify parameters from this mode.

    using JuMP, SDPA
     model = Model(SDPA.Optimizer)
     set_attribute(model, "Mode", SDPA.PARAMETER_STABLE_BUT_SLOW)
    -set_attribute(model, "MaxIteration", 100)

    The choice of parameter mode has a large impact on the performance and stability of SDPA, and not necessarily in the way implied by the names of the modes; for example, PARAMETER_UNSTABLE_BUT_FAST can be more stable than the other modes for some problems. You should try each mode to see how it performs on your specific problem. See SDPA.jl#17 for more details.

    +set_attribute(model, "MaxIteration", 100)

    The choice of parameter mode has a large impact on the performance and stability of SDPA, and not necessarily in the way implied by the names of the modes; for example, PARAMETER_UNSTABLE_BUT_FAST can be more stable than the other modes for some problems. You should try each mode to see how it performs on your specific problem. See SDPA.jl#17 for more details.

    diff --git a/previews/PR3919/packages/SDPLR/index.html b/previews/PR3919/packages/SDPLR/index.html index a1582a6792a..94f93bd6b64 100644 --- a/previews/PR3919/packages/SDPLR/index.html +++ b/previews/PR3919/packages/SDPLR/index.html @@ -50,4 +50,4 @@ sigma *= 2 end lambdaupdate = 0 -end +end diff --git a/previews/PR3919/packages/SDPNAL/index.html b/previews/PR3919/packages/SDPNAL/index.html index 17f591ecea4..1d520696371 100644 --- a/previews/PR3919/packages/SDPNAL/index.html +++ b/previews/PR3919/packages/SDPNAL/index.html @@ -18,4 +18,4 @@ '/path/to/SDPNALv1.0/solver:', ... '/path/to/SDPNALv1.0/solver_main_default:', ... '/path/to/SDPNALv1.0/util:', ... -% (...)

    If you have SDPT3 in addition to SDPNAL in the MATLAB path (that is, the toolbox/local/pathdef.m file) then you might have issues because both solvers define a validate function, and this might make SDPNAL call SDPT3's validate function instead of SDPT3's validate function.

    +% (...)

    If you have SDPT3 in addition to SDPNAL in the MATLAB path (that is, the toolbox/local/pathdef.m file) then you might have issues because both solvers define a validate function, and this might make SDPNAL call SDPT3's validate function instead of SDPT3's validate function.

    diff --git a/previews/PR3919/packages/SDPT3/index.html b/previews/PR3919/packages/SDPT3/index.html index 36e6a3e4b93..7306d6498b1 100644 --- a/previews/PR3919/packages/SDPT3/index.html +++ b/previews/PR3919/packages/SDPT3/index.html @@ -29,4 +29,4 @@ julia> MATLAB.restoredefaultpath() -julia> MATLAB.mat"savepath" +julia> MATLAB.mat"savepath" diff --git a/previews/PR3919/packages/SeDuMi/index.html b/previews/PR3919/packages/SeDuMi/index.html index 909bb4d4456..63698024ae8 100644 --- a/previews/PR3919/packages/SeDuMi/index.html +++ b/previews/PR3919/packages/SeDuMi/index.html @@ -17,4 +17,4 @@ MATLAB.mat"install_sedumi" end -julia> MATLAB.mat"savepath" +julia> MATLAB.mat"savepath" diff --git a/previews/PR3919/packages/SumOfSquares/index.html b/previews/PR3919/packages/SumOfSquares/index.html index ef5b8fd4be1..1dd70ca0a4c 100644 --- a/previews/PR3919/packages/SumOfSquares/index.html +++ b/previews/PR3919/packages/SumOfSquares/index.html @@ -4,4 +4,4 @@ gtag('js', new Date()); gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash});

    SumOfSquares.jl

    Build Status codecov

    SumOfSquares.jl is a JuMP extension that, when used in conjunction with MultivariatePolynomial and PolyJuMP, implements a sum of squares reformulation for polynomial optimization.

    License

    SumOfSquares.jl is licensed under the MIT license.

    Installation

    Install SumOfSquares using Pkg.add:

    import Pkg
    -Pkg.add("SumOfSquares")

    Documentation

    See https://jump.dev/SumOfSquares.jl/stable for the most recently tagged version of the documentation.

    See https://jump.dev/SumOfSquares.jl/dev for the in-development version of the documentation.

    Presentations

    Some presentations on, or using, SumOfSquares (see blegat/SumOfSquaresSlides for the source code of the presentations):

    Citing

    See CITATION.bib.

    +Pkg.add("SumOfSquares")

    Documentation

    See https://jump.dev/SumOfSquares.jl/stable for the most recently tagged version of the documentation.

    See https://jump.dev/SumOfSquares.jl/dev for the in-development version of the documentation.

    Presentations

    Some presentations on, or using, SumOfSquares (see blegat/SumOfSquaresSlides for the source code of the presentations):

    Citing

    See CITATION.bib.

    diff --git a/previews/PR3919/packages/Tulip/index.html b/previews/PR3919/packages/Tulip/index.html index 7c2f4015d64..d672ac42c56 100644 --- a/previews/PR3919/packages/Tulip/index.html +++ b/previews/PR3919/packages/Tulip/index.html @@ -28,4 +28,4 @@ language = {en}, url = {https://doi.org/10.1007/s12532-020-00200-8}, urldate = {2021-03-07}, -} +} diff --git a/previews/PR3919/packages/Xpress/index.html b/previews/PR3919/packages/Xpress/index.html index e19fbaa84b4..40105d5dfb3 100644 --- a/previews/PR3919/packages/Xpress/index.html +++ b/previews/PR3919/packages/Xpress/index.html @@ -58,4 +58,4 @@ @test termination_status(model) == MOI.OPTIMAL @test primal_status(model) == MOI.FEASIBLE_POINT @test value(x) == 1 -@test value(y) == 2

    Environment variables

    • XPRESS_JL_SKIP_LIB_CHECK: Used to skip build lib check as previously described.
    • XPRESS_JL_NO_INFO: Disable license info log.
    • XPRESS_JL_NO_DEPS_ERROR: Disable error when do deps.jl file is found.
    • XPRESS_JL_NO_AUTO_INIT: Disable automatic run of Xpress.initialize(). Specially useful for explicitly loading the dynamic library.
    • XPRESS_JL_LIBRARY: Provide a custom path to libxprs
    • XPAUTH_PATH: Provide a custom path to the license file

    C API

    The C API can be accessed via Xpress.Lib.XPRSxx functions, where the names and arguments are identical to the C API.

    See the Xpress documentation for details.

    Documentation

    For more information, consult the FICO optimizer manual.

    +@test value(y) == 2

    Environment variables

    • XPRESS_JL_SKIP_LIB_CHECK: Used to skip build lib check as previously described.
    • XPRESS_JL_NO_INFO: Disable license info log.
    • XPRESS_JL_NO_DEPS_ERROR: Disable error when do deps.jl file is found.
    • XPRESS_JL_NO_AUTO_INIT: Disable automatic run of Xpress.initialize(). Specially useful for explicitly loading the dynamic library.
    • XPRESS_JL_LIBRARY: Provide a custom path to libxprs
    • XPAUTH_PATH: Provide a custom path to the license file

    C API

    The C API can be accessed via Xpress.Lib.XPRSxx functions, where the names and arguments are identical to the C API.

    See the Xpress documentation for details.

    Documentation

    For more information, consult the FICO optimizer manual.

    diff --git a/previews/PR3919/packages/solvers/index.html b/previews/PR3919/packages/solvers/index.html index 340c550e4c5..5f7f8903052 100644 --- a/previews/PR3919/packages/solvers/index.html +++ b/previews/PR3919/packages/solvers/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash}); -

    Introduction

    This section of the documentation contains brief documentation for some of the solvers that JuMP supports. The list of solvers is not exhaustive, but instead is intended to help you discover commonly used solvers.

    Affiliation

    Packages beginning with jump-dev/ are developed and maintained by the JuMP developers. In many cases, these packages wrap external solvers that are not developed by the JuMP developers and, while the Julia packages are all open-source, in some cases the solvers themselves are closed source commercial products.

    Packages that do not begin with jump-dev/ are developed independently. The developers of these packages requested or consented to the inclusion of their README contents in the JuMP documentation for the benefit of users.

    Adding new solvers

    Written a solver? Add it to this section of the JuMP documentation by making a pull request to the docs/packages.toml file.

    +

    Introduction

    This section of the documentation contains brief documentation for some of the solvers that JuMP supports. The list of solvers is not exhaustive, but instead is intended to help you discover commonly used solvers.

    Affiliation

    Packages beginning with jump-dev/ are developed and maintained by the JuMP developers. In many cases, these packages wrap external solvers that are not developed by the JuMP developers and, while the Julia packages are all open-source, in some cases the solvers themselves are closed source commercial products.

    Packages that do not begin with jump-dev/ are developed independently. The developers of these packages requested or consented to the inclusion of their README contents in the JuMP documentation for the benefit of users.

    Adding new solvers

    Written a solver? Add it to this section of the JuMP documentation by making a pull request to the docs/packages.toml file.

    diff --git a/previews/PR3919/release_notes/index.html b/previews/PR3919/release_notes/index.html index f03dcbe7c48..15896215994 100644 --- a/previews/PR3919/release_notes/index.html +++ b/previews/PR3919/release_notes/index.html @@ -12,4 +12,4 @@ new_b = backend(model)
  • All usages of @SDconstraint are deprecated. The new syntax is @constraint(model, X >= Y, PSDCone()).
  • Creating a DenseAxisArray with a Number as an axis will now display a warning. This catches a common error in which users write @variable(model, x[length(S)]) instead of @variable(model, x[1:length(S)]).
  • The caching_mode argument to Model, for example, Model(caching_mode = MOIU.MANUAL) mode has been removed. For more control over the optimizer, use direct_model instead.
  • The previously deprecated lp_objective_perturbation_range and lp_rhs_perturbation_range functions have been removed. Use lp_sensitivity_report instead.
  • The .m fields of NonlinearExpression and NonlinearParameter have been renamed to .model.
  • Infinite variable bounds are now ignored. Thus, @variable(model, x <= Inf) will show has_upper_bound(x) == false. Previously, these bounds were passed through to the solvers which caused numerical issues for solvers expecting finite bounds.
  • The variable_type and constraint_type functions were removed. This should only affect users who previously wrote JuMP extensions. The functions can be deleted without consequence.
  • The internal functions moi_mode, moi_bridge_constraints, moi_add_constraint, and moi_add_to_function_constant are no longer exported.
  • The un-used method Containers.generate_container has been deleted.
  • The Containers API has been refactored, and _build_ref_sets is now public as Containers.build_ref_sets.
  • The parse_constraint_ methods for extending @constraint at parse time have been refactored in a breaking way. Consult the Extensions documentation for more details and examples.
  • Added

    • The TerminationStatusCode and ResultStatusCode enums are now exported by JuMP. Prefer termination_status(model) == OPTIMAL instead of == MOI.OPTIMAL, although the MOI. prefix way still works.
    • Copy a x::DenseAxisArray to an Array by calling Array(x).
    • NonlinearExpression is now a subtype of AbstractJuMPScalar
    • Constraints such as @constraint(model, x + 1 in MOI.Integer()) are now supported.
    • primal_feasibility_report now accepts a function as the first argument.
    • Scalar variables @variable(model, x[1:2] in MOI.Integer()) creates two variables, both of which are constrained to be in the set MOI.Integer.
    • Conic constraints can now be specified as inequalities under a different partial ordering. So @constraint(model, x - y in MOI.Nonnegatives()) can now be written as @constraint(model, x >= y, MOI.Nonnegatives()).
    • Names are now set for vectorized constraints.

    Fixed

    • Fixed a performance issue when show was called on a SparseAxisArray with a large number of elements.
    • Fixed a bug displaying barrier and simplex iterations in solution_summary.
    • Fixed a bug by implementing hash for DenseAxisArray and SparseAxisArray.
    • Names are now only set if the solver supports them. Previously, this prevented solvers such as Ipopt from being used with direct_model.
    • MutableArithmetics.Zero is converted into a 0.0 before being returned to the user. Previously, some calls to @expression would return the undocumented MutableArithmetics.Zero() object. One example is summing over an empty set @expression(model, sum(x[i] for i in 1:0)). You will now get 0.0 instead.
    • AffExpr and QuadExpr can now be used with == 0 instead of iszero. This fixes a number of issues relating to Julia standard libraries such as LinearAlgebra and SparseArrays.
    • Fixed a bug when registering a user-defined function with splatting.

    Other

    • The documentation is now available as a PDF.
    • The documentation now includes a full copy of the MathOptInterface documentation to make it easy to link concepts between the docs. (The MathOptInterface documentation has also been significantly improved.)
    • The documentation contains a large number of improvements and clarifications on a range of topics. Thanks to @sshin23, @DilumAluthge, and @jlwether.
    • The documentation is now built with Julia 1.6 instead of 1.0.
    • Various error messages have been improved to be more readable.

    Version 0.21.10 (September 4, 2021)

    Added

    • Added add_NL_expression
    • add_NL_xxx functions now support AffExpr and QuadExpr as terms

    Fixed

    • Fixed a bug in solution_summary
    • Fixed a bug in relax_integrality

    Other

    • Improved error message in lp_sensitivity_report

    Version 0.21.9 (August 1, 2021)

    Added

    • Containers now support arbitrary container types by passing the type to the container keyword and overloading Containers.container.
    • is_valid now supports nonlinear constraints
    • Added unsafe_backend for querying the inner-most optimizer of a JuMP model.
    • Nonlinear parameters now support the plural @NLparameters macro.
    • Containers (for example, DenseAxisArray) can now be used in vector-valued constraints.

    Other

    • Various improvements to the documentation.

    Version 0.21.8 (May 8, 2021)

    Added

    • The @constraint macro is now extendable in the same way as @variable.
    • AffExpr and QuadExpr can now be used in nonlinear macros.

    Fixed

    • Fixed a bug in lp_sensitivity_report.
    • Fixed an inference issue when creating empty SparseAxisArrays.

    Version 0.21.7 (April 12, 2021)

    Added

    • Added primal_feasibility_report, which can be used to check whether a primal point satisfies primal feasibility.
    • Added coefficient, which returns the coefficient associated with a variable in affine and quadratic expressions.
    • Added copy_conflict, which returns the IIS of an infeasible model.
    • Added solution_summary, which returns (and prints) a struct containing a summary of the solution.
    • Allow AbstractVector in vector constraints instead of just Vector.
    • Added latex_formulation(model) which returns an object representing the latex formulation of a model. Use print(latex_formulation(model)) to print the formulation as a string.
    • User-defined functions in nonlinear expressions are now automatically registered to aid quick model prototyping. However, a warning is printed to encourage the manual registration.
    • DenseAxisArray's now support broadcasting over multiple arrays.
    • Container indices can now be iterators of Base.SizeUnknown.

    Fixed

    • Fixed bug in rad2deg and deg2rad in nonlinear expressions.
    • Fixed a MethodError bug in Containers when forcing container type.
    • Allow partial slicing of a DenseAxisArray, resolving an issue from 2014.
    • Fixed a bug printing variable names in IJulia.
    • Ending an IJulia cell with model now prints a summary of the model (like in the REPL) not the latex formulation. Use print(model) to print the latex formulation.
    • Fixed a bug when copying models containing nested arrays.

    Other

    • Tutorials are now part of the documentation, and more refactoring has taken place.
    • Added JuliaFormatter added as a code formatter.
    • Added some precompilation statements to reduce initial latency.
    • Various improvements to error messages to make them more helpful.
    • Improved performance of value(::NonlinearExpression).
    • Improved performance of fix(::VariableRef).

    Version 0.21.6 (January 29, 2021)

    Added

    • Added support for skew symmetric variables via @variable(model, X[1:2, 1:2] in SkewSymmetricMatrixSpace()).
    • lp_sensitivity_report has been added which significantly improves the performance of querying the sensitivity summary of an LP. lp_objective_perturbation_range and lp_rhs_perturbation_range are deprecated.
    • Dual warm-starts are now supported with set_dual_start_value and dual_start_value.
    • (\in<tab>) can now be used in macros instead of = or in.
    • Use haskey(model::Model, key::Symbol) to check if a name key is registered in a model.
    • Added unregister(model::Model, key::Symbol) to unregister a name key from model.
    • Added callback_node_status for use in callbacks.
    • Added print_bridge_graph to visualize the bridging graph generated by MathOptInterface.
    • Improved error message for containers with duplicate indices.

    Fixed

    • Various fixes to pass tests on Julia 1.6.
    • Fixed a bug in the printing of nonlinear expressions in IJulia.
    • Fixed a bug when nonlinear expressions are passed to user-defined functions.
    • Some internal functions that were previously exported are now no longer exported.
    • Fixed a bug when relaxing a fixed binary variable.
    • Fixed a StackOverflowError that occurred when SparseAxisArrays had a large number of elements.
    • Removed an unnecessary type assertion in list_of_constraint_types.
    • Fixed a bug when copying models with registered expressions.

    Other

    • The documentation has been significantly overhauled. It now has distinct sections for the manual, API reference, and examples. The existing examples in /examples have now been moved to /docs/src/examples and rewritten using Literate.jl, and they are now included in the documentation.
    • JuliaFormatter has been applied to most of the codebase. This will continue to roll out over time, as we fix upstream issues in the formatter, and will eventually become compulsory.
    • The root cause of a large number of method invalidations has been resolved.
    • We switched continuous integration from Travis and Appveyor to GitHub Actions.

    Version 0.21.5 (September 18, 2020)

    Fixed

    • Fixed deprecation warnings
    • Throw DimensionMismatch for incompatibly sized functions and sets
    • Unify treatment of keys(x) on JuMP containers

    Version 0.21.4 (September 14, 2020)

    Added

    • Add debug info when adding unsupported constraints
    • Add relax_integrality for solving continuous relaxation
    • Allow querying constraint conflicts

    Fixed

    • Dispatch on Real for MOI.submit
    • Implement copy for CustomSet in tests
    • Don't export private macros
    • Fix invalid assertion in nonlinear
    • Error if constraint has NaN right-hand side
    • Improve speed of tests
    • Lots of work modularizing files in /test
    • Improve line numbers in macro error messages
    • Print nonlinear subexpressions
    • Various documentation updates
    • Dependency updates:
      • Datastructures 0.18
      • MathOptFormat v0.5
      • Prep for MathOptInterface 0.9.15

    Version 0.21.3 (June 18, 2020)

    • Added Special Order Sets (SOS1 and SOS2) to JuMP with default weights to ease the creation of such constraints (#2212).
    • Added functions simplex_iterations, barrier_iterations and node_count (#2201).
    • Added function reduced_cost (#2205).
    • Implemented callback_value for affine and quadratic expressions (#2231).
    • Support MutableArithmetics.Zero in objective and constraints (#2219).
    • Documentation improvements:
      • Mention tutorials in the docs (#2223).
      • Update COIN-OR links (#2242).
      • Explicit link to the documentation of MOI.FileFormats (#2253).
      • Typo fixes (#2261).
    • Containers improvements:
      • Fix Base.map for DenseAxisArray (#2235).
      • Throw BoundsError if number of indices is incorrect for DenseAxisArray and SparseAxisArray (#2240).
    • Extensibility improvements:
      • Implement a set_objective method fallback that redirects to set_objective_sense and set_objective_function (#2247).
      • Add parse_constraint method with arbitrary number of arguments (#2051).
      • Add parse_constraint_expr and parse_constraint_head (#2228).

    Version 0.21.2 (April 2, 2020)

    • Added relative_gap() to access MOI.RelativeGap() attribute (#2199).
    • Documentation fixes:
      • Added link to source for docstrings in the documentation (#2207).
      • Added docstring for @variables macro (#2216).
      • Typo fixes (#2177, #2184, #2182).
    • Implementation of methods for Base functions:
      • Implemented Base.empty! for JuMP.Model (#2198).
      • Implemented Base.conj for JuMP scalar types (#2209).

    Fixed

    • Fixed sum of expression with scalar product in macro (#2178).
    • Fixed writing of nonlinear models to MathOptFormat (#2181).
    • Fixed construction of empty SparseAxisArray (#2179).
    • Fixed constraint with zero function (#2188).

    Version 0.21.1 (Feb 18, 2020)

    • Improved the clarity of the with_optimizer deprecation warning.

    Version 0.21.0 (Feb 16, 2020)

    Breaking

    • Deprecated with_optimizer (#2090, #2084, #2141). You can replace with_optimizer by either nothing, optimizer_with_attributes or a closure:

      • replace with_optimizer(Ipopt.Optimizer) by Ipopt.Optimizer.
      • replace with_optimizer(Ipopt.Optimizer, max_cpu_time=60.0) by optimizer_with_attributes(Ipopt.Optimizer, "max_cpu_time" => 60.0).
      • replace with_optimizer(Gurobi.Optimizer, env) by () -> Gurobi.Optimizer(env).
      • replace with_optimizer(Gurobi.Optimizer, env, Presolve=0) by optimizer_with_attributes(() -> Gurobi.Optimizer(env), "Presolve" => 0).

      alternatively to optimizer_with_attributes, you can also set the attributes separately with set_optimizer_attribute.

    • Renamed set_parameter and set_parameters to set_optimizer_attribute and set_optimizer_attributes (#2150).

    • Broadcast should now be explicit inside macros. @SDconstraint(model, x >= 1) and @constraint(model, x + 1 in SecondOrderCone()) now throw an error instead of broadcasting 1 along the dimension of x (#2107).

    • @SDconstraint(model, x >= 0) is now equivalent to @constraint(model, x in PSDCone()) instead of @constraint(model, (x .- 0) in PSDCone()) (#2107).

    • The macros now create the containers with map instead of for loops, as a consequence, containers created by @expression can now have any element type and containers of constraint references now have concrete element types when possible. This fixes a long-standing issue where @expression could only be used to generate a collection of linear expressions. Now it works for quadratic expressions as well (#2070).

    • Calling deepcopy(::AbstractModel) now throws an error.

    • The constraint name is now printed in the model string (#2108).

    Added

    • Added support for solver-independent and solver-specific callbacks (#2101).
    • Added write_to_file and read_from_file, supported formats are CBF, LP, MathOptFormat, MPS and SDPA (#2114).
    • Added support for complementarity constraints (#2132).
    • Added support for indicator constraints (#2092).
    • Added support for querying multiple solutions with the result keyword (#2100).
    • Added support for constraining variables on creation (#2128).
    • Added method delete that deletes a vector of variables at once if it is supported by the underlying solver (#2135).
    • The arithmetic between JuMP expression has be refactored into the MutableArithmetics package (#2107).
    • Improved error on complex values in NLP (#1978).
    • Added an example of column generation (#2010).

    Fixed

    • Incorrect coefficients generated when using Symmetric variables (#2102)

    Version 0.20.1 (Oct 18, 2019)

    • Add sections on @variables and @constraints in the documentation (#2062).
    • Fixed product of sparse matrices for Julia v1.3 (#2063).
    • Added set_objective_coefficient to modify the coefficient of a linear term of the objective function (#2008).
    • Added set_time_limit_sec, unset_time_limit_sec and time_limit_sec to set and query the time limit for the solver in seconds (#2053).

    Version 0.20.0 (Aug 24, 2019)

    • Documentation updates.
    • Numerous bug fixes.
    • Better error messages (#1977, #1978, #1997, #2017).
    • Performance improvements (#1947, #2032).
    • Added LP sensitivity summary functions lp_objective_perturbation_range and lp_rhs_perturbation_range (#1917).
    • Added functions dual_objective_value, raw_status and set_parameter.
    • Added function set_objective_coefficient to modify the coefficient of a linear term of the objective (#2008).
    • Added functions set_normalized_rhs, normalized_rhs, and add_to_function_constant to modify and get the constant part of a constraint (#1935, #1960).
    • Added functions set_normalized_coefficient and normalized_coefficient to modify and get the coefficient of a linear term of a constraint (#1935, #1960).
    • Numerous other improvements in MOI 0.9, see the NEWS.md file of MOI for more details.

    Version 0.19.2 (June 8, 2019)

    • Fix a bug in derivatives that could arise in models with nested nonlinear subexpressions.

    Version 0.19.1 (May 12, 2019)

    • Usability and performance improvements.
    • Bug fixes.

    Version 0.19.0 (February 15, 2019)

    JuMP 0.19 contains significant breaking changes.

    Breaking

    • JuMP's abstraction layer for communicating with solvers changed from MathProgBase (MPB) to MathOptInterface (MOI). MOI addresses many longstanding design issues. (See @mlubin's slides from JuMP-dev 2018.) JuMP 0.19 is compatible only with solvers that have been updated for MOI. See the installation guide for a list of solvers that have and have not yet been updated.

    • Most solvers have been renamed to PackageName.Optimizer. For example, GurobiSolver() is now Gurobi.Optimizer.

    • Solvers are no longer added to a model via Model(solver = XXX(kwargs...)). Instead use Model(with_optimizer(XXX, kwargs...)). For example, Model(with_optimizer(Gurobi.Optimizer, OutputFlag=0)).

    • JuMP containers (for example, the objects returned by @variable) have been redesigned. Containers.SparseAxisArray replaces JuMPDict, JuMPArray was rewritten (inspired by AxisArrays) and renamed Containers.DenseAxisArray, and you can now request a container type with the container= keyword to the macros. See the corresponding documentation for more details.

    • The statuses returned by solvers have changed. See the possible status values here. The MOI statuses are much richer than the MPB statuses and can be used to distinguish between previously indistinguishable cases (for example, did the solver have a feasible solution when it stopped because of the time limit?).

    • Starting values are separate from result values. Use value to query the value of a variable in a solution. Use start_value and set_start_value to get and set an initial starting point provided to the solver. The solutions from previous solves are no longer automatically set as the starting points for the next solve.

    • The data structures for affine and quadratic expressions AffExpr and QuadExpr have changed. Internally, terms are stored in dictionaries instead of lists. Duplicate coefficients can no longer exist. Accessors and iteration methods have changed.

    • JuMPNLPEvaluator no longer includes the linear and quadratic parts of the model in the evaluation calls. These are now handled separately to allow NLP solvers that support various types of constraints.

    • JuMP solver-independent callbacks have been replaced by solver-specific callbacks. See your favorite solver for more details. (See the note below: No solver-specific callbacks are implemented yet.)

    • The norm() syntax is no longer recognized inside macros. Use the SecondOrderCone() set instead.

    • JuMP no longer performs automatic transformation between special quadratic forms and second-order cone constraints. Support for these constraint classes depends on the solver.

    • The symbols :Min and :Max are no longer used as optimization senses. Instead, JuMP uses the OptimizationSense enum from MathOptInterface. @objective(model, Max, ...), @objective(model, Min, ...), @NLobjective(model, Max, ...), and @objective(model, Min, ...) remain valid, but @objective(m, :Max, ...) is no longer accepted.

    • The sign conventions for duals has changed in some cases for consistency with conic duality (see the documentation). The shadow_price helper method returns duals with signs that match conventional LP interpretations of dual values as sensitivities of the objective value to relaxations of constraints.

    • @constraintref is no longer defined. Instead, create the appropriate container to hold constraint references manually. For example,

      constraints = Dict() # Optionally, specify types for improved performance.
       for i in 1:N
         constraints[i] = @constraint(model, ...)
      -end
    • The lowerbound, upperbound, and basename keyword arguments to the @variable macro have been renamed to lower_bound, upper_bound, and base_name, for consistency with JuMP's new style recommendations.

    • We rely on broadcasting syntax to apply accessors to collections of variables, for example, value.(x) instead of getvalue(x) for collections. (Use value(x) when x is a scalar object.)

    Added

    • Splatting (like f(x...)) is recognized in restricted settings in nonlinear expressions.

    • Support for deleting constraints and variables.

    • The documentation has been completely rewritten using docstrings and Documenter.

    • Support for modeling mixed conic and quadratic models (for example, conic models with quadratic objectives and bi-linear matrix inequalities).

    • Significantly improved support for modeling new types of constraints and for extending JuMP's macros.

    • Support for providing dual warm starts.

    • Improved support for accessing solver-specific attributes (for example, the irreducible inconsistent subsystem).

    • Explicit control of whether symmetry-enforcing constraints are added to PSD constraints.

    • Support for modeling exponential cones.

    • Significant improvements in internal code quality and testing.

    • Style and naming guidelines.

    • Direct mode and manual mode provide explicit control over when copies of a model are stored or regenerated. See the corresponding documentation.

    Regressions

    There are known regressions from JuMP 0.18 that will be addressed in a future release (0.19.x or later):

    • Performance regressions in model generation (issue). Please file an issue anyway if you notice a significant performance regression. We have plans to address a number of performance issues, but we might not be aware of all of them.

    • Fast incremental NLP solves are not yet reimplemented (issue).

    • We do not yet have an implementation of solver-specific callbacks.

    • The column generation syntax in @variable has been removed (that is, the objective, coefficients, and inconstraints keyword arguments). Support for column generation will be re-introduced in a future release.

    • The ability to solve the continuous relaxation (that is, via solve(model; relaxation = true)) is not yet reimplemented (issue).

    Version 0.18.5 (December 1, 2018)

    • Support views in some derivative evaluation functions.
    • Improved compatibility with PackageCompiler.

    Version 0.18.4 (October 8, 2018)

    • Fix a bug in model printing on Julia 0.7 and 1.0.

    Version 0.18.3 (October 1, 2018)

    • Add support for Julia v1.0 (Thanks @ExpandingMan)
    • Fix matrix expressions with quadratic functions (#1508)

    Version 0.18.2 (June 10, 2018)

    • Fix a bug in second-order derivatives when expressions are present (#1319)
    • Fix a bug in @constraintref (#1330)

    Version 0.18.1 (April 9, 2018)

    • Fix for nested tuple destructuring (#1193)
    • Preserve internal model when relaxation=true (#1209)
    • Minor bug fixes and updates for example

    Version 0.18.0 (July 27, 2017)

    • Drop support for Julia 0.5.
    • Update for ForwardDiff 0.5.
    • Minor bug fixes.

    Version 0.17.1 (June 9, 2017)

    • Use of constructconstraint! in @SDconstraint.
    • Minor bug fixes.

    Version 0.17.0 (May 27, 2017)

    • Breaking change: Mixing quadratic and conic constraints is no longer supported.
    • Breaking change: The getvariable and getconstraint functions are replaced by indexing on the corresponding symbol. For instance, to access the variable with name x, one should now write m[:x] instead of getvariable(m, :x). As a consequence, creating a variable and constraint with the same name now triggers a warning, and accessing one of them afterwards throws an error. This change is breaking only in the latter case.
    • Addition of the getobjectivebound function that mirrors the functionality of the MathProgBase getobjbound function except that it takes into account transformations performed by JuMP.
    • Minor bug fixes.

    The following changes are primarily of interest to developers of JuMP extensions:

    • The new syntax @constraint(model, expr in Cone) creates the constraint ensuring that expr is inside Cone. The Cone argument is passed to constructconstraint! which enables the call to the dispatched to an extension.
    • The @variable macro now calls constructvariable! instead of directly calling the Variable constructor. Extra arguments and keyword arguments passed to @variable are passed to constructvariable! which enables the call to be dispatched to an extension.
    • Refactor the internal function conicdata (used build the MathProgBase conic model) into smaller sub-functions to make these parts reusable by extensions.

    Version 0.16.2 (March 28, 2017)

    • Minor bug fixes and printing tweaks
    • Address deprecation warnings for Julia 0.6

    Version 0.16.1 (March 7, 2017)

    • Better support for AbstractArray in JuMP (Thanks @tkoolen)
    • Minor bug fixes

    Version 0.16.0 (February 23, 2017)

    • Breaking change: JuMP no longer has a mechanism for selecting solvers by default (the previous mechanism was flawed and incompatible with Julia 0.6). Not specifying a solver before calling solve() will result in an error.
    • Breaking change: User-defined functions are no longer global. The first argument to JuMP.register is now a JuMP Model object within whose scope the function will be registered. Calling JuMP.register without a Model now produces an error.
    • Breaking change: Use the new JuMP.fix method to fix a variable to a value or to update the value to which a variable is fixed. Calling setvalue on a fixed variable now results in an error in order to avoid silent behavior changes. (Thanks @joaquimg)
    • Nonlinear expressions now print out similarly to linear/quadratic expressions (useful for debugging!)
    • New category keyword to @variable. Used for specifying categories of anonymous variables.
    • Compatibility with Julia 0.6-dev.
    • Minor fixes and improvements (Thanks @cossio, @ccoffrin, @blegat)

    Version 0.15.1 (January 31, 2017)

    • Bugfix for @LinearConstraints and friends

    Version 0.15.0 (December 22, 2016)

    • Julia 0.5.0 is the minimum required version for this release.
    • Document support for BARON solver
    • Enable info callbacks in more states than before, for example, for recording solutions. New when argument to addinfocallback (#814, thanks @yeesian)
    • Improved support for anonymous variables. This includes new warnings for potentially confusing use of the traditional non-anonymous syntax:
      • When multiple variables in a model are given the same name
      • When non-symbols are used as names, for example, @variable(m, x[1][1:N])
    • Improvements in iterating over JuMP containers (#836, thanks @IssamT)
    • Support for writing variable names in .lp file output (Thanks @leethargo)
    • Support for querying duals to SDP problems (Thanks @blegat)
    • The comprehension syntax with curly braces sum{}, prod{}, and norm2{} has been deprecated in favor of Julia's native comprehension syntax sum(), prod() and norm() as previously announced. (For early adopters of the new syntax, norm2() was renamed to norm() without deprecation.)
    • Unit tests rewritten to use Base.Test instead of FactCheck
    • Improved support for operations with matrices of JuMP types (Thanks @ExpandingMan)
    • The syntax to halt a solver from inside a callback has changed from throw(CallbackAbort()) to return JuMP.StopTheSolver
    • Minor bug fixes

    Version 0.14.2 (December 12, 2016)

    • Allow singleton anonymous variables (includes bugfix)

    Version 0.14.1 (September 12, 2016)

    • More consistent handling of states in informational callbacks, includes a new when parameter to addinfocallback for specifying in which state an informational callback should be called.

    Version 0.14.0 (August 7, 2016)

    • Compatibility with Julia 0.5 and ForwardDiff 0.2
    • Support for "anonymous" variables, constraints, expressions, and parameters, for example, x = @variable(m, [1:N]) instead of @variable(m, x[1:N])
    • Support for retrieving constraints from a model by name via getconstraint
    • @NLconstraint now returns constraint references (as expected).
    • Support for vectorized expressions within lazy constraints
    • On Julia 0.5, parse new comprehension syntax sum(x[i] for i in 1:N if isodd(i)) instead of sum{ x[i], i in 1:N; isodd(i) }. The old syntax with curly braces will be deprecated in JuMP 0.15.
    • Now possible to provide nonlinear expressions as "raw" Julia Expr objects instead of using JuMP's nonlinear macros. This input format is useful for programmatically generated expressions.
    • s/Mathematical Programming/Mathematical Optimization/
    • Support for local cuts (Thanks to @madanim, Mehdi Madani)
    • Document Xpress interface developed by @joaquimg, Joaquim Dias Garcia
    • Minor bug and deprecation fixes (Thanks @odow, @jrevels)

    Version 0.13.2 (May 16, 2016)

    • Compatibility update for MathProgBase

    Version 0.13.1 (May 3, 2016)

    • Fix broken deprecation for registerNLfunction.

    Version 0.13.0 (April 29, 2016)

    • Most exported methods and macros have been renamed to avoid camelCase. See the list of changes here. There is a 1-1 mapping from the old names to the new, and it is safe to simply replace the names to update existing models.
    • Specify variable lower/upper bounds in @variable using the lowerbound and upperbound keyword arguments.
    • Change name printed for variable using the basename keyword argument to @variable.
    • New @variables macro allows multi-line declaration of groups of variables.
    • A number of solver methods previously available only through MathProgBase are now exposed directly in JuMP. The fix was recorded live.
    • Compatibility fixes with Julia 0.5.
    • The "end" indexing syntax is no longer supported within JuMPArrays which do not use 1-based indexing until upstream issues are resolved, see here.

    Version 0.12.2 (March 9, 2016)

    • Small fixes for nonlinear optimization

    Version 0.12.1 (March 1, 2016)

    • Fix a regression in slicing for JuMPArrays (when not using 1-based indexing)

    Version 0.12.0 (February 27, 2016)

    • The automatic differentiation functionality has been completely rewritten with a number of user-facing changes:
      • @defExpr and @defNLExpr now take the model as the first argument. The previous one-argument version of @defExpr is deprecated; all expressions should be named. For example, replace @defExpr(2x+y) with @defExpr(jump_model, my_expr, 2x+y).
      • JuMP no longer uses Julia's variable binding rules for efficiently re-solving a sequence of nonlinear models. Instead, we have introduced nonlinear parameters. This is a breaking change, so we have added a warning message when we detect models that may depend on the old behavior.
      • Support for user-defined functions integrated within nonlinear JuMP expressions.
    • Replaced iteration over AffExpr with Number-like scalar iteration; previous iteration behavior is now available via linearterms(::AffExpr).
    • Stopping the solver via throw(CallbackAbort()) from a callback no longer triggers an exception. Instead, solve() returns UserLimit status.
    • getDual() now works for conic problems (Thanks @emreyamangil.)

    Version 0.11.3 (February 4, 2016)

    • Bug-fix for problems with quadratic objectives and semidefinite constraints

    Version 0.11.2 (January 14, 2016)

    • Compatibility update for Mosek

    Version 0.11.1 (December 1, 2015)

    • Remove usage of @compat in tests.
    • Fix updating quadratic objectives for nonlinear models.

    Version 0.11.0 (November 30, 2015)

    • Julia 0.4.0 is the minimum required version for this release.
    • Fix for scoping semantics of index variables in sum{}. Index variables no longer leak into the surrounding scope.
    • Addition of the solve(m::Model, relaxation=true) keyword argument to solve the standard continuous relaxation of model m
    • The getConstraintBounds() method allows access to the lower and upper bounds of all constraints in a (nonlinear) model.
    • Update for breaking changes in MathProgBase

    Version 0.10.3 (November 20, 2015)

    • Fix a rare error when parsing quadratic expressions
    • Fix Variable() constructor with default arguments
    • Detect unrecognized keywords in solve()

    Version 0.10.2 (September 28, 2015)

    • Fix for deprecation warnings

    Version 0.10.1 (September 3, 2015)

    • Fixes for ambiguity warnings.
    • Fix for breaking change in precompilation syntax in Julia 0.4-pre

    Version 0.10.0 (August 31, 2015)

    • Support (on Julia 0.4 and later) for conditions in indexing @defVar and @addConstraint constructs, for example, @defVar(m, x[i=1:5,j=1:5; i+j >= 3])
    • Support for vectorized operations on Variables and expressions. See the documentation for details.
    • New getVar() method to access variables in a model by name
    • Support for semidefinite programming.
    • Dual solutions are now available for general nonlinear problems. You may call getDual on a reference object for a nonlinear constraint, and getDual on a variable object for Lagrange multipliers from active bounds.
    • Introduce warnings for two common performance traps: too many calls to getValue() on a collection of variables and use of the + operator in a loop to sum expressions.
    • Second-order cone constraints can be written directly with the norm() and norm2{} syntax.
    • Implement MathProgBase interface for querying Hessian-vector products.
    • Iteration over JuMPContainers is deprecated; instead, use the keys and values functions, and zip(keys(d),values(d)) for the old behavior.
    • @defVar returns Array{Variable,N} when each of N index sets are of the form 1:nᵢ.
    • Module precompilation: on Julia 0.4 and later, using JuMP is now much faster.

    Version 0.9.3 (August 11, 2015)

    • Fixes for FactCheck testing on julia v0.4.

    Version 0.9.2 (June 27, 2015)

    • Fix bug in @addConstraints.

    Version 0.9.1 (April 25, 2015)

    • Fix for Julia 0.4-dev.
    • Small infrastructure improvements for extensions.

    Version 0.9.0 (April 18, 2015)

    • Comparison operators for constructing constraints (for example, 2x >= 1) have been deprecated. Instead, construct the constraints explicitly in the @addConstraint macro to add them to the model, or in the @LinearConstraint macro to create a stand-alone linear constraint instance.
    • getValue() method implemented to compute the value of a nonlinear subexpression
    • JuMP is now released under the Mozilla Public License version 2.0 (was previously LGPL). MPL is a copyleft license which is less restrictive than LGPL, especially for embedding JuMP within other applications.
    • A number of performance improvements in ReverseDiffSparse for computing derivatives.
    • MathProgBase.getsolvetime(m) now returns the solution time reported by the solver, if available. (Thanks @odow, Oscar Dowson)
    • Formatting fix for LP format output. (Thanks @sbebo, Leonardo Taccari).

    Version 0.8.0 (February 17, 2015)

    • Nonlinear subexpressions now supported with the @defNLExpr macro.
    • SCS supported for solving second-order conic problems.
    • setXXXCallback family deprecated in favor of addXXXCallback.
    • Multiple callbacks of the same type can be registered.
    • Added support for informational callbacks via addInfoCallback.
    • A CallbackAbort exception can be thrown from callback to safely exit optimization.

    Version 0.7.4 (February 4, 2015)

    • Reduced costs and linear constraint duals are now accessible when quadratic constraints are present.
    • Two-sided nonlinear constraints are supported.
    • Methods for accessing the number of variables and constraints in a model are renamed.
    • New default procedure for setting initial values in nonlinear optimization: project zero onto the variable bounds.
    • Small bug fixes.

    Version 0.7.3 (January 14, 2015)

    • Fix a method ambiguity conflict with Compose.jl (cosmetic fix)

    Version 0.7.2 (January 9, 2015)

    • Fix a bug in sum(::JuMPDict)
    • Added the setCategory function to change a variables category (for example, continuous or binary)

    after construction, and getCategory to retrieve the variable category.

    Version 0.7.1 (January 2, 2015)

    • Fix a bug in parsing linear expressions in macros. Affects only Julia 0.4 and later.

    Version 0.7.0 (December 29, 2014)

    Linear/quadratic/conic programming

    • Breaking change: The syntax for column-wise model generation has been changed to use keyword arguments in @defVar.
    • On Julia 0.4 and later, variables and coefficients may be multiplied in any order within macros. That is, variable*coefficient is now valid syntax.
    • ECOS supported for solving second-order conic problems.

    Nonlinear programming

    • Support for skipping model generation when solving a sequence of nonlinear models with changing data.
    • Fix a memory leak when solving a sequence of nonlinear models.
    • The @addNLConstraint macro now supports the three-argument version to define sets of nonlinear constraints.
    • KNITRO supported as a nonlinear solver.
    • Speed improvements for model generation.
    • The @addNLConstraints macro supports adding multiple (groups of) constraints at once. Syntax is similar to @addConstraints.
    • Discrete variables allowed in nonlinear problems for solvers which support them (currently only KNITRO).

    General

    • Starting values for variables may now be specified with @defVar(m, x, start=value).
    • The setSolver function allows users to change the solver subsequent to model creation.
    • Support for "fixed" variables via the @defVar(m, x == 1) syntax.
    • Unit tests rewritten to use FactCheck.jl, improved testing across solvers.

    Version 0.6.3 (October 19, 2014)

    • Fix a bug in multiplying two AffExpr objects.

    Version 0.6.2 (October 11, 2014)

    • Further improvements and bug fixes for printing.
    • Fixed a bug in @defExpr.
    • Support for accessing expression graphs through the MathProgBase NLP interface.

    Version 0.6.1 (September 19, 2014)

    • Improvements and bug fixes for printing.

    Version 0.6.0 (September 9, 2014)

    • Julia 0.3.0 is the minimum required version for this release.
    • buildInternalModel(m::Model) added to build solver-level model in memory without optimizing.
    • Deprecate load_model_only keyword argument to solve.
    • Add groups of constraints with @addConstraints macro.
    • Unicode operators now supported, including for sum, for prod, and /
    • Quadratic constraints supported in @addConstraint macro.
    • Quadratic objectives supported in @setObjective macro.
    • MathProgBase solver-independent interface replaces Ipopt-specific interface for nonlinear problems
      • Breaking change: IpoptOptions no longer supported to specify solver options, use m = Model(solver=IpoptSolver(options...)) instead.
    • New solver interfaces: ECOS, NLopt, and nonlinear support for MOSEK
    • New option to control whether the lazy constraint callback is executed at each node in the B&B tree or just when feasible solutions are found
    • Add support for semicontinuous and semi-integer variables for those solvers that support them.
    • Add support for index dependencies (for example, triangular indexing) in @defVar, @addConstraint, and @defExpr (for example, @defVar(m, x[i=1:10,j=i:10])).
      • This required some changes to the internal structure of JuMP containers, which may break code that explicitly stored JuMPDict objects.

    Version 0.5.8 (September 24, 2014)

    • Fix a bug with specifying solvers (affects Julia 0.2 only)

    Version 0.5.7 (September 5, 2014)

    • Fix a bug in printing models

    Version 0.5.6 (September 2, 2014)

    • Add support for semicontinuous and semi-integer variables for those solvers that support them.
      • Breaking change: Syntax for Variable() constructor has changed (use of this interface remains discouraged)
    • Update for breaking changes in MathProgBase

    Version 0.5.5 (July 6, 2014)

    • Fix bug with problem modification: adding variables that did not appear in existing constraints or objective.

    Version 0.5.4 (June 19, 2014)

    • Update for breaking change in MathProgBase which reduces loading times for using JuMP
    • Fix error when MIPs not solved to optimality

    Version 0.5.3 (May 21, 2014)

    • Update for breaking change in ReverseDiffSparse

    Version 0.5.2 (May 9, 2014)

    • Fix compatibility with Julia 0.3 prerelease

    Version 0.5.1 (May 5, 2014)

    • Fix a bug in coefficient handling inside lazy constraints and user cuts

    Version 0.5.0 (May 2, 2014)

    • Support for nonlinear optimization with exact, sparse second-order derivatives automatically computed. Ipopt is currently the only solver supported.
    • getValue for AffExpr and QuadExpr
    • Breaking change: getSolverModel replaced by getInternalModel, which returns the internal MathProgBase-level model
    • Groups of constraints can be specified with @addConstraint (see documentation for details). This is not a breaking change.
    • dot(::JuMPDict{Variable},::JuMPDict{Variable}) now returns the corresponding quadratic expression.

    Version 0.4.1 (March 24, 2014)

    • Fix bug where change in objective sense was ignored when re-solving a model.
    • Fix issue with handling zero coefficients in AffExpr.

    Version 0.4.0 (March 10, 2014)

    • Support for SOS1 and SOS2 constraints.
    • Solver-independent callback for user heuristics.
    • dot and sum implemented for JuMPDict objects. Now you can say @addConstraint(m, dot(a,x) <= b).
    • Developers: support for extensions to JuMP. See definition of Model in src/JuMP.jl for more details.
    • Option to construct the low-level model before optimizing.

    Version 0.3.2 (February 17, 2014)

    • Improved model printing
      • Preliminary support for IJulia output

    Version 0.3.1 (January 30, 2014)

    • Documentation updates
    • Support for MOSEK
    • CPLEXLink renamed to CPLEX

    Version 0.3.0 (January 21, 2014)

    • Unbounded/infeasibility rays: getValue() will return the corresponding components of an unbounded ray when a model is unbounded, if supported by the selected solver. getDual() will return an infeasibility ray (Farkas proof) if a model is infeasible and the selected solver supports this feature.
    • Solver-independent callbacks for user generated cuts.
    • Use new interface for solver-independent QCQP.
    • setlazycallback renamed to setLazyCallback for consistency.

    Version 0.2.0 (December 15, 2013)

    Breaking

    • Objective sense is specified in setObjective instead of in the Model constructor.
    • lpsolver and mipsolver merged into single solver option.

    Added

    • Problem modification with efficient LP restarts and MIP warm-starts.
    • Relatedly, column-wise modeling now supported.
    • Solver-independent callbacks supported. Currently we support only a "lazy constraint" callback, which works with Gurobi, CPLEX, and GLPK. More callbacks coming soon.

    Version 0.1.2 (November 16, 2013)

    • Bug fixes for printing, improved error messages.
    • Allow AffExpr to be used in macros; for example, ex = y + z; @addConstraint(m, x + 2*ex <= 3)

    Version 0.1.1 (October 23, 2013)

    • Update for solver specification API changes in MathProgBase.

    Version 0.1.0 (October 3, 2013)

    • Initial public release.
    +end
  • The lowerbound, upperbound, and basename keyword arguments to the @variable macro have been renamed to lower_bound, upper_bound, and base_name, for consistency with JuMP's new style recommendations.

  • We rely on broadcasting syntax to apply accessors to collections of variables, for example, value.(x) instead of getvalue(x) for collections. (Use value(x) when x is a scalar object.)

  • Added

    • Splatting (like f(x...)) is recognized in restricted settings in nonlinear expressions.

    • Support for deleting constraints and variables.

    • The documentation has been completely rewritten using docstrings and Documenter.

    • Support for modeling mixed conic and quadratic models (for example, conic models with quadratic objectives and bi-linear matrix inequalities).

    • Significantly improved support for modeling new types of constraints and for extending JuMP's macros.

    • Support for providing dual warm starts.

    • Improved support for accessing solver-specific attributes (for example, the irreducible inconsistent subsystem).

    • Explicit control of whether symmetry-enforcing constraints are added to PSD constraints.

    • Support for modeling exponential cones.

    • Significant improvements in internal code quality and testing.

    • Style and naming guidelines.

    • Direct mode and manual mode provide explicit control over when copies of a model are stored or regenerated. See the corresponding documentation.

    Regressions

    There are known regressions from JuMP 0.18 that will be addressed in a future release (0.19.x or later):

    • Performance regressions in model generation (issue). Please file an issue anyway if you notice a significant performance regression. We have plans to address a number of performance issues, but we might not be aware of all of them.

    • Fast incremental NLP solves are not yet reimplemented (issue).

    • We do not yet have an implementation of solver-specific callbacks.

    • The column generation syntax in @variable has been removed (that is, the objective, coefficients, and inconstraints keyword arguments). Support for column generation will be re-introduced in a future release.

    • The ability to solve the continuous relaxation (that is, via solve(model; relaxation = true)) is not yet reimplemented (issue).

    Version 0.18.5 (December 1, 2018)

    • Support views in some derivative evaluation functions.
    • Improved compatibility with PackageCompiler.

    Version 0.18.4 (October 8, 2018)

    • Fix a bug in model printing on Julia 0.7 and 1.0.

    Version 0.18.3 (October 1, 2018)

    • Add support for Julia v1.0 (Thanks @ExpandingMan)
    • Fix matrix expressions with quadratic functions (#1508)

    Version 0.18.2 (June 10, 2018)

    • Fix a bug in second-order derivatives when expressions are present (#1319)
    • Fix a bug in @constraintref (#1330)

    Version 0.18.1 (April 9, 2018)

    • Fix for nested tuple destructuring (#1193)
    • Preserve internal model when relaxation=true (#1209)
    • Minor bug fixes and updates for example

    Version 0.18.0 (July 27, 2017)

    • Drop support for Julia 0.5.
    • Update for ForwardDiff 0.5.
    • Minor bug fixes.

    Version 0.17.1 (June 9, 2017)

    • Use of constructconstraint! in @SDconstraint.
    • Minor bug fixes.

    Version 0.17.0 (May 27, 2017)

    • Breaking change: Mixing quadratic and conic constraints is no longer supported.
    • Breaking change: The getvariable and getconstraint functions are replaced by indexing on the corresponding symbol. For instance, to access the variable with name x, one should now write m[:x] instead of getvariable(m, :x). As a consequence, creating a variable and constraint with the same name now triggers a warning, and accessing one of them afterwards throws an error. This change is breaking only in the latter case.
    • Addition of the getobjectivebound function that mirrors the functionality of the MathProgBase getobjbound function except that it takes into account transformations performed by JuMP.
    • Minor bug fixes.

    The following changes are primarily of interest to developers of JuMP extensions:

    • The new syntax @constraint(model, expr in Cone) creates the constraint ensuring that expr is inside Cone. The Cone argument is passed to constructconstraint! which enables the call to the dispatched to an extension.
    • The @variable macro now calls constructvariable! instead of directly calling the Variable constructor. Extra arguments and keyword arguments passed to @variable are passed to constructvariable! which enables the call to be dispatched to an extension.
    • Refactor the internal function conicdata (used build the MathProgBase conic model) into smaller sub-functions to make these parts reusable by extensions.

    Version 0.16.2 (March 28, 2017)

    • Minor bug fixes and printing tweaks
    • Address deprecation warnings for Julia 0.6

    Version 0.16.1 (March 7, 2017)

    • Better support for AbstractArray in JuMP (Thanks @tkoolen)
    • Minor bug fixes

    Version 0.16.0 (February 23, 2017)

    • Breaking change: JuMP no longer has a mechanism for selecting solvers by default (the previous mechanism was flawed and incompatible with Julia 0.6). Not specifying a solver before calling solve() will result in an error.
    • Breaking change: User-defined functions are no longer global. The first argument to JuMP.register is now a JuMP Model object within whose scope the function will be registered. Calling JuMP.register without a Model now produces an error.
    • Breaking change: Use the new JuMP.fix method to fix a variable to a value or to update the value to which a variable is fixed. Calling setvalue on a fixed variable now results in an error in order to avoid silent behavior changes. (Thanks @joaquimg)
    • Nonlinear expressions now print out similarly to linear/quadratic expressions (useful for debugging!)
    • New category keyword to @variable. Used for specifying categories of anonymous variables.
    • Compatibility with Julia 0.6-dev.
    • Minor fixes and improvements (Thanks @cossio, @ccoffrin, @blegat)

    Version 0.15.1 (January 31, 2017)

    • Bugfix for @LinearConstraints and friends

    Version 0.15.0 (December 22, 2016)

    • Julia 0.5.0 is the minimum required version for this release.
    • Document support for BARON solver
    • Enable info callbacks in more states than before, for example, for recording solutions. New when argument to addinfocallback (#814, thanks @yeesian)
    • Improved support for anonymous variables. This includes new warnings for potentially confusing use of the traditional non-anonymous syntax:
      • When multiple variables in a model are given the same name
      • When non-symbols are used as names, for example, @variable(m, x[1][1:N])
    • Improvements in iterating over JuMP containers (#836, thanks @IssamT)
    • Support for writing variable names in .lp file output (Thanks @leethargo)
    • Support for querying duals to SDP problems (Thanks @blegat)
    • The comprehension syntax with curly braces sum{}, prod{}, and norm2{} has been deprecated in favor of Julia's native comprehension syntax sum(), prod() and norm() as previously announced. (For early adopters of the new syntax, norm2() was renamed to norm() without deprecation.)
    • Unit tests rewritten to use Base.Test instead of FactCheck
    • Improved support for operations with matrices of JuMP types (Thanks @ExpandingMan)
    • The syntax to halt a solver from inside a callback has changed from throw(CallbackAbort()) to return JuMP.StopTheSolver
    • Minor bug fixes

    Version 0.14.2 (December 12, 2016)

    • Allow singleton anonymous variables (includes bugfix)

    Version 0.14.1 (September 12, 2016)

    • More consistent handling of states in informational callbacks, includes a new when parameter to addinfocallback for specifying in which state an informational callback should be called.

    Version 0.14.0 (August 7, 2016)

    • Compatibility with Julia 0.5 and ForwardDiff 0.2
    • Support for "anonymous" variables, constraints, expressions, and parameters, for example, x = @variable(m, [1:N]) instead of @variable(m, x[1:N])
    • Support for retrieving constraints from a model by name via getconstraint
    • @NLconstraint now returns constraint references (as expected).
    • Support for vectorized expressions within lazy constraints
    • On Julia 0.5, parse new comprehension syntax sum(x[i] for i in 1:N if isodd(i)) instead of sum{ x[i], i in 1:N; isodd(i) }. The old syntax with curly braces will be deprecated in JuMP 0.15.
    • Now possible to provide nonlinear expressions as "raw" Julia Expr objects instead of using JuMP's nonlinear macros. This input format is useful for programmatically generated expressions.
    • s/Mathematical Programming/Mathematical Optimization/
    • Support for local cuts (Thanks to @madanim, Mehdi Madani)
    • Document Xpress interface developed by @joaquimg, Joaquim Dias Garcia
    • Minor bug and deprecation fixes (Thanks @odow, @jrevels)

    Version 0.13.2 (May 16, 2016)

    • Compatibility update for MathProgBase

    Version 0.13.1 (May 3, 2016)

    • Fix broken deprecation for registerNLfunction.

    Version 0.13.0 (April 29, 2016)

    • Most exported methods and macros have been renamed to avoid camelCase. See the list of changes here. There is a 1-1 mapping from the old names to the new, and it is safe to simply replace the names to update existing models.
    • Specify variable lower/upper bounds in @variable using the lowerbound and upperbound keyword arguments.
    • Change name printed for variable using the basename keyword argument to @variable.
    • New @variables macro allows multi-line declaration of groups of variables.
    • A number of solver methods previously available only through MathProgBase are now exposed directly in JuMP. The fix was recorded live.
    • Compatibility fixes with Julia 0.5.
    • The "end" indexing syntax is no longer supported within JuMPArrays which do not use 1-based indexing until upstream issues are resolved, see here.

    Version 0.12.2 (March 9, 2016)

    • Small fixes for nonlinear optimization

    Version 0.12.1 (March 1, 2016)

    • Fix a regression in slicing for JuMPArrays (when not using 1-based indexing)

    Version 0.12.0 (February 27, 2016)

    • The automatic differentiation functionality has been completely rewritten with a number of user-facing changes:
      • @defExpr and @defNLExpr now take the model as the first argument. The previous one-argument version of @defExpr is deprecated; all expressions should be named. For example, replace @defExpr(2x+y) with @defExpr(jump_model, my_expr, 2x+y).
      • JuMP no longer uses Julia's variable binding rules for efficiently re-solving a sequence of nonlinear models. Instead, we have introduced nonlinear parameters. This is a breaking change, so we have added a warning message when we detect models that may depend on the old behavior.
      • Support for user-defined functions integrated within nonlinear JuMP expressions.
    • Replaced iteration over AffExpr with Number-like scalar iteration; previous iteration behavior is now available via linearterms(::AffExpr).
    • Stopping the solver via throw(CallbackAbort()) from a callback no longer triggers an exception. Instead, solve() returns UserLimit status.
    • getDual() now works for conic problems (Thanks @emreyamangil.)

    Version 0.11.3 (February 4, 2016)

    • Bug-fix for problems with quadratic objectives and semidefinite constraints

    Version 0.11.2 (January 14, 2016)

    • Compatibility update for Mosek

    Version 0.11.1 (December 1, 2015)

    • Remove usage of @compat in tests.
    • Fix updating quadratic objectives for nonlinear models.

    Version 0.11.0 (November 30, 2015)

    • Julia 0.4.0 is the minimum required version for this release.
    • Fix for scoping semantics of index variables in sum{}. Index variables no longer leak into the surrounding scope.
    • Addition of the solve(m::Model, relaxation=true) keyword argument to solve the standard continuous relaxation of model m
    • The getConstraintBounds() method allows access to the lower and upper bounds of all constraints in a (nonlinear) model.
    • Update for breaking changes in MathProgBase

    Version 0.10.3 (November 20, 2015)

    • Fix a rare error when parsing quadratic expressions
    • Fix Variable() constructor with default arguments
    • Detect unrecognized keywords in solve()

    Version 0.10.2 (September 28, 2015)

    • Fix for deprecation warnings

    Version 0.10.1 (September 3, 2015)

    • Fixes for ambiguity warnings.
    • Fix for breaking change in precompilation syntax in Julia 0.4-pre

    Version 0.10.0 (August 31, 2015)

    • Support (on Julia 0.4 and later) for conditions in indexing @defVar and @addConstraint constructs, for example, @defVar(m, x[i=1:5,j=1:5; i+j >= 3])
    • Support for vectorized operations on Variables and expressions. See the documentation for details.
    • New getVar() method to access variables in a model by name
    • Support for semidefinite programming.
    • Dual solutions are now available for general nonlinear problems. You may call getDual on a reference object for a nonlinear constraint, and getDual on a variable object for Lagrange multipliers from active bounds.
    • Introduce warnings for two common performance traps: too many calls to getValue() on a collection of variables and use of the + operator in a loop to sum expressions.
    • Second-order cone constraints can be written directly with the norm() and norm2{} syntax.
    • Implement MathProgBase interface for querying Hessian-vector products.
    • Iteration over JuMPContainers is deprecated; instead, use the keys and values functions, and zip(keys(d),values(d)) for the old behavior.
    • @defVar returns Array{Variable,N} when each of N index sets are of the form 1:nᵢ.
    • Module precompilation: on Julia 0.4 and later, using JuMP is now much faster.

    Version 0.9.3 (August 11, 2015)

    • Fixes for FactCheck testing on julia v0.4.

    Version 0.9.2 (June 27, 2015)

    • Fix bug in @addConstraints.

    Version 0.9.1 (April 25, 2015)

    • Fix for Julia 0.4-dev.
    • Small infrastructure improvements for extensions.

    Version 0.9.0 (April 18, 2015)

    • Comparison operators for constructing constraints (for example, 2x >= 1) have been deprecated. Instead, construct the constraints explicitly in the @addConstraint macro to add them to the model, or in the @LinearConstraint macro to create a stand-alone linear constraint instance.
    • getValue() method implemented to compute the value of a nonlinear subexpression
    • JuMP is now released under the Mozilla Public License version 2.0 (was previously LGPL). MPL is a copyleft license which is less restrictive than LGPL, especially for embedding JuMP within other applications.
    • A number of performance improvements in ReverseDiffSparse for computing derivatives.
    • MathProgBase.getsolvetime(m) now returns the solution time reported by the solver, if available. (Thanks @odow, Oscar Dowson)
    • Formatting fix for LP format output. (Thanks @sbebo, Leonardo Taccari).

    Version 0.8.0 (February 17, 2015)

    • Nonlinear subexpressions now supported with the @defNLExpr macro.
    • SCS supported for solving second-order conic problems.
    • setXXXCallback family deprecated in favor of addXXXCallback.
    • Multiple callbacks of the same type can be registered.
    • Added support for informational callbacks via addInfoCallback.
    • A CallbackAbort exception can be thrown from callback to safely exit optimization.

    Version 0.7.4 (February 4, 2015)

    • Reduced costs and linear constraint duals are now accessible when quadratic constraints are present.
    • Two-sided nonlinear constraints are supported.
    • Methods for accessing the number of variables and constraints in a model are renamed.
    • New default procedure for setting initial values in nonlinear optimization: project zero onto the variable bounds.
    • Small bug fixes.

    Version 0.7.3 (January 14, 2015)

    • Fix a method ambiguity conflict with Compose.jl (cosmetic fix)

    Version 0.7.2 (January 9, 2015)

    • Fix a bug in sum(::JuMPDict)
    • Added the setCategory function to change a variables category (for example, continuous or binary)

    after construction, and getCategory to retrieve the variable category.

    Version 0.7.1 (January 2, 2015)

    • Fix a bug in parsing linear expressions in macros. Affects only Julia 0.4 and later.

    Version 0.7.0 (December 29, 2014)

    Linear/quadratic/conic programming

    • Breaking change: The syntax for column-wise model generation has been changed to use keyword arguments in @defVar.
    • On Julia 0.4 and later, variables and coefficients may be multiplied in any order within macros. That is, variable*coefficient is now valid syntax.
    • ECOS supported for solving second-order conic problems.

    Nonlinear programming

    • Support for skipping model generation when solving a sequence of nonlinear models with changing data.
    • Fix a memory leak when solving a sequence of nonlinear models.
    • The @addNLConstraint macro now supports the three-argument version to define sets of nonlinear constraints.
    • KNITRO supported as a nonlinear solver.
    • Speed improvements for model generation.
    • The @addNLConstraints macro supports adding multiple (groups of) constraints at once. Syntax is similar to @addConstraints.
    • Discrete variables allowed in nonlinear problems for solvers which support them (currently only KNITRO).

    General

    • Starting values for variables may now be specified with @defVar(m, x, start=value).
    • The setSolver function allows users to change the solver subsequent to model creation.
    • Support for "fixed" variables via the @defVar(m, x == 1) syntax.
    • Unit tests rewritten to use FactCheck.jl, improved testing across solvers.

    Version 0.6.3 (October 19, 2014)

    • Fix a bug in multiplying two AffExpr objects.

    Version 0.6.2 (October 11, 2014)

    • Further improvements and bug fixes for printing.
    • Fixed a bug in @defExpr.
    • Support for accessing expression graphs through the MathProgBase NLP interface.

    Version 0.6.1 (September 19, 2014)

    • Improvements and bug fixes for printing.

    Version 0.6.0 (September 9, 2014)

    • Julia 0.3.0 is the minimum required version for this release.
    • buildInternalModel(m::Model) added to build solver-level model in memory without optimizing.
    • Deprecate load_model_only keyword argument to solve.
    • Add groups of constraints with @addConstraints macro.
    • Unicode operators now supported, including for sum, for prod, and /
    • Quadratic constraints supported in @addConstraint macro.
    • Quadratic objectives supported in @setObjective macro.
    • MathProgBase solver-independent interface replaces Ipopt-specific interface for nonlinear problems
      • Breaking change: IpoptOptions no longer supported to specify solver options, use m = Model(solver=IpoptSolver(options...)) instead.
    • New solver interfaces: ECOS, NLopt, and nonlinear support for MOSEK
    • New option to control whether the lazy constraint callback is executed at each node in the B&B tree or just when feasible solutions are found
    • Add support for semicontinuous and semi-integer variables for those solvers that support them.
    • Add support for index dependencies (for example, triangular indexing) in @defVar, @addConstraint, and @defExpr (for example, @defVar(m, x[i=1:10,j=i:10])).
      • This required some changes to the internal structure of JuMP containers, which may break code that explicitly stored JuMPDict objects.

    Version 0.5.8 (September 24, 2014)

    • Fix a bug with specifying solvers (affects Julia 0.2 only)

    Version 0.5.7 (September 5, 2014)

    • Fix a bug in printing models

    Version 0.5.6 (September 2, 2014)

    • Add support for semicontinuous and semi-integer variables for those solvers that support them.
      • Breaking change: Syntax for Variable() constructor has changed (use of this interface remains discouraged)
    • Update for breaking changes in MathProgBase

    Version 0.5.5 (July 6, 2014)

    • Fix bug with problem modification: adding variables that did not appear in existing constraints or objective.

    Version 0.5.4 (June 19, 2014)

    • Update for breaking change in MathProgBase which reduces loading times for using JuMP
    • Fix error when MIPs not solved to optimality

    Version 0.5.3 (May 21, 2014)

    • Update for breaking change in ReverseDiffSparse

    Version 0.5.2 (May 9, 2014)

    • Fix compatibility with Julia 0.3 prerelease

    Version 0.5.1 (May 5, 2014)

    • Fix a bug in coefficient handling inside lazy constraints and user cuts

    Version 0.5.0 (May 2, 2014)

    • Support for nonlinear optimization with exact, sparse second-order derivatives automatically computed. Ipopt is currently the only solver supported.
    • getValue for AffExpr and QuadExpr
    • Breaking change: getSolverModel replaced by getInternalModel, which returns the internal MathProgBase-level model
    • Groups of constraints can be specified with @addConstraint (see documentation for details). This is not a breaking change.
    • dot(::JuMPDict{Variable},::JuMPDict{Variable}) now returns the corresponding quadratic expression.

    Version 0.4.1 (March 24, 2014)

    • Fix bug where change in objective sense was ignored when re-solving a model.
    • Fix issue with handling zero coefficients in AffExpr.

    Version 0.4.0 (March 10, 2014)

    • Support for SOS1 and SOS2 constraints.
    • Solver-independent callback for user heuristics.
    • dot and sum implemented for JuMPDict objects. Now you can say @addConstraint(m, dot(a,x) <= b).
    • Developers: support for extensions to JuMP. See definition of Model in src/JuMP.jl for more details.
    • Option to construct the low-level model before optimizing.

    Version 0.3.2 (February 17, 2014)

    • Improved model printing
      • Preliminary support for IJulia output

    Version 0.3.1 (January 30, 2014)

    • Documentation updates
    • Support for MOSEK
    • CPLEXLink renamed to CPLEX

    Version 0.3.0 (January 21, 2014)

    • Unbounded/infeasibility rays: getValue() will return the corresponding components of an unbounded ray when a model is unbounded, if supported by the selected solver. getDual() will return an infeasibility ray (Farkas proof) if a model is infeasible and the selected solver supports this feature.
    • Solver-independent callbacks for user generated cuts.
    • Use new interface for solver-independent QCQP.
    • setlazycallback renamed to setLazyCallback for consistency.

    Version 0.2.0 (December 15, 2013)

    Breaking

    • Objective sense is specified in setObjective instead of in the Model constructor.
    • lpsolver and mipsolver merged into single solver option.

    Added

    • Problem modification with efficient LP restarts and MIP warm-starts.
    • Relatedly, column-wise modeling now supported.
    • Solver-independent callbacks supported. Currently we support only a "lazy constraint" callback, which works with Gurobi, CPLEX, and GLPK. More callbacks coming soon.

    Version 0.1.2 (November 16, 2013)

    • Bug fixes for printing, improved error messages.
    • Allow AffExpr to be used in macros; for example, ex = y + z; @addConstraint(m, x + 2*ex <= 3)

    Version 0.1.1 (October 23, 2013)

    • Update for solver specification API changes in MathProgBase.

    Version 0.1.0 (October 3, 2013)

    • Initial public release.
    diff --git a/previews/PR3919/should_i_use/index.html b/previews/PR3919/should_i_use/index.html index 033a19c9bf0..fbf9b9b5a53 100644 --- a/previews/PR3919/should_i_use/index.html +++ b/previews/PR3919/should_i_use/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash}); -

    Should you use JuMP?

    JuMP is an algebraic modeling language for mathematical optimization written in the Julia language.

    This page explains when you should consider using JuMP, and importantly, when you should not use JuMP.

    When should you use JuMP?

    You should use JuMP if you have a constrained optimization problem that is formulated using the language of mathematical programming, that is, the problem has:

    • a set of real- or complex-valued decision variables
    • a scalar- or vector-valued real objective function
    • a set of constraints.

    Key reasons to use JuMP include:

    • User friendliness
    • Solver independence
      • JuMP uses a generic solver-independent interface provided by the MathOptInterface package, making it easy to change between a number of open-source and commercial optimization software packages ("solvers"). The Supported solvers section contains a table of the currently supported solvers.
    • Ease of embedding
      • JuMP itself is written purely in Julia. Solvers are the only binary dependencies.
      • JuMP provides automatic installation of most solvers.
      • Because it is embedded in a general-purpose programming language, JuMP makes it easy to solve optimization problems as part of a larger workflow, for example, inside a simulation, behind a web server, or as a subproblem in a decomposition algorithm. As a trade-off, JuMP's syntax is constrained by the syntax and functionality available in Julia.
      • JuMP is MPL licensed, meaning that it can be embedded in commercial software that complies with the terms of the license.
    • Speed
      • Benchmarking has shown that JuMP can create problems at similar speeds to special-purpose modeling languages such as AMPL.
      • JuMP communicates with most solvers in memory, avoiding the need to write intermediary files.
    • Access to advanced algorithmic techniques
      • JuMP supports efficient in-memory re-solves of models.
      • JuMP provides access to solver-independent and solver-dependent Callbacks.

    When should you not use JuMP?

    JuMP supports a broad range of optimization classes. However, there are still some that it doesn't support, or that are better supported by other software packages.

    You want to optimize a complicated Julia function

    Packages in Julia compose well. It's common for people to pick two unrelated packages and use them in conjunction to create novel behavior. JuMP isn't one of those packages.

    If you want to optimize an ordinary differential equation from DifferentialEquations.jl or tune a neural network from Flux.jl, consider using other packages such as:

    Black-box, derivative free, or unconstrained optimization

    JuMP supports nonlinear programs with constraints and objectives containing user-defined operators. However, the functions must be automatically differentiable, or you need to provide explicit derivatives. (See User-defined operators for more information.)

    If your function is a black-box that is non-differentiable (for example, the function calls a simulation written in C++), JuMP is not the right tool for the job. This also applies if you want to use a derivative free method.

    Even if your problem is differentiable, if it is unconstrained there is limited benefit (and downsides in the form of more overhead) to using JuMP over tools which are concerned only with function minimization.

    Alternatives to consider are:

    Disciplined convex programming

    JuMP does not support disciplined convex programming (DCP).

    Alternatives to consider are:

    Note

    Convex.jl is also built on MathOptInterface, and shares the same set of underlying solvers. However, you input problems differently, and Convex.jl checks that the problem is DCP.

    Stochastic programming

    JuMP requires deterministic input data.

    If you have stochastic input data, consider using a JuMP extension such as:

    Polyhedral computations

    JuMP does not provide tools for working with the polyhedron formed by the set of linear constraints.

    Alternatives to consider are:

    +

    Should you use JuMP?

    JuMP is an algebraic modeling language for mathematical optimization written in the Julia language.

    This page explains when you should consider using JuMP, and importantly, when you should not use JuMP.

    When should you use JuMP?

    You should use JuMP if you have a constrained optimization problem that is formulated using the language of mathematical programming, that is, the problem has:

    • a set of real- or complex-valued decision variables
    • a scalar- or vector-valued real objective function
    • a set of constraints.

    Key reasons to use JuMP include:

    • User friendliness
    • Solver independence
      • JuMP uses a generic solver-independent interface provided by the MathOptInterface package, making it easy to change between a number of open-source and commercial optimization software packages ("solvers"). The Supported solvers section contains a table of the currently supported solvers.
    • Ease of embedding
      • JuMP itself is written purely in Julia. Solvers are the only binary dependencies.
      • JuMP provides automatic installation of most solvers.
      • Because it is embedded in a general-purpose programming language, JuMP makes it easy to solve optimization problems as part of a larger workflow, for example, inside a simulation, behind a web server, or as a subproblem in a decomposition algorithm. As a trade-off, JuMP's syntax is constrained by the syntax and functionality available in Julia.
      • JuMP is MPL licensed, meaning that it can be embedded in commercial software that complies with the terms of the license.
    • Speed
      • Benchmarking has shown that JuMP can create problems at similar speeds to special-purpose modeling languages such as AMPL.
      • JuMP communicates with most solvers in memory, avoiding the need to write intermediary files.
    • Access to advanced algorithmic techniques
      • JuMP supports efficient in-memory re-solves of models.
      • JuMP provides access to solver-independent and solver-dependent Callbacks.

    When should you not use JuMP?

    JuMP supports a broad range of optimization classes. However, there are still some that it doesn't support, or that are better supported by other software packages.

    You want to optimize a complicated Julia function

    Packages in Julia compose well. It's common for people to pick two unrelated packages and use them in conjunction to create novel behavior. JuMP isn't one of those packages.

    If you want to optimize an ordinary differential equation from DifferentialEquations.jl or tune a neural network from Flux.jl, consider using other packages such as:

    Black-box, derivative free, or unconstrained optimization

    JuMP supports nonlinear programs with constraints and objectives containing user-defined operators. However, the functions must be automatically differentiable, or you need to provide explicit derivatives. (See User-defined operators for more information.)

    If your function is a black-box that is non-differentiable (for example, the function calls a simulation written in C++), JuMP is not the right tool for the job. This also applies if you want to use a derivative free method.

    Even if your problem is differentiable, if it is unconstrained there is limited benefit (and downsides in the form of more overhead) to using JuMP over tools which are concerned only with function minimization.

    Alternatives to consider are:

    Disciplined convex programming

    JuMP does not support disciplined convex programming (DCP).

    Alternatives to consider are:

    Note

    Convex.jl is also built on MathOptInterface, and shares the same set of underlying solvers. However, you input problems differently, and Convex.jl checks that the problem is DCP.

    Stochastic programming

    JuMP requires deterministic input data.

    If you have stochastic input data, consider using a JuMP extension such as:

    Polyhedral computations

    JuMP does not provide tools for working with the polyhedron formed by the set of linear constraints.

    Alternatives to consider are:

    diff --git a/previews/PR3919/tutorials/algorithms/benders_decomposition/index.html b/previews/PR3919/tutorials/algorithms/benders_decomposition/index.html index 0bddba22bc8..a49592f3a64 100644 --- a/previews/PR3919/tutorials/algorithms/benders_decomposition/index.html +++ b/previews/PR3919/tutorials/algorithms/benders_decomposition/index.html @@ -66,7 +66,7 @@ Dual objective value : NaN * Work counters - Solve time (sec) : 2.11287e-03 + Solve time (sec) : 1.60933e-03 Simplex iterations : 15 Barrier iterations : -1 Node count : 1 @@ -417,4 +417,4 @@ (3, 6) => 1.0 (4, 6) => 1.0 (5, 8) => 4.0 - (6, 8) => 2.0

    which is the same as the monolithic solution (because sum(y) >= 1 in the monolithic solution):

    feasible_inplace_solution == monolithic_solution
    true
    + (6, 8) => 2.0

    which is the same as the monolithic solution (because sum(y) >= 1 in the monolithic solution):

    feasible_inplace_solution == monolithic_solution
    true
    diff --git a/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/9008dedb.svg b/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/63024adc.svg similarity index 72% rename from previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/9008dedb.svg rename to previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/63024adc.svg index 63484361883..d203f9c58f9 100644 --- a/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/9008dedb.svg +++ b/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/63024adc.svg @@ -1,350 +1,350 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/eea18202.svg b/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/e6d57b32.svg similarity index 69% rename from previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/eea18202.svg rename to previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/e6d57b32.svg index 5e00564c58a..b70d02a9bc8 100644 --- a/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/eea18202.svg +++ b/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/e6d57b32.svg @@ -1,516 +1,516 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/index.html b/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/index.html index 68e8d8ee5ba..acc472efe24 100644 --- a/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/index.html +++ b/previews/PR3919/tutorials/algorithms/cutting_stock_column_generation/index.html @@ -118,8 +118,8 @@ Dual objective value : NaN * Work counters - Solve time (sec) : 5.06887e+00 - Simplex iterations : 20396 + Solve time (sec) : 5.03814e+00 + Simplex iterations : 20440 Barrier iterations : -1 Node count : 0

    However, there is a formulation that solves much faster, and that is to use a column generation scheme.

    Column generation theory

    The key insight for column generation is to recognize that feasible columns in the $x$ matrix of variables encode cutting patterns.

    For example, if we look only at the roll $j=1$, then a feasible solution is:

    • $x_{1,1} = 1$ (1 unit of piece #1)
    • $x_{13,1} = 1$ (1 unit of piece #13)
    • All other $x_{i,1} = 0$

    Another solution is

    • $x_{20,1} = 19$ (19 unit of piece #20)
    • All other $x_{i,1} = 0$

    Cutting patterns like $x_{1,1} = 1$ and $x_{2,1} = 1$ are infeasible because the combined length is greater than $W$.

    Since there are a finite number of ways that we could cut a roll into a valid cutting pattern, we could create a set of all possible cutting patterns $p = 1,\ldots,P$, with data $a_{i,p}$ indicating how many units of piece $i$ we cut in pattern $p$. Then, we can formulate our mixed-integer linear program as:

    \[\begin{align} @@ -189,7 +189,7 @@ return plot end -plot_patterns(data, patterns)Example block output

    The base problem

    Using the initial set of patterns, we can create and optimize our base model:

    model = Model(HiGHS.Optimizer)
    +plot_patterns(data, patterns)
    Example block output

    The base problem

    Using the initial set of patterns, we can create and optimize our base model:

    model = Model(HiGHS.Optimizer)
     set_silent(model)
     @variable(model, x[1:length(patterns)] >= 0, Int)
     @objective(model, Min, sum(x))
    @@ -213,7 +213,7 @@
       Dual objective value : NaN
     
     * Work counters
    -  Solve time (sec)   : 1.63317e-04
    +  Solve time (sec)   : 1.86443e-04
       Simplex iterations : 0
       Barrier iterations : -1
       Node count         : 0
    @@ -285,7 +285,7 @@
     [ Info: No new patterns, terminating the algorithm.

    We found lots of new patterns. Here's pattern 21:

    patterns[21]
    20-element SparseArrays.SparseVector{Int64, Int64} with 3 stored entries:
       [9 ]  =  1
       [13]  =  2
    -  [17]  =  1

    Let's have a look at the patterns now:

    plot_patterns(data, patterns)
    Example block output

    Looking at the solution

    Let's see how many of each column we need:

    solution = DataFrames.DataFrame([
    +  [17]  =  1

    Let's have a look at the patterns now:

    plot_patterns(data, patterns)
    Example block output

    Looking at the solution

    Let's see how many of each column we need:

    solution = DataFrames.DataFrame([
         (pattern = p, rolls = value(x_p)) for (p, x_p) in enumerate(x)
     ])
     filter!(row -> row.rolls > 0, solution)
    16×2 DataFrame
    Rowpatternrolls
    Int64Float64
    1138.0
    2244.0
    3330.0
    4210.5
    52210.2
    62314.65
    72423.1
    82511.25
    92621.35
    10284.3
    112919.55
    123011.25
    133117.45
    143336.0
    153411.4
    163541.0

    Since we solved a linear program, some of our columns have fractional solutions. We can create a integer feasible solution by rounding up the orders. This requires 341 rolls:

    sum(ceil.(Int, solution.rolls))
    341

    Alternatively, we can re-introduce the integrality constraints and resolve the problem:

    set_integer.(x)
    @@ -294,4 +294,4 @@
     solution = DataFrames.DataFrame([
         (pattern = p, rolls = value(x_p)) for (p, x_p) in enumerate(x)
     ])
    -filter!(row -> row.rolls > 0, solution)
    16×2 DataFrame
    Rowpatternrolls
    Int64Float64
    1138.0
    2244.0
    3330.0
    4211.0
    5229.0
    62319.0
    72419.0
    82513.0
    92617.0
    10282.0
    112919.0
    123013.0
    133118.0
    143336.0
    153415.0
    163541.0

    This now requires 334 rolls:

    sum(solution.rolls)
    333.99999999999994

    Note that this may not be the global minimum because we are not adding new columns during the solution of the mixed-integer problem model (an algorithm known as branch and price). Nevertheless, the column generation algorithm typically finds good integer feasible solutions to an otherwise intractable optimization problem.

    Next steps

    • Our objective function is to minimize the total number of rolls. What is the total length of waste? How does that compare to the total demand?
    • Writing the optimization algorithm is only part of the challenge. Can you develop a better way to communicate the solution to stakeholders?
    +filter!(row -> row.rolls > 0, solution)
    16×2 DataFrame
    Rowpatternrolls
    Int64Float64
    1138.0
    2244.0
    3330.0
    4211.0
    5229.0
    62319.0
    72419.0
    82513.0
    92617.0
    10282.0
    112919.0
    123013.0
    133118.0
    143336.0
    153415.0
    163541.0

    This now requires 334 rolls:

    sum(solution.rolls)
    333.99999999999994

    Note that this may not be the global minimum because we are not adding new columns during the solution of the mixed-integer problem model (an algorithm known as branch and price). Nevertheless, the column generation algorithm typically finds good integer feasible solutions to an otherwise intractable optimization problem.

    Next steps

    • Our objective function is to minimize the total number of rolls. What is the total length of waste? How does that compare to the total demand?
    • Writing the optimization algorithm is only part of the challenge. Can you develop a better way to communicate the solution to stakeholders?
    diff --git a/previews/PR3919/tutorials/algorithms/parallelism/index.html b/previews/PR3919/tutorials/algorithms/parallelism/index.html index fcd41a5da8d..7dc7b12b694 100644 --- a/previews/PR3919/tutorials/algorithms/parallelism/index.html +++ b/previews/PR3919/tutorials/algorithms/parallelism/index.html @@ -177,4 +177,4 @@ model = Model(Gurobi.Optimizer) set_attribute(model, MOI.NumberOfThreads(), 4)

    GPU parallelism

    JuMP does not support GPU programming, but some solvers support execution on a GPU.

    One example is SCS.jl, which supports using a GPU to internally solve a system of linear equations. If you are on x86_64 Linux machine, do:

    using JuMP, SCS, SCS_GPU_jll
     model = Model(SCS.Optimizer)
    -set_attribute(model, "linear_solver", SCS.GpuIndirectSolver)
    +set_attribute(model, "linear_solver", SCS.GpuIndirectSolver) diff --git a/previews/PR3919/tutorials/algorithms/pdhg/index.html b/previews/PR3919/tutorials/algorithms/pdhg/index.html index ad7ff2cb70f..4040b83494d 100644 --- a/previews/PR3919/tutorials/algorithms/pdhg/index.html +++ b/previews/PR3919/tutorials/algorithms/pdhg/index.html @@ -314,7 +314,7 @@ c3 : [-1.93193e-06,2.50002e-01,1.50000e+00] * Work counters - Solve time (sec) : 2.24342e-01 + Solve time (sec) : 2.20860e-01 Barrier iterations : 8365

    But we could also have written:

    model = Model(Optimizer)
     @variable(model, x >= 0)
    @@ -352,7 +352,7 @@
         c2 : 1.50000e+00
     
     * Work counters
    -  Solve time (sec)   : 1.85299e-03
    +  Solve time (sec)   : 1.72400e-03
       Barrier iterations : 8365
     

    Other variations are also possible:

    model = Model(Optimizer)
     @variable(model, x[1:5] >= 0)
    @@ -390,6 +390,6 @@
         c4 : multiple constraints with the same name
     
     * Work counters
    -  Solve time (sec)   : 1.88994e-03
    +  Solve time (sec)   : 1.68300e-03
       Barrier iterations : 8365
    -

    Behind the scenes, JuMP and MathOptInterface reformulate the problem from the modeller's form into the standard form defined by our Optimizer.

    +

    Behind the scenes, JuMP and MathOptInterface reformulate the problem from the modeller's form into the standard form defined by our Optimizer.

    diff --git a/previews/PR3919/tutorials/algorithms/rolling_horizon/325ee38b.svg b/previews/PR3919/tutorials/algorithms/rolling_horizon/52d38cd9.svg similarity index 86% rename from previews/PR3919/tutorials/algorithms/rolling_horizon/325ee38b.svg rename to previews/PR3919/tutorials/algorithms/rolling_horizon/52d38cd9.svg index da2021d8c55..1b4510456b2 100644 --- a/previews/PR3919/tutorials/algorithms/rolling_horizon/325ee38b.svg +++ b/previews/PR3919/tutorials/algorithms/rolling_horizon/52d38cd9.svg @@ -1,118 +1,118 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/algorithms/rolling_horizon/ad01c356.svg b/previews/PR3919/tutorials/algorithms/rolling_horizon/a2ceab31.svg similarity index 87% rename from previews/PR3919/tutorials/algorithms/rolling_horizon/ad01c356.svg rename to previews/PR3919/tutorials/algorithms/rolling_horizon/a2ceab31.svg index 89712d1acaf..a805f7cc545 100644 --- a/previews/PR3919/tutorials/algorithms/rolling_horizon/ad01c356.svg +++ b/previews/PR3919/tutorials/algorithms/rolling_horizon/a2ceab31.svg @@ -1,360 +1,360 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/algorithms/rolling_horizon/6df54025.svg b/previews/PR3919/tutorials/algorithms/rolling_horizon/d8531d0c.svg similarity index 90% rename from previews/PR3919/tutorials/algorithms/rolling_horizon/6df54025.svg rename to previews/PR3919/tutorials/algorithms/rolling_horizon/d8531d0c.svg index b87fada112b..63a739ce99e 100644 --- a/previews/PR3919/tutorials/algorithms/rolling_horizon/6df54025.svg +++ b/previews/PR3919/tutorials/algorithms/rolling_horizon/d8531d0c.svg @@ -1,80 +1,80 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/algorithms/rolling_horizon/index.html b/previews/PR3919/tutorials/algorithms/rolling_horizon/index.html index 8e8ec2439c2..0bd58c62193 100644 --- a/previews/PR3919/tutorials/algorithms/rolling_horizon/index.html +++ b/previews/PR3919/tutorials/algorithms/rolling_horizon/index.html @@ -29,7 +29,7 @@ xticks = 0:12:total_time_length, xlabel = "Hours", ylabel = "MW", -)Example block output

    JuMP model

    We have all the information we need to create a JuMP model to solve a single window of our rolling horizon problem.

    As the optimizer, we use POI.Optimizer, which is part of ParametricOptInterface.jl. POI.Optimizer converts the Parameter decision variables into constants in the underlying optimization model, and it efficiently updates the solver in-place when we call set_parameter_value which avoids having to rebuild the problem each time we call optimize!.

    model = Model(() -> POI.Optimizer(HiGHS.Optimizer()))
    +)
    Example block output

    JuMP model

    We have all the information we need to create a JuMP model to solve a single window of our rolling horizon problem.

    As the optimizer, we use POI.Optimizer, which is part of ParametricOptInterface.jl. POI.Optimizer converts the Parameter decision variables into constants in the underlying optimization model, and it efficiently updates the solver in-place when we call set_parameter_value which avoids having to rebuild the problem each time we call optimize!.

    model = Model(() -> POI.Optimizer(HiGHS.Optimizer()))
     set_silent(model)
     @variables(model, begin
         0 <= r[1:optimization_window]
    @@ -118,4 +118,4 @@
         layout = (length(sol_windows), 1),
         size = (600, 800),
         margin = 3Plots.mm,
    -)
    Example block output

    We can re-use the function to plot the recovered solution of the full problem:

    plot_solution(sol_complete; offset = 0, xlabel = "Hour")
    Example block output

    Final remark

    ParametricOptInterface.jl offers an easy way to update the parameters of an optimization problem that will be solved several times, as in the rolling horizon implementation. It has the benefit of avoiding rebuilding the model each time we want to solve it with new information in a new window.

    +)Example block output

    We can re-use the function to plot the recovered solution of the full problem:

    plot_solution(sol_complete; offset = 0, xlabel = "Hour")
    Example block output

    Final remark

    ParametricOptInterface.jl offers an easy way to update the parameters of an optimization problem that will be solved several times, as in the rolling horizon implementation. It has the benefit of avoiding rebuilding the model each time we want to solve it with new information in a new window.

    diff --git a/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/39d7e093.svg b/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/e84103ef.svg similarity index 72% rename from previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/39d7e093.svg rename to previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/e84103ef.svg index 2f4294f4233..d879de6baf5 100644 --- a/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/39d7e093.svg +++ b/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/e84103ef.svg @@ -1,242 +1,242 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/9f18465f.svg b/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/eeb895cb.svg similarity index 72% rename from previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/9f18465f.svg rename to previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/eeb895cb.svg index a2d234ef2d4..1f1017dcd47 100644 --- a/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/9f18465f.svg +++ b/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/eeb895cb.svg @@ -1,242 +1,242 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/index.html b/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/index.html index c3ab39bbfd9..2a25e888220 100644 --- a/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/index.html +++ b/previews/PR3919/tutorials/algorithms/tsp_lazy_constraints/index.html @@ -97,7 +97,7 @@ Found cycle of length 22 Found cycle of length 3 Found cycle of length 5 -Found cycle of length 21
    objective_value(iterative_model)
    744.6016576596794
    time_iterated
    4.159032583236694

    As a quick sanity check, we visualize the optimal tour to verify that no subtour is present:

    function plot_tour(X, Y, x)
    +Found cycle of length 21
    objective_value(iterative_model)
    744.6016576596794
    time_iterated
    4.146808862686157

    As a quick sanity check, we visualize the optimal tour to verify that no subtour is present:

    function plot_tour(X, Y, x)
         plot = Plots.plot()
         for (i, j) in selected_edges(x, size(x, 1))
             Plots.plot!([X[i], X[j]], [Y[i], Y[j]]; legend = false)
    @@ -105,7 +105,7 @@
         return plot
     end
     
    -plot_tour(X, Y, value.(iterative_model[:x]))
    Example block output

    Lazy constraint method

    A more sophisticated approach makes use of lazy constraints. To be more precise, we do this through the subtour_elimination_callback() below, which is only run whenever we encounter a new integer-feasible solution.

    lazy_model = build_tsp_model(d, n)
    +plot_tour(X, Y, value.(iterative_model[:x]))
    Example block output

    Lazy constraint method

    A more sophisticated approach makes use of lazy constraints. To be more precise, we do this through the subtour_elimination_callback() below, which is only run whenever we encounter a new integer-feasible solution.

    lazy_model = build_tsp_model(d, n)
     function subtour_elimination_callback(cb_data)
         status = callback_node_status(cb_data, lazy_model)
         if status != MOI.CALLBACK_NODE_STATUS_INTEGER
    @@ -132,4 +132,4 @@
     Set parameter LicenseID to value 722777
     Set parameter GURO_PAR_SPECIAL
     WLS license 722777 - registered to JuMP Development
    @assert is_solved_and_feasible(lazy_model)
    -objective_value(lazy_model)
    744.6016576596794
    time_lazy = solve_time(lazy_model)
    2.0668399333953857

    This finds the same optimal tour:

    plot_tour(X, Y, value.(lazy_model[:x]))
    Example block output

    The solution time is faster than the iterative approach:

    Test.@test time_lazy < time_iterated
    Test Passed
    +objective_value(lazy_model)
    744.6016576596794
    time_lazy = solve_time(lazy_model)
    2.127480983734131

    This finds the same optimal tour:

    plot_tour(X, Y, value.(lazy_model[:x]))
    Example block output

    The solution time is faster than the iterative approach:

    Test.@test time_lazy < time_iterated
    Test Passed
    diff --git a/previews/PR3919/tutorials/applications/optimal_power_flow/index.html b/previews/PR3919/tutorials/applications/optimal_power_flow/index.html index bb4c0ea0fc8..3f69a9dd003 100644 --- a/previews/PR3919/tutorials/applications/optimal_power_flow/index.html +++ b/previews/PR3919/tutorials/applications/optimal_power_flow/index.html @@ -129,7 +129,7 @@ Objective value : 3.08784e+03 * Work counters - Solve time (sec) : 5.69415e-03 + Solve time (sec) : 5.60689e-03 Barrier iterations : 16
    objval_solution = round(objective_value(model); digits = 2)
     println("Objective value (feasible solution) : $(objval_solution)")
    Objective value (feasible solution) : 3087.84

    The solution's power generation (in rectangular form) and complex voltage values (in polar form using degrees) are:

    DataFrames.DataFrame(;
    @@ -215,7 +215,7 @@
       9   1.5653e+03   1.5641e+03  7.67e-04  2.80e-08  3.75e-06  5.96e-03  1.74e-02  4.38e-01
     ---------------------------------------------------------------------------------------------
     Terminated with status = solved
    -solve time =  128ms
    Test.@test is_solved_and_feasible(model; allow_almost = true)
    +solve time = 55.2ms
    Test.@test is_solved_and_feasible(model; allow_almost = true)
     sdp_relaxation_lower_bound = round(objective_value(model); digits = 2)
     println(
         "Objective value (W & V relax. lower bound): $sdp_relaxation_lower_bound",
    @@ -232,4 +232,4 @@
         Bus = 1:N,
         Magnitude = round.(abs.(value.(V)); digits = 2),
         AngleDeg = round.(rad2deg.(angle.(value.(V))); digits = 2),
    -)
    9×3 DataFrame
    RowBusMagnitudeAngleDeg
    Int64Float64Float64
    110.95-0.0
    220.843.76
    330.832.66
    440.85-1.22
    550.86-2.12
    660.860.93
    770.86-0.18
    880.861.14
    990.85-2.47

    For further information on exploiting sparsity see (Jabr, 2012).

    This relaxation has the advantage that we can work directly with complex voltages to extend the formulation, strengthen the relaxation and gain additional approximate information about the voltage variables.

    +)
    9×3 DataFrame
    RowBusMagnitudeAngleDeg
    Int64Float64Float64
    110.95-0.0
    220.843.76
    330.832.66
    440.85-1.22
    550.86-2.12
    660.860.93
    770.86-0.18
    880.861.14
    990.85-2.47

    For further information on exploiting sparsity see (Jabr, 2012).

    This relaxation has the advantage that we can work directly with complex voltages to extend the formulation, strengthen the relaxation and gain additional approximate information about the voltage variables.

    diff --git a/previews/PR3919/tutorials/applications/power_systems/f5be8345.svg b/previews/PR3919/tutorials/applications/power_systems/8d3e80b2.svg similarity index 86% rename from previews/PR3919/tutorials/applications/power_systems/f5be8345.svg rename to previews/PR3919/tutorials/applications/power_systems/8d3e80b2.svg index beba243779c..26678b5854a 100644 --- a/previews/PR3919/tutorials/applications/power_systems/f5be8345.svg +++ b/previews/PR3919/tutorials/applications/power_systems/8d3e80b2.svg @@ -1,78 +1,78 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/applications/power_systems/4943efe2.svg b/previews/PR3919/tutorials/applications/power_systems/9b6d190d.svg similarity index 86% rename from previews/PR3919/tutorials/applications/power_systems/4943efe2.svg rename to previews/PR3919/tutorials/applications/power_systems/9b6d190d.svg index d952ad27368..8f24cb65715 100644 --- a/previews/PR3919/tutorials/applications/power_systems/4943efe2.svg +++ b/previews/PR3919/tutorials/applications/power_systems/9b6d190d.svg @@ -1,80 +1,80 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/applications/power_systems/f698032f.svg b/previews/PR3919/tutorials/applications/power_systems/d42e5874.svg similarity index 85% rename from previews/PR3919/tutorials/applications/power_systems/f698032f.svg rename to previews/PR3919/tutorials/applications/power_systems/d42e5874.svg index 77905c8f0be..3142a5a35f2 100644 --- a/previews/PR3919/tutorials/applications/power_systems/f698032f.svg +++ b/previews/PR3919/tutorials/applications/power_systems/d42e5874.svg @@ -1,43 +1,43 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/applications/power_systems/index.html b/previews/PR3919/tutorials/applications/power_systems/index.html index 9d951501d3a..e5f1b00fe64 100644 --- a/previews/PR3919/tutorials/applications/power_systems/index.html +++ b/previews/PR3919/tutorials/applications/power_systems/index.html @@ -98,7 +98,7 @@ (c_g1_scale, sol.g[1], sol.g[2], sol.w, sol.wind_spill, sol.total_cost), ) end -print(string("elapsed time: ", time() - start, " seconds"))
    elapsed time: 0.17981410026550293 seconds
    c_g_scale_df
    26×6 DataFrame
    Rowscaledispatch_G1dispatch_G2dispatch_windspillage_windtotal_cost
    Float64Float64Float64Float64Float64Float64
    10.51000.0300.0200.00.065000.0
    20.61000.0300.0200.00.070000.0
    30.71000.0300.0200.00.075000.0
    40.81000.0300.0200.00.080000.0
    50.91000.0300.0200.00.085000.0
    61.01000.0300.0200.00.090000.0
    71.11000.0300.0200.00.095000.0
    81.21000.0300.0200.00.0100000.0
    91.31000.0300.0200.00.0105000.0
    101.41000.0300.0200.00.0110000.0
    111.51000.0300.0200.00.0115000.0
    121.61000.0300.0200.00.0120000.0
    131.71000.0300.0200.00.0125000.0
    141.81000.0300.0200.00.0130000.0
    151.91000.0300.0200.00.0135000.0
    162.0300.01000.0200.00.0140000.0
    172.1300.01000.0200.00.0141500.0
    182.2300.01000.0200.00.0143000.0
    192.3300.01000.0200.00.0144500.0
    202.4300.01000.0200.00.0146000.0
    212.5300.01000.0200.00.0147500.0
    222.6300.01000.0200.00.0149000.0
    232.7300.01000.0200.00.0150500.0
    242.8300.01000.0200.00.0152000.0
    252.9300.01000.0200.00.0153500.0
    263.0300.01000.0200.00.0155000.0

    Modifying the JuMP model in-place

    Note that in the previous exercise we entirely rebuilt the optimization model at every iteration of the internal loop, which incurs an additional computational burden. This burden can be alleviated if instead of re-building the entire model, we modify the constraints or objective function, as it shown in the example below.

    Compare the computing time in case of the above and below models.

    function solve_economic_dispatch_inplace(
    +print(string("elapsed time: ", time() - start, " seconds"))
    elapsed time: 0.1745920181274414 seconds
    c_g_scale_df
    26×6 DataFrame
    Rowscaledispatch_G1dispatch_G2dispatch_windspillage_windtotal_cost
    Float64Float64Float64Float64Float64Float64
    10.51000.0300.0200.00.065000.0
    20.61000.0300.0200.00.070000.0
    30.71000.0300.0200.00.075000.0
    40.81000.0300.0200.00.080000.0
    50.91000.0300.0200.00.085000.0
    61.01000.0300.0200.00.090000.0
    71.11000.0300.0200.00.095000.0
    81.21000.0300.0200.00.0100000.0
    91.31000.0300.0200.00.0105000.0
    101.41000.0300.0200.00.0110000.0
    111.51000.0300.0200.00.0115000.0
    121.61000.0300.0200.00.0120000.0
    131.71000.0300.0200.00.0125000.0
    141.81000.0300.0200.00.0130000.0
    151.91000.0300.0200.00.0135000.0
    162.0300.01000.0200.00.0140000.0
    172.1300.01000.0200.00.0141500.0
    182.2300.01000.0200.00.0143000.0
    192.3300.01000.0200.00.0144500.0
    202.4300.01000.0200.00.0146000.0
    212.5300.01000.0200.00.0147500.0
    222.6300.01000.0200.00.0149000.0
    232.7300.01000.0200.00.0150500.0
    242.8300.01000.0200.00.0152000.0
    252.9300.01000.0200.00.0153500.0
    263.0300.01000.0200.00.0155000.0

    Modifying the JuMP model in-place

    Note that in the previous exercise we entirely rebuilt the optimization model at every iteration of the internal loop, which incurs an additional computational burden. This burden can be alleviated if instead of re-building the entire model, we modify the constraints or objective function, as it shown in the example below.

    Compare the computing time in case of the above and below models.

    function solve_economic_dispatch_inplace(
         generators::Vector,
         wind,
         scenario,
    @@ -155,7 +155,7 @@
         scenario,
         0.5:0.1:3.0,
     )
    -print(string("elapsed time: ", time() - start, " seconds"))
    elapsed time: 0.18061208724975586 seconds

    For small models, adjusting specific constraints or the objective function is sometimes faster and sometimes slower than re-building the entire model. However, as the problem size increases, updating the model in-place is usually faster.

    inplace_df
    26×6 DataFrame
    Rowscaledispatch_G1dispatch_G2dispatch_windspillage_windtotal_cost
    Float64Float64Float64Float64Float64Float64
    10.51000.0300.0200.00.065000.0
    20.61000.0300.0200.00.070000.0
    30.71000.0300.0200.00.075000.0
    40.81000.0300.0200.00.080000.0
    50.91000.0300.0200.00.085000.0
    61.01000.0300.0200.00.090000.0
    71.11000.0300.0200.00.095000.0
    81.21000.0300.0200.00.0100000.0
    91.31000.0300.0200.00.0105000.0
    101.41000.0300.0200.00.0110000.0
    111.51000.0300.0200.00.0115000.0
    121.61000.0300.0200.00.0120000.0
    131.71000.0300.0200.00.0125000.0
    141.81000.0300.0200.00.0130000.0
    151.91000.0300.0200.00.0135000.0
    162.01000.0300.0200.00.0140000.0
    172.1300.01000.0200.00.0141500.0
    182.2300.01000.0200.00.0143000.0
    192.3300.01000.0200.00.0144500.0
    202.4300.01000.0200.00.0146000.0
    212.5300.01000.0200.00.0147500.0
    222.6300.01000.0200.00.0149000.0
    232.7300.01000.0200.00.0150500.0
    242.8300.01000.0200.00.0152000.0
    252.9300.01000.0200.00.0153500.0
    263.0300.01000.0200.00.0155000.0

    Inefficient usage of wind generators

    The economic dispatch problem does not perform commitment decisions and, thus, assumes that all generators must be dispatched at least at their minimum power output limit. This approach is not cost efficient and may lead to absurd decisions. For example, if $d = \sum_{i \in I} g^{\min}_{i}$, the wind power injection must be zero, that is, all available wind generation is spilled, to meet the minimum power output constraints on generators.

    In the following example, we adjust the total demand and observed how it affects wind spillage.

    demand_scale_df = DataFrames.DataFrame(;
    +print(string("elapsed time: ", time() - start, " seconds"))
    elapsed time: 0.18002104759216309 seconds

    For small models, adjusting specific constraints or the objective function is sometimes faster and sometimes slower than re-building the entire model. However, as the problem size increases, updating the model in-place is usually faster.

    inplace_df
    26×6 DataFrame
    Rowscaledispatch_G1dispatch_G2dispatch_windspillage_windtotal_cost
    Float64Float64Float64Float64Float64Float64
    10.51000.0300.0200.00.065000.0
    20.61000.0300.0200.00.070000.0
    30.71000.0300.0200.00.075000.0
    40.81000.0300.0200.00.080000.0
    50.91000.0300.0200.00.085000.0
    61.01000.0300.0200.00.090000.0
    71.11000.0300.0200.00.095000.0
    81.21000.0300.0200.00.0100000.0
    91.31000.0300.0200.00.0105000.0
    101.41000.0300.0200.00.0110000.0
    111.51000.0300.0200.00.0115000.0
    121.61000.0300.0200.00.0120000.0
    131.71000.0300.0200.00.0125000.0
    141.81000.0300.0200.00.0130000.0
    151.91000.0300.0200.00.0135000.0
    162.01000.0300.0200.00.0140000.0
    172.1300.01000.0200.00.0141500.0
    182.2300.01000.0200.00.0143000.0
    192.3300.01000.0200.00.0144500.0
    202.4300.01000.0200.00.0146000.0
    212.5300.01000.0200.00.0147500.0
    222.6300.01000.0200.00.0149000.0
    232.7300.01000.0200.00.0150500.0
    242.8300.01000.0200.00.0152000.0
    252.9300.01000.0200.00.0153500.0
    263.0300.01000.0200.00.0155000.0

    Inefficient usage of wind generators

    The economic dispatch problem does not perform commitment decisions and, thus, assumes that all generators must be dispatched at least at their minimum power output limit. This approach is not cost efficient and may lead to absurd decisions. For example, if $d = \sum_{i \in I} g^{\min}_{i}$, the wind power injection must be zero, that is, all available wind generation is spilled, to meet the minimum power output constraints on generators.

    In the following example, we adjust the total demand and observed how it affects wind spillage.

    demand_scale_df = DataFrames.DataFrame(;
         demand = Float64[],
         dispatch_G1 = Float64[],
         dispatch_G2 = Float64[],
    @@ -212,7 +212,7 @@
         ),
     )
     
    -Plots.plot(dispatch_plot, wind_plot)
    Example block output

    This particular drawback can be overcome by introducing binary decisions on the "on/off" status of generators. This model is called unit commitment and considered later in these notes.

    For further reading on the interplay between wind generation and the minimum power output constraints of generators, we refer interested readers to R. Baldick, "Wind and energy markets: a case study of Texas," IEEE Systems Journal, vol. 6, pp. 27-34, 2012.

    Unit commitment

    The Unit Commitment (UC) model can be obtained from ED model by introducing binary variable associated with each generator. This binary variable can attain two values: if it is "1," the generator is synchronized and, thus, can be dispatched, otherwise, that is, if the binary variable is "0," that generator is not synchronized and its power output is set to 0.

    To obtain the mathematical formulation of the UC model, we will modify the constraints of the ED model as follows:

    \[g^{\min}_{i} \cdot u_{t,i} \leq g_{i} \leq g^{\max}_{i} \cdot u_{t,i},\]

    where $u_{i} \in \{0,1\}.$ In this constraint, if $u_{i} = 0$, then $g_{i} = 0$. On the other hand, if $u_{i} = 1$, then $g^{min}_{i} \leq g_{i} \leq g^{max}_{i}$.

    For further reading on the UC problem we refer interested readers to G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem," IEEE Transactions on Power Systems, vol. 28, pp. 4897-4908, 2013.

    In the following example we convert the ED model explained above to the UC model.

    function solve_unit_commitment(generators::Vector, wind, scenario)
    +Plots.plot(dispatch_plot, wind_plot)
    Example block output

    This particular drawback can be overcome by introducing binary decisions on the "on/off" status of generators. This model is called unit commitment and considered later in these notes.

    For further reading on the interplay between wind generation and the minimum power output constraints of generators, we refer interested readers to R. Baldick, "Wind and energy markets: a case study of Texas," IEEE Systems Journal, vol. 6, pp. 27-34, 2012.

    Unit commitment

    The Unit Commitment (UC) model can be obtained from ED model by introducing binary variable associated with each generator. This binary variable can attain two values: if it is "1," the generator is synchronized and, thus, can be dispatched, otherwise, that is, if the binary variable is "0," that generator is not synchronized and its power output is set to 0.

    To obtain the mathematical formulation of the UC model, we will modify the constraints of the ED model as follows:

    \[g^{\min}_{i} \cdot u_{t,i} \leq g_{i} \leq g^{\max}_{i} \cdot u_{t,i},\]

    where $u_{i} \in \{0,1\}.$ In this constraint, if $u_{i} = 0$, then $g_{i} = 0$. On the other hand, if $u_{i} = 1$, then $g^{min}_{i} \leq g_{i} \leq g^{max}_{i}$.

    For further reading on the UC problem we refer interested readers to G. Morales-Espana, J. M. Latorre, and A. Ramos, "Tight and Compact MILP Formulation for the Thermal Unit Commitment Problem," IEEE Transactions on Power Systems, vol. 28, pp. 4897-4908, 2013.

    In the following example we convert the ED model explained above to the UC model.

    function solve_unit_commitment(generators::Vector, wind, scenario)
         model = Model(HiGHS.Optimizer)
         set_silent(model)
         N = length(generators)
    @@ -325,7 +325,7 @@
         ),
     )
     
    -Plots.plot(commitment_plot, dispatch_plot)
    Example block output

    Nonlinear economic dispatch

    As a final example, we modify our economic dispatch problem in two ways:

    • The thermal cost function is user-defined
    • The output of the wind is only the square-root of the dispatch
    import Ipopt
    +Plots.plot(commitment_plot, dispatch_plot)
    Example block output

    Nonlinear economic dispatch

    As a final example, we modify our economic dispatch problem in two ways:

    • The thermal cost function is user-defined
    • The output of the wind is only the square-root of the dispatch
    import Ipopt
     
     """
         thermal_cost_function(g)
    @@ -395,4 +395,4 @@
         xlabel = "Cost",
         ylabel = "Dispatch [MW]",
         label = false,
    -)
    Example block output +)Example block output diff --git a/previews/PR3919/tutorials/applications/two_stage_stochastic/894b8100.svg b/previews/PR3919/tutorials/applications/two_stage_stochastic/4e0e6de5.svg similarity index 76% rename from previews/PR3919/tutorials/applications/two_stage_stochastic/894b8100.svg rename to previews/PR3919/tutorials/applications/two_stage_stochastic/4e0e6de5.svg index 2119b9426f6..61750ca0c04 100644 --- a/previews/PR3919/tutorials/applications/two_stage_stochastic/894b8100.svg +++ b/previews/PR3919/tutorials/applications/two_stage_stochastic/4e0e6de5.svg @@ -1,81 +1,81 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/applications/two_stage_stochastic/5ef5fee0.svg b/previews/PR3919/tutorials/applications/two_stage_stochastic/5ef5fee0.svg new file mode 100644 index 00000000000..6954350c771 --- /dev/null +++ b/previews/PR3919/tutorials/applications/two_stage_stochastic/5ef5fee0.svg @@ -0,0 +1,99 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/applications/two_stage_stochastic/a88a6b34.svg b/previews/PR3919/tutorials/applications/two_stage_stochastic/9cdd0a89.svg similarity index 77% rename from previews/PR3919/tutorials/applications/two_stage_stochastic/a88a6b34.svg rename to previews/PR3919/tutorials/applications/two_stage_stochastic/9cdd0a89.svg index 552fc86340a..ad645bf9ed2 100644 --- a/previews/PR3919/tutorials/applications/two_stage_stochastic/a88a6b34.svg +++ b/previews/PR3919/tutorials/applications/two_stage_stochastic/9cdd0a89.svg @@ -1,85 +1,85 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/applications/two_stage_stochastic/e0b424d0.svg b/previews/PR3919/tutorials/applications/two_stage_stochastic/e0b424d0.svg new file mode 100644 index 00000000000..00204f9e9e7 --- /dev/null +++ b/previews/PR3919/tutorials/applications/two_stage_stochastic/e0b424d0.svg @@ -0,0 +1,116 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/applications/two_stage_stochastic/eea0355b.svg b/previews/PR3919/tutorials/applications/two_stage_stochastic/eea0355b.svg deleted file mode 100644 index f6ec8a549b0..00000000000 --- a/previews/PR3919/tutorials/applications/two_stage_stochastic/eea0355b.svg +++ /dev/null @@ -1,114 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/previews/PR3919/tutorials/applications/two_stage_stochastic/f465fe27.svg b/previews/PR3919/tutorials/applications/two_stage_stochastic/f465fe27.svg deleted file mode 100644 index 1925bc77dd1..00000000000 --- a/previews/PR3919/tutorials/applications/two_stage_stochastic/f465fe27.svg +++ /dev/null @@ -1,102 +0,0 @@ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - diff --git a/previews/PR3919/tutorials/applications/two_stage_stochastic/index.html b/previews/PR3919/tutorials/applications/two_stage_stochastic/index.html index e23384d2a57..a5074634034 100644 --- a/previews/PR3919/tutorials/applications/two_stage_stochastic/index.html +++ b/previews/PR3919/tutorials/applications/two_stage_stochastic/index.html @@ -18,7 +18,7 @@ d = sort!(rand(D, N)); Ω = 1:N P = fill(1 / N, N); -StatsPlots.histogram(d; bins = 20, label = "", xlabel = "Demand")Example block output

    JuMP model

    The implementation of our two-stage stochastic program in JuMP is:

    model = Model(HiGHS.Optimizer)
    +StatsPlots.histogram(d; bins = 20, label = "", xlabel = "Demand")
    Example block output

    JuMP model

    The implementation of our two-stage stochastic program in JuMP is:

    model = Model(HiGHS.Optimizer)
     set_silent(model)
     @variable(model, x >= 0)
     @variable(model, 0 <= y[ω in Ω] <= d[ω])
    @@ -38,37 +38,37 @@
     * Candidate solution (result #1)
       Primal status      : FEASIBLE_POINT
       Dual status        : FEASIBLE_POINT
    -  Objective value    : 5.42550e+02
    -  Objective bound    : 5.42550e+02
    -  Relative gap       : 1.04771e-15
    -  Dual objective value : 5.42550e+02
    +  Objective value    : 5.62627e+02
    +  Objective bound    : 5.62627e+02
    +  Relative gap       : 4.04129e-16
    +  Dual objective value : 5.62627e+02
     
     * Work counters
    -  Solve time (sec)   : 3.91483e-04
    +  Solve time (sec)   : 3.69787e-04
       Simplex iterations : 42
       Barrier iterations : 0
       Node count         : -1
    -

    The optimal number of pies to make is:

    value(x)
    202.39379005639313

    The distribution of total profit is:

    total_profit = [-2 * value(x) + value(z[ω]) for ω in Ω]
    100-element Vector{Float64}:
    - 360.0072919084249
    - 368.12437513013674
    - 387.31185106910084
    - 397.32039215080135
    - 403.9759573907189
    - 414.20916878814273
    - 417.4301269070934
    - 419.7857331637101
    - 421.06533761639173
    - 421.9714287432672
    +

    The optimal number of pies to make is:

    value(x)
    203.83473507499122

    The distribution of total profit is:

    total_profit = [-2 * value(x) + value(z[ω]) for ω in Ω]
    100-element Vector{Float64}:
    + 372.58337445213783
    + 391.85311513310194
    + 392.30859164447315
    + 407.7739730911529
    + 425.1225505075738
    + 426.5039569993063
    + 432.4859882851017
    + 434.1745865238702
    + 434.29772073223023
    + 438.9812942964626
        ⋮
    - 607.1813701691792
    - 607.1813701691792
    - 607.1813701691792
    - 607.1813701691792
    - 607.1813701691792
    - 607.1813701691792
    - 607.1813701691792
    - 607.1813701691792
    - 607.1813701691792

    Let's plot it:

    """
    + 611.5042052249735
    + 611.5042052249735
    + 611.5042052249735
    + 611.5042052249735
    + 611.5042052249735
    + 611.5042052249735
    + 611.5042052249735
    + 611.5042052249735
    + 611.5042052249735

    Let's plot it:

    """
         bin_distribution(x::Vector{Float64}, N::Int)
     
     A helper function that discretizes `x` into bins of width `N`.
    @@ -89,7 +89,7 @@
         label = "Expected profit (\$$(round(Int, μ)))",
         linewidth = 3,
     )
    -plot
    Example block output

    Risk measures

    A risk measure is a function which maps a random variable to a real number. Common risk measures include the mean (expectation), median, mode, and maximum. We need a risk measure to convert the distribution of second stage costs into a single number that can be optimized.

    Our model currently uses the expectation risk measure, but others are possible too. One popular risk measure is the conditional value at risk (CVaR).

    CVaR has a parameter $\gamma$, and it computes the expectation of the worst $\gamma$ fraction of outcomes.

    If we are maximizing, so that small outcomes are bad, the definition of CVaR is:

    \[CVaR_{\gamma}[Z] = \max\limits_{\xi} \;\; \xi - \frac{1}{\gamma}\mathbb{E}_\omega\left[(\xi - Z)_+\right]\]

    which can be formulated as the linear program:

    \[\begin{aligned} +plotExample block output

    Risk measures

    A risk measure is a function which maps a random variable to a real number. Common risk measures include the mean (expectation), median, mode, and maximum. We need a risk measure to convert the distribution of second stage costs into a single number that can be optimized.

    Our model currently uses the expectation risk measure, but others are possible too. One popular risk measure is the conditional value at risk (CVaR).

    CVaR has a parameter $\gamma$, and it computes the expectation of the worst $\gamma$ fraction of outcomes.

    If we are maximizing, so that small outcomes are bad, the definition of CVaR is:

    \[CVaR_{\gamma}[Z] = \max\limits_{\xi} \;\; \xi - \frac{1}{\gamma}\mathbb{E}_\omega\left[(\xi - Z)_+\right]\]

    which can be formulated as the linear program:

    \[\begin{aligned} CVaR_{\gamma}[Z] = \max\limits_{\xi, z_\omega} \;\; & \xi - \frac{1}{\gamma}\sum P_\omega z_\omega\\ & z_\omega \ge \xi - Z_\omega & \quad \forall \omega \\ & z_\omega \ge 0 & \quad \forall \omega. @@ -105,7 +105,7 @@ optimize!(model) @assert is_solved_and_feasible(model) return objective_value(model) -end

    CVaR (generic function with 1 method)

    When γ is 1.0, we compute the mean of the profit:

    cvar_10 = CVaR(total_profit, P; γ = 1.0)
    542.5498977762089
    Statistics.mean(total_profit)
    542.5498977762085

    As γ approaches 0.0, we compute the worst-case (minimum) profit:

    cvar_00 = CVaR(total_profit, P; γ = 0.0001)
    360.0072919084249
    minimum(total_profit)
    360.0072919084249

    By varying γ between 0 and 1 we can compute some trade-off of these two extremes:

    cvar_05 = CVaR(total_profit, P; γ = 0.5)
    479.77034227655656

    Let's plot these outcomes on our distribution:

    plot = StatsPlots.histogram(
    +end
    CVaR (generic function with 1 method)

    When γ is 1.0, we compute the mean of the profit:

    cvar_10 = CVaR(total_profit, P; γ = 1.0)
    562.6268718327743
    Statistics.mean(total_profit)
    562.6268718327742

    As γ approaches 0.0, we compute the worst-case (minimum) profit:

    cvar_00 = CVaR(total_profit, P; γ = 0.0001)
    372.58337445213783
    minimum(total_profit)
    372.58337445213783

    By varying γ between 0 and 1 we can compute some trade-off of these two extremes:

    cvar_05 = CVaR(total_profit, P; γ = 0.5)
    515.7269829086769

    Let's plot these outcomes on our distribution:

    plot = StatsPlots.histogram(
         total_profit;
         bins = bin_distribution(total_profit, 25),
         label = "",
    @@ -118,7 +118,7 @@
         label = ["γ = 1.0" "γ = 0.5" "γ = 0.0"],
         linewidth = 3,
     )
    -plot
    Example block output

    Risk averse sample average approximation

    Because CVaR can be formulated as a linear program, we can form a risk averse sample average approximation model by combining the two formulations:

    γ = 0.4
    +plot
    Example block output

    Risk averse sample average approximation

    Because CVaR can be formulated as a linear program, we can form a risk averse sample average approximation model by combining the two formulations:

    γ = 0.4
     model = Model(HiGHS.Optimizer)
     set_silent(model)
     @variable(model, x >= 0)
    @@ -130,7 +130,7 @@
     @constraint(model, [ω in Ω], z[ω] >= ξ - Z[ω])
     @objective(model, Max, -2x + ξ - 1 / γ * sum(P[ω] * z[ω] for ω in Ω))
     optimize!(model)
    -@assert is_solved_and_feasible(model)

    When $\gamma = 0.4$, the optimal number of pies to bake is:

    value(x)
    175.68381022625104

    The distribution of total profit is:

    risk_averse_total_profit = [value(-2x + Z[ω]) for ω in Ω]
    +@assert is_solved_and_feasible(model)

    When $\gamma = 0.4$, the optimal number of pies to bake is:

    value(x)
    187.23502458837356

    The distribution of total profit is:

    risk_averse_total_profit = [value(-2x + Z[ω]) for ω in Ω]
     bins = bin_distribution([total_profit; risk_averse_total_profit], 25)
     plot = StatsPlots.histogram(total_profit; label = "Expectation", bins = bins)
     StatsPlots.histogram!(
    @@ -140,4 +140,4 @@
         bins = bins,
         alpha = 0.5,
     )
    -plot
    Example block output

    Next steps

    • Try solving this problem for different numbers of samples and different distributions.
    • Refactor the example to avoid hard-coding the costs. What happens to the solution if the cost of disposing unsold pies increases?
    • Plot the optimal number of pies to make for different values of the risk aversion parameter $\gamma$. What is the relationship?
    +plotExample block output

    Next steps

    • Try solving this problem for different numbers of samples and different distributions.
    • Refactor the example to avoid hard-coding the costs. What happens to the solution if the cost of disposing unsold pies increases?
    • Plot the optimal number of pies to make for different values of the risk aversion parameter $\gamma$. What is the relationship?
    diff --git a/previews/PR3919/tutorials/applications/web_app/index.html b/previews/PR3919/tutorials/applications/web_app/index.html index f6e8af9c4f7..b6fe1b093d7 100644 --- a/previews/PR3919/tutorials/applications/web_app/index.html +++ b/previews/PR3919/tutorials/applications/web_app/index.html @@ -59,7 +59,7 @@ end end return server -end
    setup_server (generic function with 1 method)
    Warning

    HTTP.jl does not serve requests on a separate thread. Therefore, a long-running job will block the main thread, preventing concurrent users from submitting requests. To work-around this, read HTTP.jl issue 798 or watch Building Microservices and Applications in Julia from JuliaCon 2020.

    server = setup_server(HTTP.ip"127.0.0.1", 8080)
    Sockets.TCPServer(RawFD(38) active)

    The client side

    Now that we have a server, we can send it requests via this function:

    function send_request(data::Dict; endpoint::String = "solve")
    +end
    setup_server (generic function with 1 method)
    Warning

    HTTP.jl does not serve requests on a separate thread. Therefore, a long-running job will block the main thread, preventing concurrent users from submitting requests. To work-around this, read HTTP.jl issue 798 or watch Building Microservices and Applications in Julia from JuliaCon 2020.

    server = setup_server(HTTP.ip"127.0.0.1", 8080)
    Sockets.TCPServer(RawFD(35) active)

    The client side

    Now that we have a server, we can send it requests via this function:

    function send_request(data::Dict; endpoint::String = "solve")
         ret = HTTP.request(
             "POST",
             # This should match the URL and endpoint we defined for our server.
    @@ -88,4 +88,4 @@
       "status" => "failure"
       "reason" => "missing lower_bound param"

    If we don't send a lower_bound that is a number, we get:

    send_request(Dict("lower_bound" => "1.2"))
    Dict{String, Any} with 2 entries:
       "status" => "failure"
    -  "reason" => "lower_bound is not a number"

    Finally, we can shutdown our HTTP server:

    close(server)
    [ Info: Server on 127.0.0.1:8080 closing

    Next steps

    For more complicated examples relating to HTTP servers, consult the HTTP.jl documentation.

    To see how you can integrate this with a larger JuMP model, read Design patterns for larger models.

    + "reason" => "lower_bound is not a number"

    Finally, we can shutdown our HTTP server:

    close(server)
    [ Info: Server on 127.0.0.1:8080 closing

    Next steps

    For more complicated examples relating to HTTP servers, consult the HTTP.jl documentation.

    To see how you can integrate this with a larger JuMP model, read Design patterns for larger models.

    diff --git a/previews/PR3919/tutorials/conic/arbitrary_precision/index.html b/previews/PR3919/tutorials/conic/arbitrary_precision/index.html index 0516354cabd..9483b00f732 100644 --- a/previews/PR3919/tutorials/conic/arbitrary_precision/index.html +++ b/previews/PR3919/tutorials/conic/arbitrary_precision/index.html @@ -37,7 +37,7 @@ Dual objective value : -6.42857e-01 * Work counters - Solve time (sec) : 4.65506e-01 + Solve time (sec) : 1.65898e-03 Barrier iterations : 5

    The value of each decision variable is a BigFloat:

    value.(x)
    2-element Vector{BigFloat}:
      0.4285714246558161076147072906813123533593766450416896337912086518811186790735189
    @@ -82,4 +82,4 @@
     * Work counters
     

    The optimal values are given in exact rational arithmetic:

    value.(x)
    2-element Vector{Rational{BigInt}}:
      1//6
    - 2//3
    objective_value(model)
    5//6
    value(c2)
    13//6
    + 2//3
    objective_value(model)
    5//6
    value(c2)
    13//6
    diff --git a/previews/PR3919/tutorials/conic/dualization/index.html b/previews/PR3919/tutorials/conic/dualization/index.html index c2b8e06b710..35bd57e145d 100644 --- a/previews/PR3919/tutorials/conic/dualization/index.html +++ b/previews/PR3919/tutorials/conic/dualization/index.html @@ -53,12 +53,12 @@ ------------------------------------------------------------------ iter | pri res | dua res | gap | obj | scale | time (s) ------------------------------------------------------------------ - 0| 1.65e+01 1.60e-01 5.09e+01 -2.91e+01 1.00e-01 1.06e-04 - 50| 1.74e-08 2.70e-10 4.88e-08 -4.00e+00 1.00e-01 1.87e-04 + 0| 1.65e+01 1.60e-01 5.09e+01 -2.91e+01 1.00e-01 1.17e-04 + 50| 1.74e-08 2.70e-10 4.88e-08 -4.00e+00 1.00e-01 1.94e-04 ------------------------------------------------------------------ status: solved -timings: total: 1.88e-04s = setup: 4.38e-05s + solve: 1.44e-04s - lin-sys: 1.19e-05s, cones: 6.14e-05s, accel: 2.70e-06s +timings: total: 1.95e-04s = setup: 4.28e-05s + solve: 1.52e-04s + lin-sys: 1.12e-05s, cones: 5.93e-05s, accel: 2.76e-06s ------------------------------------------------------------------ objective = -4.000000 ------------------------------------------------------------------

    (There are five rows in the constraint matrix because SCS expects problems in geometric conic form, and so JuMP has reformulated the X, PSD variable constraint into the affine constraint X .+ 0 in PSDCone().)

    The solution we obtain is:

    value.(X)
    2×2 Matrix{Float64}:
    @@ -83,12 +83,12 @@
     ------------------------------------------------------------------
      iter | pri res | dua res |   gap   |   obj   |  scale  | time (s)
     ------------------------------------------------------------------
    -     0| 1.23e+01  1.00e+00  2.73e+01 -9.03e+00  1.00e-01  9.94e-05
    -    50| 1.13e-07  1.05e-09  3.23e-07  4.00e+00  1.00e-01  1.80e-04
    +     0| 1.23e+01  1.00e+00  2.73e+01 -9.03e+00  1.00e-01  1.13e-04
    +    50| 1.13e-07  1.05e-09  3.23e-07  4.00e+00  1.00e-01  1.94e-04
     ------------------------------------------------------------------
     status:  solved
    -timings: total: 1.81e-04s = setup: 4.77e-05s + solve: 1.33e-04s
    -	 lin-sys: 9.61e-06s, cones: 5.83e-05s, accel: 2.74e-06s
    +timings: total: 1.94e-04s = setup: 5.57e-05s + solve: 1.39e-04s
    +	 lin-sys: 9.89e-06s, cones: 6.00e-05s, accel: 3.05e-06s
     ------------------------------------------------------------------
     objective = 4.000000
     ------------------------------------------------------------------

    and the solution we obtain is:

    dual.(dual_c)
    2×2 Matrix{Float64}:
    @@ -113,12 +113,12 @@
     ------------------------------------------------------------------
      iter | pri res | dua res |   gap   |   obj   |  scale  | time (s)
     ------------------------------------------------------------------
    -     0| 1.23e+01  1.00e+00  2.73e+01 -9.03e+00  1.00e-01  1.08e-04
    -    50| 1.13e-07  1.05e-09  3.23e-07  4.00e+00  1.00e-01  1.89e-04
    +     0| 1.23e+01  1.00e+00  2.73e+01 -9.03e+00  1.00e-01  1.04e-04
    +    50| 1.13e-07  1.05e-09  3.23e-07  4.00e+00  1.00e-01  1.87e-04
     ------------------------------------------------------------------
     status:  solved
    -timings: total: 1.90e-04s = setup: 4.59e-05s + solve: 1.44e-04s
    -	 lin-sys: 9.99e-06s, cones: 6.26e-05s, accel: 2.81e-06s
    +timings: total: 1.87e-04s = setup: 4.78e-05s + solve: 1.40e-04s
    +	 lin-sys: 9.77e-06s, cones: 6.14e-05s, accel: 2.78e-06s
     ------------------------------------------------------------------
     objective = 4.000000
     ------------------------------------------------------------------

    The performance is the same as if we solved model_dual, and the correct solution is returned to X:

    value.(X)
    2×2 Matrix{Float64}:
    @@ -144,12 +144,12 @@
     ------------------------------------------------------------------
      iter | pri res | dua res |   gap   |   obj   |  scale  | time (s)
     ------------------------------------------------------------------
    -     0| 1.65e+01  1.60e-01  5.09e+01 -2.91e+01  1.00e-01  1.18e-04
    -    50| 1.74e-08  2.70e-10  4.88e-08 -4.00e+00  1.00e-01  1.96e-04
    +     0| 1.65e+01  1.60e-01  5.09e+01 -2.91e+01  1.00e-01  1.25e-04
    +    50| 1.74e-08  2.70e-10  4.88e-08 -4.00e+00  1.00e-01  2.03e-04
     ------------------------------------------------------------------
     status:  solved
    -timings: total: 1.97e-04s = setup: 4.35e-05s + solve: 1.54e-04s
    -	 lin-sys: 1.14e-05s, cones: 5.82e-05s, accel: 2.74e-06s
    +timings: total: 2.04e-04s = setup: 4.45e-05s + solve: 1.60e-04s
    +	 lin-sys: 1.14e-05s, cones: 5.91e-05s, accel: 2.73e-06s
     ------------------------------------------------------------------
     objective = -4.000000
     ------------------------------------------------------------------
    dual.(dual_c)
    2×2 Matrix{Float64}:
    @@ -185,12 +185,12 @@
     ------------------------------------------------------------------
      iter | pri res | dua res |   gap   |   obj   |  scale  | time (s)
     ------------------------------------------------------------------
    -     0| 4.73e+00  1.00e+00  2.92e+00  1.23e+00  1.00e-01  1.31e-04
    -   150| 1.01e-04  3.07e-05  6.08e-05  1.33e+00  1.00e-01  7.17e-04
    +     0| 4.73e+00  1.00e+00  2.92e+00  1.23e+00  1.00e-01  1.50e-04
    +   150| 1.01e-04  3.07e-05  6.08e-05  1.33e+00  1.00e-01  7.41e-04
     ------------------------------------------------------------------
     status:  solved
    -timings: total: 7.19e-04s = setup: 6.64e-05s + solve: 6.52e-04s
    -	 lin-sys: 1.01e-04s, cones: 3.86e-04s, accel: 3.68e-05s
    +timings: total: 7.42e-04s = setup: 6.68e-05s + solve: 6.75e-04s
    +	 lin-sys: 1.21e-04s, cones: 3.85e-04s, accel: 3.69e-05s
     ------------------------------------------------------------------
     objective = 1.333363
     ------------------------------------------------------------------
    set_optimizer(model, Dualization.dual_optimizer(SCS.Optimizer))
    @@ -212,12 +212,12 @@
     ------------------------------------------------------------------
      iter | pri res | dua res |   gap   |   obj   |  scale  | time (s)
     ------------------------------------------------------------------
    -     0| 3.71e+01  1.48e+00  2.23e+02 -1.13e+02  1.00e-01  1.67e-04
    -   150| 1.57e-04  2.28e-05  2.08e-04 -1.33e+00  1.00e-01  7.82e-04
    +     0| 3.71e+01  1.48e+00  2.23e+02 -1.13e+02  1.00e-01  1.61e-04
    +   150| 1.57e-04  2.28e-05  2.08e-04 -1.33e+00  1.00e-01  7.55e-04
     ------------------------------------------------------------------
     status:  solved
    -timings: total: 7.83e-04s = setup: 7.83e-05s + solve: 7.05e-04s
    -	 lin-sys: 1.09e-04s, cones: 4.28e-04s, accel: 2.67e-05s
    +timings: total: 7.56e-04s = setup: 7.27e-05s + solve: 6.83e-04s
    +	 lin-sys: 1.07e-04s, cones: 4.07e-04s, accel: 2.63e-05s
     ------------------------------------------------------------------
     objective = -1.333460
    -------------------------------------------------------------------

    For this problem, SCS reports that the primal has variables n: 11, constraints m: 24 and that the dual has variables n: 14, constraints m: 24. Therefore, we should probably use the primal formulation because it has fewer variables and the same number of constraints.

    When to use dual_optimizer

    Because it can make the problem larger or smaller, depending on the problem and the choice of solver, there is no definitive rule on when you should use dual_optimizer. However, you should try dual_optimizer if your conic optimization problem takes a long time to solve, or if you need to repeatedly solve similarly structured problems with different data. In some cases solving the dual instead of the primal can make a large difference.

    +------------------------------------------------------------------

    For this problem, SCS reports that the primal has variables n: 11, constraints m: 24 and that the dual has variables n: 14, constraints m: 24. Therefore, we should probably use the primal formulation because it has fewer variables and the same number of constraints.

    When to use dual_optimizer

    Because it can make the problem larger or smaller, depending on the problem and the choice of solver, there is no definitive rule on when you should use dual_optimizer. However, you should try dual_optimizer if your conic optimization problem takes a long time to solve, or if you need to repeatedly solve similarly structured problems with different data. In some cases solving the dual instead of the primal can make a large difference.

    diff --git a/previews/PR3919/tutorials/conic/ellipse_approx/f91d9612.svg b/previews/PR3919/tutorials/conic/ellipse_approx/e867dd5c.svg similarity index 57% rename from previews/PR3919/tutorials/conic/ellipse_approx/f91d9612.svg rename to previews/PR3919/tutorials/conic/ellipse_approx/e867dd5c.svg index 65f5ba8e79f..d0ef42d856a 100644 --- a/previews/PR3919/tutorials/conic/ellipse_approx/f91d9612.svg +++ b/previews/PR3919/tutorials/conic/ellipse_approx/e867dd5c.svg @@ -1,2443 +1,2443 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/conic/ellipse_approx/d1c5d9dc.svg b/previews/PR3919/tutorials/conic/ellipse_approx/f0813e54.svg similarity index 57% rename from previews/PR3919/tutorials/conic/ellipse_approx/d1c5d9dc.svg rename to previews/PR3919/tutorials/conic/ellipse_approx/f0813e54.svg index 0a1bc523953..9a1a7d471ae 100644 --- a/previews/PR3919/tutorials/conic/ellipse_approx/d1c5d9dc.svg +++ b/previews/PR3919/tutorials/conic/ellipse_approx/f0813e54.svg @@ -1,2442 +1,2442 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/conic/ellipse_approx/index.html b/previews/PR3919/tutorials/conic/ellipse_approx/index.html index dedea625c53..bb9a2f29efb 100644 --- a/previews/PR3919/tutorials/conic/ellipse_approx/index.html +++ b/previews/PR3919/tutorials/conic/ellipse_approx/index.html @@ -36,7 +36,7 @@ c = :green, shape = :x, size = (600, 600), -)Example block output

    JuMP formulation

    Now let's build and the JuMP model. We'll compute $D$ and $c$ after the solve.

    model = Model(SCS.Optimizer)
    +)
    Example block output

    JuMP formulation

    Now let's build and the JuMP model. We'll compute $D$ and $c$ after the solve.

    model = Model(SCS.Optimizer)
     # We need to use a tighter tolerance for this example, otherwise the bounding
     # ellipse won't actually be bounding...
     set_attribute(model, "eps_rel", 1e-7)
    @@ -71,7 +71,7 @@
       Dual objective value : 5.08382e-03
     
     * Work counters
    -  Solve time (sec)   : 2.95950e-01
    +  Solve time (sec)   : 3.54026e-01
     

    Results

    After solving the model to optimality we can recover the solution in terms of $D$ and $c$:

    D = value.(Z)
    2×2 Matrix{Float64}:
       0.00755264  -0.0114233
      -0.0114233    0.0206963
    c = D \ value.(z)
    2-element Vector{Float64}:
    @@ -79,7 +79,7 @@
      -2.255547187078282

    We can check that each point lies inside the ellipsoid, by checking if the largest normalized radius is less than 1:

    largest_radius = maximum(map(x -> (x - c)' * D * (x - c), eachrow(S)))
    0.999891803944291

    Finally, overlaying the solution in the plot we see the minimal volume approximating ellipsoid:

    P = sqrt(D)
     q = -P * c
     data = [tuple(P \ [cos(θ) - q[1], sin(θ) - q[2]]...) for θ in 0:0.05:(2pi+0.05)]
    -Plots.plot!(plot, data; c = :crimson, label = nothing)
    Example block output

    Alternative formulations

    The formulation of model uses MOI.RootDetConeSquare. However, because SCS does not natively support this cone, JuMP automatically reformulates the problem into an equivalent problem that SCS does support. You can see the reformulation that JuMP chose using print_active_bridges:

    print_active_bridges(model)
     * Unsupported objective: MOI.VariableIndex
    +Plots.plot!(plot, data; c = :crimson, label = nothing)
    Example block output

    Alternative formulations

    The formulation of model uses MOI.RootDetConeSquare. However, because SCS does not natively support this cone, JuMP automatically reformulates the problem into an equivalent problem that SCS does support. You can see the reformulation that JuMP chose using print_active_bridges:

    print_active_bridges(model)
     * Unsupported objective: MOI.VariableIndex
      |  bridged by:
      |   MOIB.Objective.FunctionConversionBridge{Float64, MOI.ScalarAffineFunction{Float64}, MOI.VariableIndex}
      |  may introduce:
    @@ -259,7 +259,7 @@
     @objective(model, Max, 1 * t + 0)
     optimize!(model)
     Test.@test is_solved_and_feasible(model)
    -solve_time_1 = solve_time(model)
    0.36038327

    This formulation gives the much smaller graph:

    print_active_bridges(model)
     * Supported objective: MOI.ScalarAffineFunction{Float64}
    +solve_time_1 = solve_time(model)
    0.35463876499999997

    This formulation gives the much smaller graph:

    print_active_bridges(model)
     * Supported objective: MOI.ScalarAffineFunction{Float64}
      * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Nonnegatives
      * Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeTriangle
      |  bridged by:
    @@ -298,7 +298,7 @@
      |   |   |   |   * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Nonnegatives
      |   * Supported variable: MOI.Reals

    The last bullet shows how JuMP reformulated the MOI.RootDetConeTriangle constraint by adding a mix of MOI.PositiveSemidefiniteConeTriangle and MOI.GeometricMeanCone constraints.

    Because SCS doesn't natively support the MOI.GeometricMeanCone, these constraints were further bridged using a MOI.Bridges.Constraint.GeoMeanToPowerBridge to a series of MOI.PowerCone constraints.

    However, there are many other ways that a MOI.GeometricMeanCone can be reformulated into something that SCS supports. Let's see what happens if we use remove_bridge to remove the MOI.Bridges.Constraint.GeoMeanToPowerBridge:

    remove_bridge(model, MOI.Bridges.Constraint.GeoMeanToPowerBridge)
     optimize!(model)
    -Test.@test is_solved_and_feasible(model)
    Test Passed

    This time, the solve took:

    solve_time_2 = solve_time(model)
    0.285839857

    where previously it took

    solve_time_1
    0.36038327

    Why was the solve time different?

    print_active_bridges(model)
     * Supported objective: MOI.ScalarAffineFunction{Float64}
    +Test.@test is_solved_and_feasible(model)
    Test Passed

    This time, the solve took:

    solve_time_2 = solve_time(model)
    0.284497442

    where previously it took

    solve_time_1
    0.35463876499999997

    Why was the solve time different?

    print_active_bridges(model)
     * Supported objective: MOI.ScalarAffineFunction{Float64}
      * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Nonnegatives
      * Unsupported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.PositiveSemidefiniteConeTriangle
      |  bridged by:
    @@ -342,4 +342,4 @@
      |   |   |   * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.SecondOrderCone
      |   |   * Supported constraint: MOI.VectorAffineFunction{Float64}-in-MOI.Nonnegatives
      |   |   * Supported variable: MOI.Reals
    - |   * Supported variable: MOI.Reals

    This time, JuMP used a MOI.Bridges.Constraint.GeoMeanBridge to reformulate the constraint into a set of MOI.RotatedSecondOrderCone constraints, which were further reformulated into a set of supported MOI.SecondOrderCone constraints.

    Since the two models are equivalent, we can conclude that for this particular model, the MOI.SecondOrderCone formulation is more efficient.

    In general though, the performance of a particular reformulation is problem- and solver-specific. Therefore, JuMP chooses to minimize the number of bridges in the default reformulation, leaving you to explore alternative formulations using the tools and techniques shown in this tutorial.

    + | * Supported variable: MOI.Reals

    This time, JuMP used a MOI.Bridges.Constraint.GeoMeanBridge to reformulate the constraint into a set of MOI.RotatedSecondOrderCone constraints, which were further reformulated into a set of supported MOI.SecondOrderCone constraints.

    Since the two models are equivalent, we can conclude that for this particular model, the MOI.SecondOrderCone formulation is more efficient.

    In general though, the performance of a particular reformulation is problem- and solver-specific. Therefore, JuMP chooses to minimize the number of bridges in the default reformulation, leaving you to explore alternative formulations using the tools and techniques shown in this tutorial.

    diff --git a/previews/PR3919/tutorials/conic/ellipse_fitting/457206ed.svg b/previews/PR3919/tutorials/conic/ellipse_fitting/7dc2b446.svg similarity index 98% rename from previews/PR3919/tutorials/conic/ellipse_fitting/457206ed.svg rename to previews/PR3919/tutorials/conic/ellipse_fitting/7dc2b446.svg index a76614a7735..47d50da5ef7 100644 --- a/previews/PR3919/tutorials/conic/ellipse_fitting/457206ed.svg +++ b/previews/PR3919/tutorials/conic/ellipse_fitting/7dc2b446.svg @@ -1,49 +1,49 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - + - + - + - + - + - - - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/conic/ellipse_fitting/39d58e8a.svg b/previews/PR3919/tutorials/conic/ellipse_fitting/b41c67d3.svg similarity index 80% rename from previews/PR3919/tutorials/conic/ellipse_fitting/39d58e8a.svg rename to previews/PR3919/tutorials/conic/ellipse_fitting/b41c67d3.svg index 417573061ad..98a547f2dc7 100644 --- a/previews/PR3919/tutorials/conic/ellipse_fitting/39d58e8a.svg +++ b/previews/PR3919/tutorials/conic/ellipse_fitting/b41c67d3.svg @@ -1,35 +1,35 @@ - + - + - + - + - + - - - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/conic/ellipse_fitting/4e59ec11.svg b/previews/PR3919/tutorials/conic/ellipse_fitting/f59bdc7b.svg similarity index 80% rename from previews/PR3919/tutorials/conic/ellipse_fitting/4e59ec11.svg rename to previews/PR3919/tutorials/conic/ellipse_fitting/f59bdc7b.svg index 63bc268079f..5a102e38aa5 100644 --- a/previews/PR3919/tutorials/conic/ellipse_fitting/4e59ec11.svg +++ b/previews/PR3919/tutorials/conic/ellipse_fitting/f59bdc7b.svg @@ -1,35 +1,35 @@ - + - + - + - + - + - - - - - - - - - - - - - + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/conic/ellipse_fitting/index.html b/previews/PR3919/tutorials/conic/ellipse_fitting/index.html index 9c5eb3ffc8f..451e1f7cdfb 100644 --- a/previews/PR3919/tutorials/conic/ellipse_fitting/index.html +++ b/previews/PR3919/tutorials/conic/ellipse_fitting/index.html @@ -74,7 +74,7 @@ Images.mosaicview(x, Images.Gray.(x_final); nrow = 1)Example block output

    We then use a binarization algorithm to map each grayscale pixel $(x_i, y_i)$ to a binary value so $x_i, y_i \to \{0, 1\}$.

    x_bin = Images.binarize(x_final, Images.Otsu(); nbins = 128)
     x_bin = convert(Array{Bool}, x_bin)
     plt = plot_dwt(img_roi)
    -Plots.heatmap!(x_bin; color = :grays, alpha = 0.45)
    Example block output

    Edge detection and clustering

    Now that we have our binary image, we can use edge detection to find the edges of the galaxies. We will use the Sobel operator for this task.

    function edge_detector(
    +Plots.heatmap!(x_bin; color = :grays, alpha = 0.45)
    Example block output

    Edge detection and clustering

    Now that we have our binary image, we can use edge detection to find the edges of the galaxies. We will use the Sobel operator for this task.

    function edge_detector(
         f_smooth::Matrix{Float64},
         d1::Float64 = 0.1,
         d2::Float64 = 0.1,
    @@ -144,7 +144,7 @@
         legend = :topleft,
         legendcolumns = 1,
         legendfontsize = 12,
    -)
    Example block output

    Fitting ellipses

    Now that we have all the ingredients we can finally start fitting ellipses. We will use a conic optimization approach to do so since it is a very natural way to represent ellipses.

    First, we define the residual distance definition (6) of a point to an ellipse in JuMP:

    function create_ellipse_model(Ξ::Array{Tuple{Int,Int},1}, ϵ = 1e-5)
    +)
    Example block output

    Fitting ellipses

    Now that we have all the ingredients we can finally start fitting ellipses. We will use a conic optimization approach to do so since it is a very natural way to represent ellipses.

    First, we define the residual distance definition (6) of a point to an ellipse in JuMP:

    function create_ellipse_model(Ξ::Array{Tuple{Int,Int},1}, ϵ = 1e-5)
         N = length(Ξ)
         model = Model(Clarabel.Optimizer)
         set_silent(model)
    @@ -204,7 +204,7 @@
             cbar = false,
         )
     end
    -plt
    Example block output

    Objective 2: Minimize the maximum residual distance

    For our second objective we will minimize the maximum residual distance of all points to the ellipse:

    \[\min_{Q, d, e} \max_{\xi_i \in \mathcal{F}} d_\text{res}(\xi_i, \mathcal{E}) = +pltExample block output

    Objective 2: Minimize the maximum residual distance

    For our second objective we will minimize the maximum residual distance of all points to the ellipse:

    \[\min_{Q, d, e} \max_{\xi_i \in \mathcal{F}} d_\text{res}(\xi_i, \mathcal{E}) = \min_{Q, d, e} ||d_\text{res}||_\infty\]

    This objective can be implemented in JuMP using MOI.NormInfinityCone as follows:

    ellipses_C2 = Dict{Symbol,Any}[]
     for (i, cluster) in enumerate(clusters)
         p_cluster = points[:, cluster.core_indices]
    @@ -237,4 +237,4 @@
         )
     end
     Plots.scatter!([0], [0]; color = :red, label = "Squared (Obj. 1)")
    -Plots.scatter!([0], [0]; color = :green, label = "Min-Max (Obj. 2)")
    Example block output +Plots.scatter!([0], [0]; color = :green, label = "Min-Max (Obj. 2)")Example block output diff --git a/previews/PR3919/tutorials/conic/experiment_design/index.html b/previews/PR3919/tutorials/conic/experiment_design/index.html index c5cd257df00..ebf01604a37 100644 --- a/previews/PR3919/tutorials/conic/experiment_design/index.html +++ b/previews/PR3919/tutorials/conic/experiment_design/index.html @@ -99,4 +99,4 @@ 2.9157806299837166 2.67337566459234 2.735395012219622 - 0.3378388086258122 + 0.3378388086258122 diff --git a/previews/PR3919/tutorials/conic/introduction/index.html b/previews/PR3919/tutorials/conic/introduction/index.html index 7e48511d299..8a17278a707 100644 --- a/previews/PR3919/tutorials/conic/introduction/index.html +++ b/previews/PR3919/tutorials/conic/introduction/index.html @@ -6,4 +6,4 @@

    Introduction

    Conic programs are a class of convex nonlinear optimization problems which use cones to represent the nonlinearities. They have the form:

    \[\begin{align} & \min_{x \in \mathbb{R}^n} & f_0(x) \\ & \;\;\text{s.t.} & f_j(x) \in \mathcal{S}_j & \;\; j = 1 \ldots m -\end{align}\]

    Mixed-integer conic programs (MICPs) are extensions of conic programs in which some (or all) of the decision variables take discrete values.

    How to choose a solver

    JuMP supports a range of conic solvers, although support differs on what types of cones each solver supports. In the list of Supported solvers, "SOCP" denotes solvers supporting second-order cones and "SDP" denotes solvers supporting semidefinite cones. In addition, solvers such as SCS and Mosek have support for the exponential cone. Moreover, due to the bridging system in MathOptInterface, many of these solvers support a much wider range of exotic cones than they natively support. Solvers supporting discrete variables start with "(MI)" in the list of Supported solvers.

    Tip

    Duality plays a large role in solving conic optimization models. Depending on the solver, it can be more efficient to solve the dual instead of the primal. If performance is an issue, see the Dualization tutorial for more details.

    How these tutorials are structured

    Having a high-level overview of how this part of the documentation is structured will help you know where to look for certain things.

    • The following tutorials are worked examples that present a problem in words, then formulate it in mathematics, and then solve it in JuMP. This usually involves some sort of visualization of the solution. Start here if you are new to JuMP.
    • The Modeling with cones tutorial contains a number of helpful reformulations and tricks you can use when modeling conic programs. Look here if you are stuck trying to formulate a problem as a conic program.
    • The remaining tutorials are less verbose and styled in the form of short code examples. These tutorials have less explanation, but may contain useful code snippets, particularly if they are similar to a problem you are trying to solve.
    +\end{align}\]

    Mixed-integer conic programs (MICPs) are extensions of conic programs in which some (or all) of the decision variables take discrete values.

    How to choose a solver

    JuMP supports a range of conic solvers, although support differs on what types of cones each solver supports. In the list of Supported solvers, "SOCP" denotes solvers supporting second-order cones and "SDP" denotes solvers supporting semidefinite cones. In addition, solvers such as SCS and Mosek have support for the exponential cone. Moreover, due to the bridging system in MathOptInterface, many of these solvers support a much wider range of exotic cones than they natively support. Solvers supporting discrete variables start with "(MI)" in the list of Supported solvers.

    Tip

    Duality plays a large role in solving conic optimization models. Depending on the solver, it can be more efficient to solve the dual instead of the primal. If performance is an issue, see the Dualization tutorial for more details.

    How these tutorials are structured

    Having a high-level overview of how this part of the documentation is structured will help you know where to look for certain things.

    • The following tutorials are worked examples that present a problem in words, then formulate it in mathematics, and then solve it in JuMP. This usually involves some sort of visualization of the solution. Start here if you are new to JuMP.
    • The Modeling with cones tutorial contains a number of helpful reformulations and tricks you can use when modeling conic programs. Look here if you are stuck trying to formulate a problem as a conic program.
    • The remaining tutorials are less verbose and styled in the form of short code examples. These tutorials have less explanation, but may contain useful code snippets, particularly if they are similar to a problem you are trying to solve.
    diff --git a/previews/PR3919/tutorials/conic/logistic_regression/index.html b/previews/PR3919/tutorials/conic/logistic_regression/index.html index 3fdfecc4d08..9b4f5f299f9 100644 --- a/previews/PR3919/tutorials/conic/logistic_regression/index.html +++ b/previews/PR3919/tutorials/conic/logistic_regression/index.html @@ -109,4 +109,4 @@ )
    Number of non-zero components: 8 (out of 10 features)

    Extensions

    A direct extension would be to consider the sparse logistic regression with hard thresholding, which, on contrary to the soft version using a $\ell_1$ regularization, adds an explicit cardinality constraint in its formulation:

    \[\begin{aligned} \min_{\theta} & \; \sum_{i=1}^n \log(1 + \exp(-y_i \theta^\top x_i)) + \lambda \| \theta \|_2^2 \\ \text{subject to } & \quad \| \theta \|_0 <= k -\end{aligned}\]

    where $k$ is the maximum number of non-zero components in the vector $\theta$, and $\|.\|_0$ is the $\ell_0$ pseudo-norm:

    \[\| x\|_0 = \#\{i : \; x_i \neq 0\}\]

    The cardinality constraint $\|\theta\|_0 \leq k$ could be reformulated with binary variables. Thus the hard sparse regression problem could be solved by any solver supporting mixed integer conic problems.

    +\end{aligned}\]

    where $k$ is the maximum number of non-zero components in the vector $\theta$, and $\|.\|_0$ is the $\ell_0$ pseudo-norm:

    \[\| x\|_0 = \#\{i : \; x_i \neq 0\}\]

    The cardinality constraint $\|\theta\|_0 \leq k$ could be reformulated with binary variables. Thus the hard sparse regression problem could be solved by any solver supporting mixed integer conic problems.

    diff --git a/previews/PR3919/tutorials/conic/min_ellipse/e22ab5b8.svg b/previews/PR3919/tutorials/conic/min_ellipse/664f0faf.svg similarity index 88% rename from previews/PR3919/tutorials/conic/min_ellipse/e22ab5b8.svg rename to previews/PR3919/tutorials/conic/min_ellipse/664f0faf.svg index e5ff534e4b5..991a85893c1 100644 --- a/previews/PR3919/tutorials/conic/min_ellipse/e22ab5b8.svg +++ b/previews/PR3919/tutorials/conic/min_ellipse/664f0faf.svg @@ -1,50 +1,50 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/conic/min_ellipse/5a0e42a1.svg b/previews/PR3919/tutorials/conic/min_ellipse/890ef6d9.svg similarity index 88% rename from previews/PR3919/tutorials/conic/min_ellipse/5a0e42a1.svg rename to previews/PR3919/tutorials/conic/min_ellipse/890ef6d9.svg index f2930df902a..aad39d53a06 100644 --- a/previews/PR3919/tutorials/conic/min_ellipse/5a0e42a1.svg +++ b/previews/PR3919/tutorials/conic/min_ellipse/890ef6d9.svg @@ -1,53 +1,53 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/conic/min_ellipse/index.html b/previews/PR3919/tutorials/conic/min_ellipse/index.html index b3af3183c02..45cef75c383 100644 --- a/previews/PR3919/tutorials/conic/min_ellipse/index.html +++ b/previews/PR3919/tutorials/conic/min_ellipse/index.html @@ -46,7 +46,7 @@ for ellipse in ellipses plot_ellipse(plot, ellipse) end -plotExample block output

    Build the model

    Now let's build the model, using the change-of-variables = $P^2$ and P_q = $P q$. We'll recover the true value of P and q after the solve.

    model = Model(SCS.Optimizer)
    +plot
    Example block output

    Build the model

    Now let's build the model, using the change-of-variables = $P^2$ and P_q = $P q$. We'll recover the true value of P and q after the solve.

    model = Model(SCS.Optimizer)
     # We need to use a tighter tolerance for this example, otherwise the bounding
     # ellipse won't actually be bounding...
     set_attribute(model, "eps_rel", 1e-6)
    @@ -85,7 +85,7 @@
       Dual objective value : -4.04364e+00
     
     * Work counters
    -  Solve time (sec)   : 2.17881e-01
    +  Solve time (sec)   : 2.48761e-01
     

    Results

    After solving the model to optimality we can recover the solution in terms of $P$ and $q$:

    P = sqrt(value.(P²))
     q = P \ value.(P_q)
    2-element Vector{Float64}:
      -0.3964217693227084
    @@ -94,4 +94,4 @@
         [tuple(P \ [cos(θ) - q[1], sin(θ) - q[2]]...) for θ in 0:0.05:(2pi+0.05)];
         c = :crimson,
         label = nothing,
    -)
    Example block output +)Example block output diff --git a/previews/PR3919/tutorials/conic/quantum_discrimination/index.html b/previews/PR3919/tutorials/conic/quantum_discrimination/index.html index 2a28e9def04..22789d8c48d 100644 --- a/previews/PR3919/tutorials/conic/quantum_discrimination/index.html +++ b/previews/PR3919/tutorials/conic/quantum_discrimination/index.html @@ -44,7 +44,7 @@ Dual objective value : 8.64062e-01 * Work counters - Solve time (sec) : 4.25068e-04 + Solve time (sec) : 4.27831e-04

    The probability of guessing correctly is:

    objective_value(model)
    0.8640614507314219

    When N = 2, there is a known analytical solution of:

    0.5 + 0.25 * sum(LinearAlgebra.svdvals(ρ[1] - ρ[2]))
    0.8640627582954737

    proving that we found the optimal solution.

    Finally, the optimal POVM is:

    solution = [value.(e) for e in E]
    2-element Vector{Matrix{ComplexF64}}:
      [0.9495721399750024 + 0.0im 0.03442451603977098 + 0.21609731371190505im; 0.03442451603977098 - 0.21609731371190505im 0.05042785512985496 + 0.0im]
      [0.05042785517602001 + 0.0im -0.03442451605312517 - 0.21609731370614843im; -0.03442451605312517 + 0.21609731370614843im 0.9495721400119357 + 0.0im]
    Tip

    Duality plays a large role in solving conic optimization models. Depending on the solver, it can be more efficient to solve the dual of this problem instead of the primal. If performance is an issue, see the Dualization tutorial for more details.

    Alternative formulation

    The formulation above includes N Hermitian matrices and a set of linear equality constraints. We can simplify the problem by replacing $E_N$ with $E_N = I - \sum\limits_{i=1}^{N-1} E_i$. This results in:

    model = Model(SCS.Optimizer)
    @@ -71,5 +71,5 @@
       Dual objective value : 8.64062e-01
     
     * Work counters
    -  Solve time (sec)   : 4.04650e-04
    -
    objective_value(model)
    0.8640596603179975
    + Solve time (sec) : 4.24937e-04 +
    objective_value(model)
    0.8640596603179975
    diff --git a/previews/PR3919/tutorials/conic/simple_examples/4a49df52.svg b/previews/PR3919/tutorials/conic/simple_examples/90388fab.svg similarity index 79% rename from previews/PR3919/tutorials/conic/simple_examples/4a49df52.svg rename to previews/PR3919/tutorials/conic/simple_examples/90388fab.svg index 5697727bcb5..1755b20bbb1 100644 --- a/previews/PR3919/tutorials/conic/simple_examples/4a49df52.svg +++ b/previews/PR3919/tutorials/conic/simple_examples/90388fab.svg @@ -1,49 +1,49 @@ - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/conic/simple_examples/index.html b/previews/PR3919/tutorials/conic/simple_examples/index.html index da05089a18f..593de79cb8f 100644 --- a/previews/PR3919/tutorials/conic/simple_examples/index.html +++ b/previews/PR3919/tutorials/conic/simple_examples/index.html @@ -196,7 +196,7 @@ ) end -example_minimum_distortion()Example block output

    Lovász numbers

    The Lovász number of a graph, also known as Lovász's theta-function, is a number that lies between two important and related numbers that are computationally hard to determine, namely the chromatic and clique numbers of the graph. It is possible however to efficient compute the Lovász number as the optimal value of a semidefinite program.

    Consider the pentagon graph:

         [5]
    +example_minimum_distortion()
    Example block output

    Lovász numbers

    The Lovász number of a graph, also known as Lovász's theta-function, is a number that lies between two important and related numbers that are computationally hard to determine, namely the chromatic and clique numbers of the graph. It is possible however to efficient compute the Lovász number as the optimal value of a semidefinite program.

    Consider the pentagon graph:

         [5]
         /   \
        /     \
      [1]     [4]
    @@ -259,4 +259,4 @@
         return
     end
     
    -example_robust_uncertainty_sets()
    +example_robust_uncertainty_sets() diff --git a/previews/PR3919/tutorials/conic/start_values/index.html b/previews/PR3919/tutorials/conic/start_values/index.html index bd955206a93..3cb1b2ec5a5 100644 --- a/previews/PR3919/tutorials/conic/start_values/index.html +++ b/previews/PR3919/tutorials/conic/start_values/index.html @@ -52,12 +52,12 @@ ------------------------------------------------------------------ iter | pri res | dua res | gap | obj | scale | time (s) ------------------------------------------------------------------ - 0| 4.42e+01 1.00e+00 1.28e+02 -6.64e+01 1.00e-01 7.99e-05 - 75| 5.30e-07 2.63e-06 3.15e-07 -3.00e+00 1.00e-01 1.28e-04 + 0| 4.42e+01 1.00e+00 1.28e+02 -6.64e+01 1.00e-01 8.58e-05 + 75| 5.30e-07 2.63e-06 3.15e-07 -3.00e+00 1.00e-01 1.34e-04 ------------------------------------------------------------------ status: solved -timings: total: 1.29e-04s = setup: 3.64e-05s + solve: 9.27e-05s - lin-sys: 1.40e-05s, cones: 7.03e-06s, accel: 3.75e-06s +timings: total: 1.35e-04s = setup: 4.12e-05s + solve: 9.40e-05s + lin-sys: 1.40e-05s, cones: 7.02e-06s, accel: 3.71e-06s ------------------------------------------------------------------ objective = -2.999998 ------------------------------------------------------------------

    By looking at the log, we can see that SCS took 75 iterations to find the optimal solution. Now we set the optimal solution as our starting point:

    set_optimal_start_values(model)

    and we re-optimize:

    optimize!(model)
    ------------------------------------------------------------------
    @@ -76,11 +76,11 @@
     ------------------------------------------------------------------
      iter | pri res | dua res |   gap   |   obj   |  scale  | time (s)
     ------------------------------------------------------------------
    -     0| 1.90e-05  1.56e-06  9.14e-05 -3.00e+00  1.00e-01  1.05e-04
    +     0| 1.90e-05  1.56e-06  9.14e-05 -3.00e+00  1.00e-01  9.90e-05
     ------------------------------------------------------------------
     status:  solved
    -timings: total: 1.06e-04s = setup: 4.09e-05s + solve: 6.46e-05s
    -	 lin-sys: 8.61e-07s, cones: 1.49e-06s, accel: 3.00e-08s
    +timings: total: 9.99e-05s = setup: 4.09e-05s + solve: 5.91e-05s
    +	 lin-sys: 1.22e-06s, cones: 1.67e-06s, accel: 2.90e-08s
     ------------------------------------------------------------------
     objective = -3.000044
    -------------------------------------------------------------------

    Now the optimization terminates after 0 iterations because our starting point is already optimal.

    Caveats

    Some solvers do not support setting some parts of the starting solution, for example, they may support only set_start_value for variables.

    If you encounter an UnsupportedSupported attribute error for MOI.VariablePrimalStart, MOI.ConstraintPrimalStart, or MOI.ConstraintDualStart, comment out the corresponding part of the set_optimal_start_values function.

    +------------------------------------------------------------------

    Now the optimization terminates after 0 iterations because our starting point is already optimal.

    Caveats

    Some solvers do not support setting some parts of the starting solution, for example, they may support only set_start_value for variables.

    If you encounter an UnsupportedSupported attribute error for MOI.VariablePrimalStart, MOI.ConstraintPrimalStart, or MOI.ConstraintDualStart, comment out the corresponding part of the set_optimal_start_values function.

    diff --git a/previews/PR3919/tutorials/conic/tips_and_tricks/index.html b/previews/PR3919/tutorials/conic/tips_and_tricks/index.html index 1f52e0fbf49..9eeab0e1182 100644 --- a/previews/PR3919/tutorials/conic/tips_and_tricks/index.html +++ b/previews/PR3919/tutorials/conic/tips_and_tricks/index.html @@ -190,4 +190,4 @@ @constraint(model, X .== [1 2 3; 4 5 6]) optimize!(model) @assert is_solved_and_feasible(model) -value(t), maximum(LinearAlgebra.svdvals(value.(X)))
    (9.506936927003698, 9.508031076396836)

    Other Cones and Functions

    For other cones supported by JuMP, check out the MathOptInterface Manual.

    +value(t), maximum(LinearAlgebra.svdvals(value.(X)))
    (9.506936927003698, 9.508031076396836)

    Other Cones and Functions

    For other cones supported by JuMP, check out the MathOptInterface Manual.

    diff --git a/previews/PR3919/tutorials/getting_started/debugging/index.html b/previews/PR3919/tutorials/getting_started/debugging/index.html index f634f796ce4..b0529c72475 100644 --- a/previews/PR3919/tutorials/getting_started/debugging/index.html +++ b/previews/PR3919/tutorials/getting_started/debugging/index.html @@ -24,4 +24,4 @@ julia> @profview foo(); # run once to trigger compilation. Ignore the output. -julia> @profview foo()

    This will open a flamegraph. The x-axis of the graph is time, so that wider bars take more time. The bars are stacked so that the foo() call is on the bottom, and subsequent calls within foo are stacked on top.

    Reading a flamegraph can take some experience, but if you click on a bar it will print the line number to the REPL. Hunt around until you find the widest bar that points to a line of code that you have written, then ask yourself if it makes sense for this line to be the bottleneck.

    If a wide bar points to code inside JuMP or a related Julia package, please open an issue on GitHub or post on the community forum.

    If @time foo() takes longer than a few minutes to run, then either make the problem smaller by using a smaller dataset, or do the following.

    1. Comment out everything in the function, then, line by line (or block by block):
    2. Un-comment some code and re-run @time foo()
    3. If the time increases by a lot (from seconds or minutes to hours), look for $O(N^2)$ or worse scaling behavior. Is there a better way to write the code that you are trying to execute?
    4. If the time increases by more than expected, but it still takes seconds or minutes to execute, use ProfileView to look for obvious bottlenecks.
    +julia> @profview foo()

    This will open a flamegraph. The x-axis of the graph is time, so that wider bars take more time. The bars are stacked so that the foo() call is on the bottom, and subsequent calls within foo are stacked on top.

    Reading a flamegraph can take some experience, but if you click on a bar it will print the line number to the REPL. Hunt around until you find the widest bar that points to a line of code that you have written, then ask yourself if it makes sense for this line to be the bottleneck.

    If a wide bar points to code inside JuMP or a related Julia package, please open an issue on GitHub or post on the community forum.

    If @time foo() takes longer than a few minutes to run, then either make the problem smaller by using a smaller dataset, or do the following.

    1. Comment out everything in the function, then, line by line (or block by block):
    2. Un-comment some code and re-run @time foo()
    3. If the time increases by a lot (from seconds or minutes to hours), look for $O(N^2)$ or worse scaling behavior. Is there a better way to write the code that you are trying to execute?
    4. If the time increases by more than expected, but it still takes seconds or minutes to execute, use ProfileView to look for obvious bottlenecks.
    diff --git a/previews/PR3919/tutorials/getting_started/design_patterns_for_larger_models/index.html b/previews/PR3919/tutorials/getting_started/design_patterns_for_larger_models/index.html index c88b17a4734..a7022d202b6 100644 --- a/previews/PR3919/tutorials/getting_started/design_patterns_for_larger_models/index.html +++ b/previews/PR3919/tutorials/getting_started/design_patterns_for_larger_models/index.html @@ -520,4 +520,4 @@ ) @test x === nothing end -end
    Test.DefaultTestSet("KnapsackModel", Any[Test.DefaultTestSet("feasible_binary_knapsack", Any[], 5, false, false, true, 1.737317326478132e9, 1.73731732648025e9, false, "design_patterns_for_larger_models.md"), Test.DefaultTestSet("feasible_integer_knapsack", Any[], 5, false, false, true, 1.737317326480275e9, 1.737317326604308e9, false, "design_patterns_for_larger_models.md"), Test.DefaultTestSet("infeasible_binary_knapsack", Any[], 1, false, false, true, 1.737317326604355e9, 1.737317326606441e9, false, "design_patterns_for_larger_models.md")], 0, false, false, true, 1.737317326478096e9, 1.737317326606448e9, false, "design_patterns_for_larger_models.md")
    Tip

    Place these tests in a separate file test_knapsack_model.jl so that you can run the tests by adding include("test_knapsack_model.jl") to any file where needed.

    Next steps

    We've only briefly scratched the surface of ways to create and structure large JuMP models, so consider this tutorial a starting point, rather than a comprehensive list of all the possible ways to structure JuMP models. If you are embarking on a large project that uses JuMP, a good next step is to look at ways people have written large JuMP projects "in the wild."

    Here are some good examples (all co-incidentally related to energy):

    +end
    Test.DefaultTestSet("KnapsackModel", Any[Test.DefaultTestSet("feasible_binary_knapsack", Any[], 5, false, false, true, 1.73761180871661e9, 1.737611808718899e9, false, "design_patterns_for_larger_models.md"), Test.DefaultTestSet("feasible_integer_knapsack", Any[], 5, false, false, true, 1.737611808718933e9, 1.73761180884593e9, false, "design_patterns_for_larger_models.md"), Test.DefaultTestSet("infeasible_binary_knapsack", Any[], 1, false, false, true, 1.73761180884598e9, 1.737611808847773e9, false, "design_patterns_for_larger_models.md")], 0, false, false, true, 1.737611808716573e9, 1.737611808847783e9, false, "design_patterns_for_larger_models.md")
    Tip

    Place these tests in a separate file test_knapsack_model.jl so that you can run the tests by adding include("test_knapsack_model.jl") to any file where needed.

    Next steps

    We've only briefly scratched the surface of ways to create and structure large JuMP models, so consider this tutorial a starting point, rather than a comprehensive list of all the possible ways to structure JuMP models. If you are embarking on a large project that uses JuMP, a good next step is to look at ways people have written large JuMP projects "in the wild."

    Here are some good examples (all co-incidentally related to energy):

    diff --git a/previews/PR3919/tutorials/getting_started/getting_started_with_JuMP/index.html b/previews/PR3919/tutorials/getting_started/getting_started_with_JuMP/index.html index afe71d94127..39a1d1e47e8 100644 --- a/previews/PR3919/tutorials/getting_started/getting_started_with_JuMP/index.html +++ b/previews/PR3919/tutorials/getting_started/getting_started_with_JuMP/index.html @@ -242,4 +242,4 @@ Model status : Optimal Simplex iterations: 4 Objective value : 4.9230769231e+00 -HiGHS run time : 0.00
    julia> @assert is_solved_and_feasible(vector_model)
    julia> objective_value(vector_model)4.923076923076922 +HiGHS run time : 0.00
    julia> @assert is_solved_and_feasible(vector_model)
    julia> objective_value(vector_model)4.923076923076922 diff --git a/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/5ef3626b.svg b/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/43a1bf83.svg similarity index 84% rename from previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/5ef3626b.svg rename to previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/43a1bf83.svg index c490c33cf14..a25b2bf9f70 100644 --- a/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/5ef3626b.svg +++ b/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/43a1bf83.svg @@ -1,62 +1,62 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/7614ac3a.svg b/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/65fcc78e.svg similarity index 82% rename from previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/7614ac3a.svg rename to previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/65fcc78e.svg index 1f565bd9500..28ab26f54cb 100644 --- a/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/7614ac3a.svg +++ b/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/65fcc78e.svg @@ -1,73 +1,73 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/b15d4f3e.svg b/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/75fa0fa3.svg similarity index 85% rename from previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/b15d4f3e.svg rename to previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/75fa0fa3.svg index 17ffa989392..120423429ac 100644 --- a/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/b15d4f3e.svg +++ b/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/75fa0fa3.svg @@ -1,59 +1,59 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/index.html b/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/index.html index 66cb8d52d99..c7d9e4fe013 100644 --- a/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/index.html +++ b/previews/PR3919/tutorials/getting_started/getting_started_with_data_and_plotting/index.html @@ -14,7 +14,7 @@ csv_df.Height; xlabel = "Weight", ylabel = "Height", -)Example block output

    That doesn't look right. What happened? If you look at the dataframe above, it read Weight in as a String column because there are "NA" fields. Let's correct that, by telling CSV to consider "NA" as missing.

    csv_df = CSV.read(
    +)
    Example block output

    That doesn't look right. What happened? If you look at the dataframe above, it read Weight in as a String column because there are "NA" fields. Let's correct that, by telling CSV to consider "NA" as missing.

    csv_df = CSV.read(
         joinpath(DATA_DIR, "StarWars.csv"),
         DataFrames.DataFrame;
         missingstring = "NA",
    @@ -26,7 +26,7 @@
         ylabel = "Height",
         label = false,
         ylims = (0, 3),
    -)
    Example block output

    That looks better.

    Tip

    Read the CSV documentation for other parsing options.

    DataFrames.jl supports manipulation using functions similar to pandas. For example, split the dataframe into groups based on eye-color:

    by_eyecolor = DataFrames.groupby(csv_df, :Eyecolor)

    GroupedDataFrame with 7 groups based on key: Eyecolor

    First Group (5 rows): Eyecolor = "blue"
    RowNameGenderHeightWeightEyecolorHaircolorSkincolorHomelandBornDiedJediSpeciesWeapon
    String31String7Float64Float64?String15?String7?String15?String15String15String15String7String15String15
    1Anakin Skywalkermale1.8884.0blueblondfairTatooine41.9BBY4ABYjedihumanlightsaber
    2Luke Skywalkermale1.7277.0blueblondfairTatooine19BBYunk_diedjedihumanlightsaber
    3Qui-Gon Jinnmale1.9388.5bluebrownlightunk_planet92BBY32BBYjedihumanlightsaber
    4Sheev Palpatinemale1.7375.0blueredpaleNaboo82BBY10ABYno_jedihumanforce-lightning
    5Chewbaccamale2.28112.0bluebrownmissingKashyyyk200BBY25ABYno_jediwookieebowcaster

    Last Group (1 row): Eyecolor = "black"
    RowNameGenderHeightWeightEyecolorHaircolorSkincolorHomelandBornDiedJediSpeciesWeapon
    String31String7Float64Float64?String15?String7?String15?String15String15String15String7String15String15
    1Chief Chirpamale1.050.0blackgraybrownEndorunk_born4ABYno_jediewokspear

    Then recombine into a single dataframe based on a function operating over the split dataframes:

    eyecolor_count = DataFrames.combine(by_eyecolor) do df
    +)
    Example block output

    That looks better.

    Tip

    Read the CSV documentation for other parsing options.

    DataFrames.jl supports manipulation using functions similar to pandas. For example, split the dataframe into groups based on eye-color:

    by_eyecolor = DataFrames.groupby(csv_df, :Eyecolor)

    GroupedDataFrame with 7 groups based on key: Eyecolor

    First Group (5 rows): Eyecolor = "blue"
    RowNameGenderHeightWeightEyecolorHaircolorSkincolorHomelandBornDiedJediSpeciesWeapon
    String31String7Float64Float64?String15?String7?String15?String15String15String15String7String15String15
    1Anakin Skywalkermale1.8884.0blueblondfairTatooine41.9BBY4ABYjedihumanlightsaber
    2Luke Skywalkermale1.7277.0blueblondfairTatooine19BBYunk_diedjedihumanlightsaber
    3Qui-Gon Jinnmale1.9388.5bluebrownlightunk_planet92BBY32BBYjedihumanlightsaber
    4Sheev Palpatinemale1.7375.0blueredpaleNaboo82BBY10ABYno_jedihumanforce-lightning
    5Chewbaccamale2.28112.0bluebrownmissingKashyyyk200BBY25ABYno_jediwookieebowcaster

    Last Group (1 row): Eyecolor = "black"
    RowNameGenderHeightWeightEyecolorHaircolorSkincolorHomelandBornDiedJediSpeciesWeapon
    String31String7Float64Float64?String15?String7?String15?String15String15String15String7String15String15
    1Chief Chirpamale1.050.0blackgraybrownEndorunk_born4ABYno_jediewokspear

    Then recombine into a single dataframe based on a function operating over the split dataframes:

    eyecolor_count = DataFrames.combine(by_eyecolor) do df
         return DataFrames.nrow(df)
     end
    7×2 DataFrame
    RowEyecolorx1
    String15?Int64
    1blue5
    2brown8
    3bluegray1
    4missing2
    5yellow2
    6gold1
    7black1

    We can rename columns:

    DataFrames.rename!(eyecolor_count, :x1 => :count)
    7×2 DataFrame
    RowEyecolorcount
    String15?Int64
    1blue5
    2brown8
    3bluegray1
    4missing2
    5yellow2
    6gold1
    7black1

    Drop some missing rows:

    DataFrames.dropmissing!(eyecolor_count, :Eyecolor)
    6×2 DataFrame
    RowEyecolorcount
    String15Int64
    1blue5
    2brown8
    3bluegray1
    4yellow2
    5gold1
    6black1

    Then we can visualize the data:

    sort!(eyecolor_count, :count; rev = true)
     Plots.bar(
    @@ -35,7 +35,7 @@
         xlabel = "Eye color",
         ylabel = "Number of characters",
         label = false,
    -)
    Example block output

    Other Delimited Files

    We can also use the CSV.jl package to read any other delimited text file format.

    By default, CSV.File will try to detect a file's delimiter from the first 10 lines of the file.

    Candidate delimiters include ',', '\t', ' ', '|', ';', and ':'. If it can't auto-detect the delimiter, it will assume ','.

    Let's take the example of space separated data.

    ss_df = CSV.read(joinpath(DATA_DIR, "Cereal.txt"), DataFrames.DataFrame)
    23×10 DataFrame
    RowNameCupsCaloriesCarbsFatFiberPotassiumProteinSodiumSugars
    String31Float64Int64Float64Int64Float64Int64Int64Int64Int64
    1CapnCrunch0.7512012.020.035122012
    2CocoaPuffs1.011012.010.055118013
    3Trix1.011013.010.025114012
    4AppleJacks1.011011.001.030212514
    5CornChex1.011022.000.02522803
    6CornFlakes1.010021.001.03522902
    7Nut&Honey0.6712015.010.04021909
    8Smacks0.751109.011.04027015
    9MultiGrain1.010015.012.09022206
    10CracklinOat0.511010.034.016031407
    11GrapeNuts0.2511017.003.09031793
    12HoneyNutCheerios0.7511011.511.590325010
    13NutriGrain0.6714021.023.013032207
    14Product191.010020.001.04533203
    15TotalRaisinBran1.014015.014.0230319014
    16WheatChex0.6710017.013.011532303
    17Oatmeal0.513013.521.5120317010
    18Life0.6710012.022.09541506
    19Maypo1.010016.010.095403
    20QuakerOats0.510014.012.011041356
    21Muesli1.015016.033.0170415011
    22Cheerios1.2511017.022.010562901
    23SpecialK1.011016.001.05562303

    We can also specify the delimiter as follows:

    delim_df = CSV.read(
    +)
    Example block output

    Other Delimited Files

    We can also use the CSV.jl package to read any other delimited text file format.

    By default, CSV.File will try to detect a file's delimiter from the first 10 lines of the file.

    Candidate delimiters include ',', '\t', ' ', '|', ';', and ':'. If it can't auto-detect the delimiter, it will assume ','.

    Let's take the example of space separated data.

    ss_df = CSV.read(joinpath(DATA_DIR, "Cereal.txt"), DataFrames.DataFrame)
    23×10 DataFrame
    RowNameCupsCaloriesCarbsFatFiberPotassiumProteinSodiumSugars
    String31Float64Int64Float64Int64Float64Int64Int64Int64Int64
    1CapnCrunch0.7512012.020.035122012
    2CocoaPuffs1.011012.010.055118013
    3Trix1.011013.010.025114012
    4AppleJacks1.011011.001.030212514
    5CornChex1.011022.000.02522803
    6CornFlakes1.010021.001.03522902
    7Nut&Honey0.6712015.010.04021909
    8Smacks0.751109.011.04027015
    9MultiGrain1.010015.012.09022206
    10CracklinOat0.511010.034.016031407
    11GrapeNuts0.2511017.003.09031793
    12HoneyNutCheerios0.7511011.511.590325010
    13NutriGrain0.6714021.023.013032207
    14Product191.010020.001.04533203
    15TotalRaisinBran1.014015.014.0230319014
    16WheatChex0.6710017.013.011532303
    17Oatmeal0.513013.521.5120317010
    18Life0.6710012.022.09541506
    19Maypo1.010016.010.095403
    20QuakerOats0.510014.012.011041356
    21Muesli1.015016.033.0170415011
    22Cheerios1.2511017.022.010562901
    23SpecialK1.011016.001.05562303

    We can also specify the delimiter as follows:

    delim_df = CSV.read(
         joinpath(DATA_DIR, "Soccer.txt"),
         DataFrames.DataFrame;
         delim = "::",
    @@ -204,7 +204,7 @@
       Dual objective value : NaN
     
     * Work counters
    -  Solve time (sec)   : 6.90007e-03
    +  Solve time (sec)   : 6.54793e-03
       Simplex iterations : 26
       Barrier iterations : -1
       Node count         : 1
    @@ -236,4 +236,4 @@
      * Uganda
      * United Arab Emirates
      * United States
    - * Zimbabwe

    We need some passports, like New Zealand and the United States, which have widespread access to a large number of countries. However, we also need passports like North Korea which only have visa-free access to a very limited number of countries.

    Note

    We use value(x[c]) > 0.5 rather than value(x[c]) == 1 to avoid excluding solutions like x[c] = 0.99999 that are "1" to some tolerance.

    + * Zimbabwe

    We need some passports, like New Zealand and the United States, which have widespread access to a large number of countries. However, we also need passports like North Korea which only have visa-free access to a very limited number of countries.

    Note

    We use value(x[c]) > 0.5 rather than value(x[c]) == 1 to avoid excluding solutions like x[c] = 0.99999 that are "1" to some tolerance.

    diff --git a/previews/PR3919/tutorials/getting_started/getting_started_with_julia/index.html b/previews/PR3919/tutorials/getting_started/getting_started_with_julia/index.html index 2bd82bfbabc..b410e1961f4 100644 --- a/previews/PR3919/tutorials/getting_started/getting_started_with_julia/index.html +++ b/previews/PR3919/tutorials/getting_started/getting_started_with_julia/index.html @@ -43,9 +43,9 @@ *(::Any, ::Any, ::Any, ::Any...) @ Base operators.jl:596 *(::Type{<:LinearOperatorCollection.ProdOp}, ::Any, ::Any) - @ LinearOperatorCollection ~/.julia/packages/LinearOperatorCollection/GRBTA/src/ProdOp.jl:73 - *(::ChainRulesCore.ZeroTangent, ::Any) - @ ChainRulesCore ~/.julia/packages/ChainRulesCore/U6wNx/src/tangent_arithmetic.jl:104 + @ LinearOperatorCollection ~/.julia/packages/LinearOperatorCollection/4Kgu1/src/ProdOp.jl:73 + *(::ChainRulesCore.NoTangent, ::Any) + @ ChainRulesCore ~/.julia/packages/ChainRulesCore/U6wNx/src/tangent_arithmetic.jl:64 ...

    But multiplying transposes works:

    julia> b' * b61
    julia> b * b'2×2 Matrix{Int64}: 25 30 30 36

    Other common types

    Comments

    Although not technically a type, code comments begin with the # character:

    julia> 1 + 1  # This is a comment2

    Multiline comments begin with #= and end with =#:

    #=
    @@ -182,4 +182,4 @@
      0.5103924401614957
      0.9296414851080324

    The Package Manager is used to install packages that are not part of Julia's standard library.

    For example the following can be used to install JuMP,

    using Pkg
     Pkg.add("JuMP")

    For a complete list of registered Julia packages see the package listing at JuliaHub.

    From time to you may wish to use a Julia package that is not registered. In this case a git repository URL can be used to install the package.

    using Pkg
    -Pkg.add("https://github.com/user-name/MyPackage.jl.git")

    Package environments

    By default, Pkg.add will add packages to Julia's global environment. However, Julia also has built-in support for virtual environments.

    Activate a virtual environment with:

    import Pkg; Pkg.activate("/path/to/environment")

    You can see what packages are installed in the current environment with Pkg.status().

    Tip

    We strongly recommend you create a Pkg environment for each project that you create in Julia, and add only the packages that you need, instead of adding lots of packages to the global environment. The Pkg manager documentation has more information on this topic.

    +Pkg.add("https://github.com/user-name/MyPackage.jl.git")

    Package environments

    By default, Pkg.add will add packages to Julia's global environment. However, Julia also has built-in support for virtual environments.

    Activate a virtual environment with:

    import Pkg; Pkg.activate("/path/to/environment")

    You can see what packages are installed in the current environment with Pkg.status().

    Tip

    We strongly recommend you create a Pkg environment for each project that you create in Julia, and add only the packages that you need, instead of adding lots of packages to the global environment. The Pkg manager documentation has more information on this topic.

    diff --git a/previews/PR3919/tutorials/getting_started/getting_started_with_sets_and_indexing/index.html b/previews/PR3919/tutorials/getting_started/getting_started_with_sets_and_indexing/index.html index b8741238db7..36c55ab6124 100644 --- a/previews/PR3919/tutorials/getting_started/getting_started_with_sets_and_indexing/index.html +++ b/previews/PR3919/tutorials/getting_started/getting_started_with_sets_and_indexing/index.html @@ -219,4 +219,4 @@ ("Dunedin", "Auckland") => 1426 ("Auckland", "Christchurch") => 1071

    Then, we can create our model like so:

    model = Model()
     @variable(model, x[keys(routes)])
    -@objective(model, Min, sum(v * x[k] for (k, v) in routes))

    \[ 643 x_{("Auckland", "Wellington")} + 436 x_{("Wellington", "Christchurch")} + 790 x_{("Wellington", "Dunedin")} + 360 x_{("Christchurch", "Dunedin")} + 1426 x_{("Auckland", "Dunedin")} + 1426 x_{("Dunedin", "Auckland")} + 1071 x_{("Auckland", "Christchurch")} \]

    This has a number of benefits over the other approaches, including a compacter algebraic model and variables that are named in a more meaningful way.

    Tip

    If you're struggling to formulate a problem using the available syntax in JuMP, it's probably a sign that you should convert your data into a different form.

    Next steps

    The purpose of this tutorial was to show how JuMP does not have specialized syntax for set creation and manipulation. Instead, you should use the tools provided by Julia itself.

    This is both an opportunity and a challenge, because you are free to pick the syntax and data structures that best suit your problem, but for new users it can be daunting to decide which structure to use.

    Read through some of the other JuMP tutorials to get inspiration and ideas for how you can use Julia's syntax and data structures to your advantage.

    +@objective(model, Min, sum(v * x[k] for (k, v) in routes))

    \[ 643 x_{("Auckland", "Wellington")} + 436 x_{("Wellington", "Christchurch")} + 790 x_{("Wellington", "Dunedin")} + 360 x_{("Christchurch", "Dunedin")} + 1426 x_{("Auckland", "Dunedin")} + 1426 x_{("Dunedin", "Auckland")} + 1071 x_{("Auckland", "Christchurch")} \]

    This has a number of benefits over the other approaches, including a compacter algebraic model and variables that are named in a more meaningful way.

    Tip

    If you're struggling to formulate a problem using the available syntax in JuMP, it's probably a sign that you should convert your data into a different form.

    Next steps

    The purpose of this tutorial was to show how JuMP does not have specialized syntax for set creation and manipulation. Instead, you should use the tools provided by Julia itself.

    This is both an opportunity and a challenge, because you are free to pick the syntax and data structures that best suit your problem, but for new users it can be daunting to decide which structure to use.

    Read through some of the other JuMP tutorials to get inspiration and ideas for how you can use Julia's syntax and data structures to your advantage.

    diff --git a/previews/PR3919/tutorials/getting_started/introduction/index.html b/previews/PR3919/tutorials/getting_started/introduction/index.html index 59a360010dd..feac6f3ed89 100644 --- a/previews/PR3919/tutorials/getting_started/introduction/index.html +++ b/previews/PR3919/tutorials/getting_started/introduction/index.html @@ -3,4 +3,4 @@ function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-0RZ8X3D3D0', {'page_path': location.pathname + location.search + location.hash}); -

    Introduction

    The purpose of these "Getting started" tutorials is to teach new users the basics of Julia and JuMP.

    How these tutorials are structured

    Having a high-level overview of how this part of the documentation is structured will help you know where to look for certain things.

    • The "Getting started with" tutorials are basic introductions to different aspects of JuMP and Julia. If you are new to JuMP and Julia, start by reading them in the following order:
    • Julia has a reputation for being "fast." Unfortunately, it is also easy to write slow Julia code. Performance tips contains a number of important tips on how to improve the performance of models you write in JuMP.
    • Design patterns for larger models is a more advanced tutorial that is aimed at users writing large JuMP models. It's in the "Getting started" section to give you an early preview of how JuMP makes it easy to structure larger models. If you are new to JuMP you may want to skip or briefly skim this tutorial, and come back to it once you have written a few JuMP models.
    +

    Introduction

    The purpose of these "Getting started" tutorials is to teach new users the basics of Julia and JuMP.

    How these tutorials are structured

    Having a high-level overview of how this part of the documentation is structured will help you know where to look for certain things.

    • The "Getting started with" tutorials are basic introductions to different aspects of JuMP and Julia. If you are new to JuMP and Julia, start by reading them in the following order:
    • Julia has a reputation for being "fast." Unfortunately, it is also easy to write slow Julia code. Performance tips contains a number of important tips on how to improve the performance of models you write in JuMP.
    • Design patterns for larger models is a more advanced tutorial that is aimed at users writing large JuMP models. It's in the "Getting started" section to give you an early preview of how JuMP makes it easy to structure larger models. If you are new to JuMP you may want to skip or briefly skim this tutorial, and come back to it once you have written a few JuMP models.
    diff --git a/previews/PR3919/tutorials/getting_started/performance_tips/index.html b/previews/PR3919/tutorials/getting_started/performance_tips/index.html index f878b30f274..16b4322dbd5 100644 --- a/previews/PR3919/tutorials/getting_started/performance_tips/index.html +++ b/previews/PR3919/tutorials/getting_started/performance_tips/index.html @@ -37,4 +37,4 @@ └ Names registered in the model: none
    julia> @variable(model, x[1:3])3-element Vector{VariableRef}: x[1] x[2] - x[3]

    Here's what happens if we construct the expression outside the macro:

    julia> @allocated x[1] + x[2] + x[3]1296
    Info

    The @allocated measures how many bytes were allocated during the evaluation of an expression. Fewer is better.

    If we use the @expression macro, we get many fewer allocations:

    julia> @allocated @expression(model, x[1] + x[2] + x[3])640

    Disable string names

    By default, JuMP creates String names for variables and constraints and passes these to the solver. The benefit of passing names is that it improves the readability of log messages from the solver (for example, "variable x has invalid bounds" instead of "variable v1203 has invalid bounds"), but for larger models the overhead of passing names can be non-trivial.

    Disable the creation of String names by setting set_string_name = false in the @variable and @constraint macros, or by calling set_string_names_on_creation to disable all names for a particular model:

    julia> model = Model();
    julia> set_string_names_on_creation(model, false)
    julia> @variable(model, x)_[1]
    julia> @constraint(model, c, 2x <= 1)2 _[1] ≤ 1

    Note that this doesn't change how symbolic names and bindings are stored:

    julia> x_[1]
    julia> model[:x]_[1]
    julia> x === model[:x]true

    But you can no longer look up the variable by the string name:

    julia> variable_by_name(model, "x") === nothingtrue
    Info

    For more information on the difference between string names, symbolic names, and bindings, see String names, symbolic names, and bindings.

    + x[3]

    Here's what happens if we construct the expression outside the macro:

    julia> @allocated x[1] + x[2] + x[3]1296
    Info

    The @allocated measures how many bytes were allocated during the evaluation of an expression. Fewer is better.

    If we use the @expression macro, we get many fewer allocations:

    julia> @allocated @expression(model, x[1] + x[2] + x[3])640

    Disable string names

    By default, JuMP creates String names for variables and constraints and passes these to the solver. The benefit of passing names is that it improves the readability of log messages from the solver (for example, "variable x has invalid bounds" instead of "variable v1203 has invalid bounds"), but for larger models the overhead of passing names can be non-trivial.

    Disable the creation of String names by setting set_string_name = false in the @variable and @constraint macros, or by calling set_string_names_on_creation to disable all names for a particular model:

    julia> model = Model();
    julia> set_string_names_on_creation(model, false)
    julia> @variable(model, x)_[1]
    julia> @constraint(model, c, 2x <= 1)2 _[1] ≤ 1

    Note that this doesn't change how symbolic names and bindings are stored:

    julia> x_[1]
    julia> model[:x]_[1]
    julia> x === model[:x]true

    But you can no longer look up the variable by the string name:

    julia> variable_by_name(model, "x") === nothingtrue
    Info

    For more information on the difference between string names, symbolic names, and bindings, see String names, symbolic names, and bindings.

    diff --git a/previews/PR3919/tutorials/getting_started/sum_if/007d8169.svg b/previews/PR3919/tutorials/getting_started/sum_if/872ac60d.svg similarity index 55% rename from previews/PR3919/tutorials/getting_started/sum_if/007d8169.svg rename to previews/PR3919/tutorials/getting_started/sum_if/872ac60d.svg index 44d89b09fa7..096e08ef420 100644 --- a/previews/PR3919/tutorials/getting_started/sum_if/007d8169.svg +++ b/previews/PR3919/tutorials/getting_started/sum_if/872ac60d.svg @@ -1,55 +1,55 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/getting_started/sum_if/20b13996.svg b/previews/PR3919/tutorials/getting_started/sum_if/b27cefad.svg similarity index 60% rename from previews/PR3919/tutorials/getting_started/sum_if/20b13996.svg rename to previews/PR3919/tutorials/getting_started/sum_if/b27cefad.svg index 9deb4cfceb9..8f713fb63da 100644 --- a/previews/PR3919/tutorials/getting_started/sum_if/20b13996.svg +++ b/previews/PR3919/tutorials/getting_started/sum_if/b27cefad.svg @@ -1,68 +1,68 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/getting_started/sum_if/index.html b/previews/PR3919/tutorials/getting_started/sum_if/index.html index 395354b3dc2..8fcfd49c7a0 100644 --- a/previews/PR3919/tutorials/getting_started/sum_if/index.html +++ b/previews/PR3919/tutorials/getting_started/sum_if/index.html @@ -64,7 +64,7 @@ end nodes, edges, demand = build_random_graph(1_000, 2_000) -@elapsed build_naive_model(nodes, edges, demand)
    0.130854554

    A good way to benchmark is to measure the runtime across a wide range of input sizes. From our big-O analysis, we should expect that doubling the number of nodes and edges results in a 4x increase in the runtime.

    run_times = Float64[]
    +@elapsed build_naive_model(nodes, edges, demand)
    0.120793679

    A good way to benchmark is to measure the runtime across a wide range of input sizes. From our big-O analysis, we should expect that doubling the number of nodes and edges results in a 4x increase in the runtime.

    run_times = Float64[]
     factors = 1:10
     for factor in factors
         graph = build_random_graph(1_000 * factor, 5_000 * factor)
    @@ -73,7 +73,7 @@
     Plots.plot(; xlabel = "Factor", ylabel = "Runtime [s]")
     Plots.scatter!(factors, run_times; label = "Actual")
     a, b = hcat(ones(10), factors .^ 2) \ run_times
    -Plots.plot!(factors, a .+ b * factors .^ 2; label = "Quadratic fit")
    Example block output

    As expected, the runtimes demonstrate quadratic scaling: if we double the number of nodes and edges, the runtime increases by a factor of four.

    Caching

    We can improve our formulation by caching the list of incoming and outgoing nodes for each node n:

    out_nodes = Dict(n => Int[] for n in nodes)
    +Plots.plot!(factors, a .+ b * factors .^ 2; label = "Quadratic fit")
    Example block output

    As expected, the runtimes demonstrate quadratic scaling: if we double the number of nodes and edges, the runtime increases by a factor of four.

    Caching

    We can improve our formulation by caching the list of incoming and outgoing nodes for each node n:

    out_nodes = Dict(n => Int[] for n in nodes)
     in_nodes = Dict(n => Int[] for n in nodes)
     for (i, j) in edges
         push!(out_nodes[i], j)
    @@ -104,7 +104,7 @@
     end
     
     nodes, edges, demand = build_random_graph(1_000, 2_000)
    -@elapsed build_cached_model(nodes, edges, demand)
    0.166085915

    Analysis

    Now we can analyse the difference in runtime of the two formulations:

    run_times_naive = Float64[]
    +@elapsed build_cached_model(nodes, edges, demand)
    0.166286778

    Analysis

    Now we can analyse the difference in runtime of the two formulations:

    run_times_naive = Float64[]
     run_times_cached = Float64[]
     factors = 1:10
     for factor in factors
    @@ -118,4 +118,4 @@
     Plots.plot!(factors, a .+ b * factors .^ 2; label = "Quadratic fit")
     Plots.scatter!(factors, run_times_cached; label = "Cached")
     a, b = hcat(ones(10), factors) \ run_times_cached
    -Plots.plot!(factors, a .+ b * factors; label = "Linear fit")
    Example block output

    Even though the cached model needs to build in_nodes and out_nodes, it is asymptotically faster than the naïve model, scaling linearly with factor rather than quadratically.

    Lesson

    If you write code with sum-if type conditions, for example, @constraint(model, [a in set], sum(x[b] for b in list if condition(a, b)), you can improve the performance by caching the elements for which condition(a, b) is true.

    Finally, you should understand that this behavior is not specific to JuMP, and that it applies more generally to all computer programs you might write. (Python programs that use Pyomo or gurobipy would similarly benefit from this caching approach.)

    Understanding big-O notation and algorithmic complexity is a useful debugging skill to have, regardless of the type of program that you are writing.

    +Plots.plot!(factors, a .+ b * factors; label = "Linear fit")Example block output

    Even though the cached model needs to build in_nodes and out_nodes, it is asymptotically faster than the naïve model, scaling linearly with factor rather than quadratically.

    Lesson

    If you write code with sum-if type conditions, for example, @constraint(model, [a in set], sum(x[b] for b in list if condition(a, b)), you can improve the performance by caching the elements for which condition(a, b) is true.

    Finally, you should understand that this behavior is not specific to JuMP, and that it applies more generally to all computer programs you might write. (Python programs that use Pyomo or gurobipy would similarly benefit from this caching approach.)

    Understanding big-O notation and algorithmic complexity is a useful debugging skill to have, regardless of the type of program that you are writing.

    diff --git a/previews/PR3919/tutorials/getting_started/tolerances/index.html b/previews/PR3919/tutorials/getting_started/tolerances/index.html index cd5c5772a30..b43a6a75849 100644 --- a/previews/PR3919/tutorials/getting_started/tolerances/index.html +++ b/previews/PR3919/tutorials/getting_started/tolerances/index.html @@ -37,34 +37,34 @@ ------------------------------------------------------------------ iter | pri res | dua res | gap | obj | scale | time (s) ------------------------------------------------------------------ - 0| 2.00e+01 1.00e+00 2.00e+01 -9.98e+00 1.00e-01 3.51e-02 - 100| 6.92e-05 7.92e-05 7.33e-06 2.41e-05 1.00e-01 9.40e-02 + 0| 2.00e+01 1.00e+00 2.00e+01 -9.98e+00 1.00e-01 3.43e-02 + 100| 6.92e-05 7.92e-05 7.33e-06 2.41e-05 1.00e-01 9.31e-02 ------------------------------------------------------------------ status: solved -timings: total: 9.41e-02s = setup: 3.40e-02s + solve: 6.00e-02s - lin-sys: 5.06e-02s, cones: 2.17e-03s, accel: 8.33e-04s +timings: total: 9.31e-02s = setup: 3.32e-02s + solve: 5.99e-02s + lin-sys: 5.03e-02s, cones: 2.12e-03s, accel: 8.15e-04s ------------------------------------------------------------------ objective = 0.000024 ------------------------------------------------------------------

    SCS reports that it solved the problem to optimality:

    is_solved_and_feasible(model)
    true

    and that the solution for x[1] is nearly zero:

    value(x[1])
    2.04406873858532e-5

    However, the analytic solution for x[1] is:

    1 - n * ε / 2
    0.8479

    The answer is very wrong, and there is no indication from the solver that anything untoward happened. What's going on?

    One useful debugging tool is primal_feasibility_report:

    report = primal_feasibility_report(model)
    Dict{Any, Float64} with 8192 entries:
    -  x[1099] ≥ 0 => 1.40807e-5
    -  x[3806] ≥ 0 => 2.17278e-5
    -  x[7044] ≥ 0 => 1.8669e-5
    -  x[7510] ≥ 0 => 2.01984e-5
    -  x[7706] ≥ 0 => 1.8669e-5
    -  x[2885] ≥ 0 => 1.56101e-5
    -  x[1481] ≥ 0 => 1.56101e-5
    -  x[926] ≥ 0  => 1.8669e-5
    -  x[7744] ≥ 0 => 2.32572e-5
    -  x[707] ≥ 0  => 1.40807e-5
    -  x[894] ≥ 0  => 2.01984e-5
    -  x[1595] ≥ 0 => 1.71395e-5
    -  x[1691] ≥ 0 => 1.71395e-5
    -  x[2290] ≥ 0 => 1.71395e-5
    -  x[2472] ≥ 0 => 1.8669e-5
    -  x[3479] ≥ 0 => 1.8669e-5
    -  x[3743] ≥ 0 => 2.01984e-5
    -  x[4217] ≥ 0 => 1.56101e-5
    -  x[1229] ≥ 0 => 1.56101e-5
    +  x[4831] ≥ 0 => 2.01984e-5
    +  x[4093] ≥ 0 => 2.32572e-5
    +  x[5724] ≥ 0 => 2.01984e-5
    +  x[757] ≥ 0  => 1.71395e-5
    +  x[2288] ≥ 0 => 2.01984e-5
    +  x[1720] ≥ 0 => 2.01984e-5
    +  x[6691] ≥ 0 => 1.56101e-5
    +  x[1317] ≥ 0 => 1.40807e-5
    +  x[4698] ≥ 0 => 1.71395e-5
    +  x[2263] ≥ 0 => 1.71395e-5
    +  x[2469] ≥ 0 => 1.56101e-5
    +  x[711] ≥ 0  => 1.56101e-5
    +  x[2962] ≥ 0 => 1.71395e-5
    +  x[2406] ≥ 0 => 1.71395e-5
    +  x[2257] ≥ 0 => 1.40807e-5
    +  x[3656] ≥ 0 => 1.8669e-5
    +  x[7014] ≥ 0 => 2.01984e-5
    +  x[6238] ≥ 0 => 1.8669e-5
    +  x[182] ≥ 0  => 1.56101e-5
       ⋮           => ⋮

    report is a dictionary which maps constraints to the violation. The largest violation is approximately 1e-5:

    maximum(values(report))
    6.92133754155444e-5

    This makes sense, because the default primal feasibility tolerance for SCS is 1e-4.

    Most of the entries are lower bound constraints on the variables. Here are all the variables which violate their lower bound:

    violated_variables = filter(xi -> value(xi) < 0, x)
    8178-element Vector{VariableRef}:
      x[4]
      x[6]
    @@ -104,14 +104,14 @@
     ------------------------------------------------------------------
      iter | pri res | dua res |   gap   |   obj   |  scale  | time (s)
     ------------------------------------------------------------------
    -     0| 2.00e+01  1.00e+00  2.00e+01 -9.98e+00  1.00e-01  3.39e-02
    +     0| 2.00e+01  1.00e+00  2.00e+01 -9.98e+00  1.00e-01  3.52e-02
        250| 2.01e-02  2.85e-04  2.00e-02  3.01e-02  3.86e-01  1.84e-01
        500| 3.69e-04  5.93e-04  8.84e-05  8.48e-01  6.13e-01  3.35e-01
    -   550| 2.66e-06  6.58e-10  1.27e-05  8.48e-01  6.13e-01  3.65e-01
    +   550| 2.66e-06  6.58e-10  1.27e-05  8.48e-01  6.13e-01  3.66e-01
     ------------------------------------------------------------------
     status:  solved
    -timings: total: 3.65e-01s = setup: 3.29e-02s + solve: 3.32e-01s
    -	 lin-sys: 2.72e-01s, cones: 1.16e-02s, accel: 6.18e-03s
    +timings: total: 3.66e-01s = setup: 3.41e-02s + solve: 3.31e-01s
    +	 lin-sys: 2.72e-01s, cones: 1.16e-02s, accel: 6.08e-03s
     ------------------------------------------------------------------
     objective = 0.847906
     ------------------------------------------------------------------
    @assert is_solved_and_feasible(model)
    @@ -159,11 +159,11 @@
     @variable(model, x >= 0)
     @variable(model, y, Bin)
     @constraint(model, 1e-6x <= 1e6 * y)

    \[ 1.0 \times 10^{-6} x - 1000000 y \leq 0 \]

    This problem has a feasible (to tolerance) solution of:

    primal_feasibility_report(model, Dict(x => 1_000_000.01, y => 1e-6))
    Dict{Any, Float64} with 2 entries:
    -  1.0e-6 x - 1000000 y ≤ 0 => 1.0e-8
    -  y binary                 => 1.0e-6

    If you intended the constraint to read that if x is non-zero then y = 1, this solution might be unexpected.

    There are no hard rules that you must follow, and the interaction between tolerances, problem scaling, and the solution is problem dependent. You should always check the solution returned by the solver to check it makes sense for your application.

    With that caveat in mind, a general rule of thumb to follow is:

    Try to keep the ratio of the smallest to largest coefficient less than $10^6$ in any row and column, and try to keep most values between $10^{-3}$ and $10^6$.

    Choosing the correct units

    The best way to fix problem scaling is by changing the units of your variables and constraints. Here's an example. Suppose we are choosing the level of capacity investment in a new power plant. We can install up to 1 GW of capacity at a cost of $1.78/W, and we have a budget of $200 million.

    model = Model()
    +  y binary                 => 1.0e-6
    +  1.0e-6 x - 1000000 y ≤ 0 => 1.0e-8

    If you intended the constraint to read that if x is non-zero then y = 1, this solution might be unexpected.

    There are no hard rules that you must follow, and the interaction between tolerances, problem scaling, and the solution is problem dependent. You should always check the solution returned by the solver to check it makes sense for your application.

    With that caveat in mind, a general rule of thumb to follow is:

    Try to keep the ratio of the smallest to largest coefficient less than $10^6$ in any row and column, and try to keep most values between $10^{-3}$ and $10^6$.

    Choosing the correct units

    The best way to fix problem scaling is by changing the units of your variables and constraints. Here's an example. Suppose we are choosing the level of capacity investment in a new power plant. We can install up to 1 GW of capacity at a cost of $1.78/W, and we have a budget of $200 million.

    model = Model()
     @variable(model, 0 <= x_capacity_W <= 10^9)
     @constraint(model, 1.78 * x_capacity_W <= 200e6)

    \[ 1.78 x\_capacity\_W \leq 200000000 \]

    This constraint violates the recommendations because there are values greater than $10^6$, and the ratio of the coefficients in the constraint is $10^8$.

    One fix is the convert our capacity variable from Watts to Megawatts. This yields:

    model = Model()
     @variable(model, 0 <= x_capacity_MW <= 10^3)
     @constraint(model, 1.78e6 * x_capacity_MW <= 200e6)

    \[ 1780000 x\_capacity\_MW \leq 200000000 \]

    We can improve our model further by dividing the constraint by $10^6$ to change the units from dollars to million dollars.

    model = Model()
     @variable(model, 0 <= x_capacity_MW <= 10^3)
    -@constraint(model, 1.78 * x_capacity_MW <= 200)

    \[ 1.78 x\_capacity\_MW \leq 200 \]

    This problem is equivalent to the original problem, but it has much better problem scaling.

    As a general rule, to fix problem scaling you must simultaneously scale both variables and constraints. It is usually not sufficient to scale variables or constraints in isolation.

    +@constraint(model, 1.78 * x_capacity_MW <= 200)

    \[ 1.78 x\_capacity\_MW \leq 200 \]

    This problem is equivalent to the original problem, but it has much better problem scaling.

    As a general rule, to fix problem scaling you must simultaneously scale both variables and constraints. It is usually not sufficient to scale variables or constraints in isolation.

    diff --git a/previews/PR3919/tutorials/linear/basis/index.html b/previews/PR3919/tutorials/linear/basis/index.html index ad6a02e44ed..1d366363865 100644 --- a/previews/PR3919/tutorials/linear/basis/index.html +++ b/previews/PR3919/tutorials/linear/basis/index.html @@ -54,15 +54,15 @@ xi => get_attribute(xi, MOI.VariableBasisStatus()) for xi in all_variables(model) )
    Dict{VariableRef, MathOptInterface.BasisStatusCode} with 3 entries:
    +  z => NONBASIC_AT_UPPER
       y => BASIC
    -  x => BASIC
    -  z => NONBASIC_AT_UPPER

    Despite the model having three constraints, there are only two basic variables. Since the basis matrix must be square, where is the other basic variable?

    The answer is that solvers will reformulate inequality constraints:

    \[A x \le b\]

    into the system:

    \[A x + Is = b\]

    Thus, for every inequality constraint there is a slack variable s.

    Query the basis status of the slack variables associated with a constraint using MOI.ConstraintBasisStatus:

    c_basis = Dict(
    +  x => BASIC

    Despite the model having three constraints, there are only two basic variables. Since the basis matrix must be square, where is the other basic variable?

    The answer is that solvers will reformulate inequality constraints:

    \[A x \le b\]

    into the system:

    \[A x + Is = b\]

    Thus, for every inequality constraint there is a slack variable s.

    Query the basis status of the slack variables associated with a constraint using MOI.ConstraintBasisStatus:

    c_basis = Dict(
         ci => get_attribute(ci, MOI.ConstraintBasisStatus()) for ci in
         all_constraints(model; include_variable_in_set_constraints = false)
     )
    Dict{ConstraintRef{Model, C, ScalarShape} where C, MathOptInterface.BasisStatusCode} with 3 entries:
       c3 : x + y ≤ 20       => BASIC
    -  c1 : 6 x + 8 y ≥ 100  => NONBASIC
    -  c2 : 7 x + 12 y ≥ 120 => NONBASIC

    Thus, the basis is formed by x, y, and the slack associated with c3.

    A simple way to get the A matrix of an unstructured linear program is with lp_matrix_data:

    matrix = lp_matrix_data(model)
    +  c2 : 7 x + 12 y ≥ 120 => NONBASIC
    +  c1 : 6 x + 8 y ≥ 100  => NONBASIC

    Thus, the basis is formed by x, y, and the slack associated with c3.

    A simple way to get the A matrix of an unstructured linear program is with lp_matrix_data:

    matrix = lp_matrix_data(model)
     matrix.A
    3×3 SparseArrays.SparseMatrixCSC{Float64, Int64} with 6 stored entries:
      6.0   8.0   ⋅ 
      7.0  12.0   ⋅ 
    @@ -96,4 +96,4 @@
     @constraint(model, A * x == b)
     optimize!(model)
     degenerate_variables = filter(is_degenerate, all_variables(model))
    1-element Vector{VariableRef}:
    - x[1]

    The solution is degenerate because:

    value(x[1])
    -0.0

    and

    get_attribute(x[1], MOI.VariableBasisStatus())
    BASIC::BasisStatusCode = 0
    + x[1]

    The solution is degenerate because:

    value(x[1])
    -0.0

    and

    get_attribute(x[1], MOI.VariableBasisStatus())
    BASIC::BasisStatusCode = 0
    diff --git a/previews/PR3919/tutorials/linear/callbacks/index.html b/previews/PR3919/tutorials/linear/callbacks/index.html index 2e76001cc0a..0630156fbe6 100644 --- a/previews/PR3919/tutorials/linear/callbacks/index.html +++ b/previews/PR3919/tutorials/linear/callbacks/index.html @@ -246,4 +246,4 @@ Solve interrupted Best objective -, best bound -, gap - -User-callback calls 31, time in user-callback 0.03 sec +User-callback calls 31, time in user-callback 0.03 sec diff --git a/previews/PR3919/tutorials/linear/cannery/index.html b/previews/PR3919/tutorials/linear/cannery/index.html index 1c3465bcebd..338ddddcb3f 100644 --- a/previews/PR3919/tutorials/linear/cannery/index.html +++ b/previews/PR3919/tutorials/linear/cannery/index.html @@ -76,7 +76,7 @@ Dual objective value : 1.68000e+03 * Work counters - Solve time (sec) : 2.11716e-04 + Solve time (sec) : 1.90496e-04 Simplex iterations : 3 Barrier iterations : 0 Node count : -1 @@ -88,4 +88,4 @@ Seattle => New-York: 0.0 San-Diego => Chicago: 0.0 San-Diego => Topeka: 300.0 -San-Diego => New-York: 300.0 +San-Diego => New-York: 300.0 diff --git a/previews/PR3919/tutorials/linear/constraint_programming/index.html b/previews/PR3919/tutorials/linear/constraint_programming/index.html index 2efe9662249..917d50c8949 100644 --- a/previews/PR3919/tutorials/linear/constraint_programming/index.html +++ b/previews/PR3919/tutorials/linear/constraint_programming/index.html @@ -97,4 +97,4 @@ value.(x)
    3-element Vector{Float64}:
      1.0
      1.0
    - 0.0
    + 0.0 diff --git a/previews/PR3919/tutorials/linear/diet/index.html b/previews/PR3919/tutorials/linear/diet/index.html index 0f2a44e6b6e..91e7df7854b 100644 --- a/previews/PR3919/tutorials/linear/diet/index.html +++ b/previews/PR3919/tutorials/linear/diet/index.html @@ -11,7 +11,7 @@ \min & \sum\limits_{f \in F} c_f x_f \\ \text{s.t.}\ \ & l_m \le \sum\limits_{f \in F} a_{m,f} x_f \le u_m, && \forall m \in M \\ & x_f \ge 0, && \forall f \in F. -\end{aligned}\]

    In the rest of this tutorial, we will create and solve this problem in JuMP, and learn what we should cook for dinner.

    Data

    First, we need some data for the problem. For this tutorial, we'll write CSV files to a temporary directory from Julia. If you have existing files, you could change the filenames to point to them instead.

    dir = mktempdir()
    "/tmp/jl_CjcdfA"

    The first file is a list of foods with their macro-nutrient profile:

    food_csv_filename = joinpath(dir, "diet_foods.csv")
    +\end{aligned}\]

    In the rest of this tutorial, we will create and solve this problem in JuMP, and learn what we should cook for dinner.

    Data

    First, we need some data for the problem. For this tutorial, we'll write CSV files to a temporary directory from Julia. If you have existing files, you could change the filenames to point to them instead.

    dir = mktempdir()
    "/tmp/jl_ni5w18"

    The first file is a list of foods with their macro-nutrient profile:

    food_csv_filename = joinpath(dir, "diet_foods.csv")
     open(food_csv_filename, "w") do io
         write(
             io,
    @@ -103,7 +103,7 @@
       Dual objective value : 1.18289e+01
     
     * Work counters
    -  Solve time (sec)   : 2.11000e-04
    +  Solve time (sec)   : 2.20060e-04
       Simplex iterations : 6
       Barrier iterations : 0
       Node count         : -1
    @@ -142,8 +142,8 @@
       Dual objective value : 3.56146e+00
     
     * Work counters
    -  Solve time (sec)   : 1.56164e-04
    +  Solve time (sec)   : 1.63317e-04
       Simplex iterations : 0
       Barrier iterations : 0
       Node count         : -1
    -

    There exists no feasible solution to our problem. Looks like we're stuck eating ice cream for dinner.

    Next steps

    • You can delete a constraint using delete(model, dairy_constraint). Can you add a different constraint to provide a diet with less dairy?
    • Some food items (like hamburgers) are discrete. You can use set_integer to force a variable to take integer values. What happens to the solution if you do?
    +

    There exists no feasible solution to our problem. Looks like we're stuck eating ice cream for dinner.

    Next steps

    • You can delete a constraint using delete(model, dairy_constraint). Can you add a different constraint to provide a diet with less dairy?
    • Some food items (like hamburgers) are discrete. You can use set_integer to force a variable to take integer values. What happens to the solution if you do?
    diff --git a/previews/PR3919/tutorials/linear/facility_location/073d6b45.svg b/previews/PR3919/tutorials/linear/facility_location/280a22f0.svg similarity index 79% rename from previews/PR3919/tutorials/linear/facility_location/073d6b45.svg rename to previews/PR3919/tutorials/linear/facility_location/280a22f0.svg index 380ed19c061..fd25a2cd560 100644 --- a/previews/PR3919/tutorials/linear/facility_location/073d6b45.svg +++ b/previews/PR3919/tutorials/linear/facility_location/280a22f0.svg @@ -1,69 +1,69 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/facility_location/e997eb25.svg b/previews/PR3919/tutorials/linear/facility_location/a4299ee8.svg similarity index 79% rename from previews/PR3919/tutorials/linear/facility_location/e997eb25.svg rename to previews/PR3919/tutorials/linear/facility_location/a4299ee8.svg index 54813104aad..eab82235b0a 100644 --- a/previews/PR3919/tutorials/linear/facility_location/e997eb25.svg +++ b/previews/PR3919/tutorials/linear/facility_location/a4299ee8.svg @@ -1,69 +1,69 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/facility_location/d5d62d7e.svg b/previews/PR3919/tutorials/linear/facility_location/bff17d7a.svg similarity index 81% rename from previews/PR3919/tutorials/linear/facility_location/d5d62d7e.svg rename to previews/PR3919/tutorials/linear/facility_location/bff17d7a.svg index 8374dd163d7..f844c37d073 100644 --- a/previews/PR3919/tutorials/linear/facility_location/d5d62d7e.svg +++ b/previews/PR3919/tutorials/linear/facility_location/bff17d7a.svg @@ -1,61 +1,61 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/facility_location/a6c4b167.svg b/previews/PR3919/tutorials/linear/facility_location/d7088ec2.svg similarity index 80% rename from previews/PR3919/tutorials/linear/facility_location/a6c4b167.svg rename to previews/PR3919/tutorials/linear/facility_location/d7088ec2.svg index 656e5667a86..ffbff36405f 100644 --- a/previews/PR3919/tutorials/linear/facility_location/a6c4b167.svg +++ b/previews/PR3919/tutorials/linear/facility_location/d7088ec2.svg @@ -1,57 +1,57 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/facility_location/index.html b/previews/PR3919/tutorials/linear/facility_location/index.html index e8d06d6f218..6770cb8766c 100644 --- a/previews/PR3919/tutorials/linear/facility_location/index.html +++ b/previews/PR3919/tutorials/linear/facility_location/index.html @@ -51,7 +51,7 @@ markersize = 6, markerstrokecolor = :red, markerstrokewidth = 2, -)Example block output

    JuMP implementation

    Create a JuMP model

    model = Model(HiGHS.Optimizer)
    +)
    Example block output

    JuMP implementation

    Create a JuMP model

    model = Model(HiGHS.Optimizer)
     set_silent(model)
     @variable(model, y[1:n], Bin);
     @variable(model, x[1:m, 1:n], Bin);
    @@ -94,7 +94,7 @@
         end
     end
     
    -p
    Example block output

    Capacitated facility location

    Problem formulation

    The capacitated variant introduces a capacity constraint on each facility, that is, clients have a certain level of demand to be served, while each facility only has finite capacity which cannot be exceeded.

    Specifically,

    • The demand of client $i$ is denoted by $a_{i} \geq 0$
    • The capacity of facility $j$ is denoted by $q_{j} \geq 0$

    The capacity constraints then write

    \[\begin{aligned} +pExample block output

    Capacitated facility location

    Problem formulation

    The capacitated variant introduces a capacity constraint on each facility, that is, clients have a certain level of demand to be served, while each facility only has finite capacity which cannot be exceeded.

    Specifically,

    • The demand of client $i$ is denoted by $a_{i} \geq 0$
    • The capacity of facility $j$ is denoted by $q_{j} \geq 0$

    The capacity constraints then write

    \[\begin{aligned} \sum_{i} a_{i} x_{i, j} &\leq q_{j} y_{j} && \forall j \in N \end{aligned}\]

    Note that, if $y_{j}$ is set to $0$, the capacity constraint above automatically forces $x_{i, j}$ to $0$.

    Thus, the capacitated facility location can be formulated as follows

    \[\begin{aligned} \min_{x, y} \ \ \ & @@ -126,7 +126,7 @@ markersize = q, markerstrokecolor = :red, markerstrokewidth = 2, -)Example block output

    JuMP implementation

    Create a JuMP model

    model = Model(HiGHS.Optimizer)
    +)
    Example block output

    JuMP implementation

    Create a JuMP model

    model = Model(HiGHS.Optimizer)
     set_silent(model)
     @variable(model, y[1:n], Bin);
     @variable(model, x[1:m, 1:n], Bin);
    @@ -169,4 +169,4 @@
         end
     end
     
    -p
    Example block output +pExample block output diff --git a/previews/PR3919/tutorials/linear/factory_schedule/b1a6b853.svg b/previews/PR3919/tutorials/linear/factory_schedule/0f37474c.svg similarity index 85% rename from previews/PR3919/tutorials/linear/factory_schedule/b1a6b853.svg rename to previews/PR3919/tutorials/linear/factory_schedule/0f37474c.svg index e7af35c561c..68bc995ff63 100644 --- a/previews/PR3919/tutorials/linear/factory_schedule/b1a6b853.svg +++ b/previews/PR3919/tutorials/linear/factory_schedule/0f37474c.svg @@ -1,81 +1,81 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/factory_schedule/6f4b27ac.svg b/previews/PR3919/tutorials/linear/factory_schedule/4b2bb7c4.svg similarity index 78% rename from previews/PR3919/tutorials/linear/factory_schedule/6f4b27ac.svg rename to previews/PR3919/tutorials/linear/factory_schedule/4b2bb7c4.svg index 8f9c13e3ee4..ebcefb2d259 100644 --- a/previews/PR3919/tutorials/linear/factory_schedule/6f4b27ac.svg +++ b/previews/PR3919/tutorials/linear/factory_schedule/4b2bb7c4.svg @@ -1,162 +1,162 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/factory_schedule/dbd76357.svg b/previews/PR3919/tutorials/linear/factory_schedule/ac082c26.svg similarity index 78% rename from previews/PR3919/tutorials/linear/factory_schedule/dbd76357.svg rename to previews/PR3919/tutorials/linear/factory_schedule/ac082c26.svg index e0cf1528d7b..c511cd3a412 100644 --- a/previews/PR3919/tutorials/linear/factory_schedule/dbd76357.svg +++ b/previews/PR3919/tutorials/linear/factory_schedule/ac082c26.svg @@ -1,160 +1,160 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/factory_schedule/index.html b/previews/PR3919/tutorials/linear/factory_schedule/index.html index f1ab3705205..df55e93791e 100644 --- a/previews/PR3919/tutorials/linear/factory_schedule/index.html +++ b/previews/PR3919/tutorials/linear/factory_schedule/index.html @@ -126,7 +126,7 @@ ylabel = "Production", legend = :topleft, color = ["#20326c" "#4063d8" "#a0b1ec"], -)Example block output

    Note that we don't have any unmet demand.

    What happens if demand increases?

    Let's run an experiment by increasing the demand by 50% in all time periods:

    demand_df.demand .*= 1.5
    12-element Vector{Float64}:
    +)
    Example block output

    Note that we don't have any unmet demand.

    What happens if demand increases?

    Let's run an experiment by increasing the demand by 50% in all time periods:

    demand_df.demand .*= 1.5
    12-element Vector{Float64}:
      180000.0
      150000.0
      195000.0
    @@ -146,7 +146,7 @@
         ylabel = "Production",
         legend = :topleft,
         color = ["#20326c" "#4063d8" "#a0b1ec"],
    -)
    Example block output

    Uh oh, we can't satisfy all of the demand.

    How sensitive is the solution to changes in variable cost?

    Let's run another experiment, this time seeing how the optimal objective value changes as we vary the variable costs of each factory.

    First though, let's reset the demand to it's original level:

    demand_df.demand ./= 1.5;

    For our experiment, we're going to scale the variable costs of both factories by a set of values from 0.0 to 1.5:

    scale_factors = 0:0.1:1.5
    0.0:0.1:1.5

    At a high level, we're going to loop over the scale factors for A, then the scale factors for B, rescale the input data, call our solve_factory_scheduling example, and then store the optimal objective value in the following cost matrix:

    cost = zeros(length(scale_factors), length(scale_factors));

    Because we're modifying factory_df in-place, we need to store the original variable costs in a new column:

    factory_df[!, :old_variable_cost] = copy(factory_df.variable_cost);

    Then, we need a function to scale the :variable_cost column for a particular factory by a value scale:

    function scale_variable_cost(df, factory, scale)
    +)
    Example block output

    Uh oh, we can't satisfy all of the demand.

    How sensitive is the solution to changes in variable cost?

    Let's run another experiment, this time seeing how the optimal objective value changes as we vary the variable costs of each factory.

    First though, let's reset the demand to it's original level:

    demand_df.demand ./= 1.5;

    For our experiment, we're going to scale the variable costs of both factories by a set of values from 0.0 to 1.5:

    scale_factors = 0:0.1:1.5
    0.0:0.1:1.5

    At a high level, we're going to loop over the scale factors for A, then the scale factors for B, rescale the input data, call our solve_factory_scheduling example, and then store the optimal objective value in the following cost matrix:

    cost = zeros(length(scale_factors), length(scale_factors));

    Because we're modifying factory_df in-place, we need to store the original variable costs in a new column:

    factory_df[!, :old_variable_cost] = copy(factory_df.variable_cost);

    Then, we need a function to scale the :variable_cost column for a particular factory by a value scale:

    function scale_variable_cost(df, factory, scale)
         rows = df.factory .== factory
         df[rows, :variable_cost] .=
             round.(Int, df[rows, :old_variable_cost] .* scale)
    @@ -163,4 +163,4 @@
         cost;
         xlabel = "Scale of factory A",
         ylabel = "Scale of factory B",
    -)
    Example block output

    What can you infer from the solution?

    Info

    The Power Systems tutorial explains a number of other ways you can structure a problem to perform a parametric analysis of the solution. In particular, you can use in-place modification to reduce the time it takes to build and solve the resulting models.

    +)Example block output

    What can you infer from the solution?

    Info

    The Power Systems tutorial explains a number of other ways you can structure a problem to perform a parametric analysis of the solution. In particular, you can use in-place modification to reduce the time it takes to build and solve the resulting models.

    diff --git a/previews/PR3919/tutorials/linear/finance/index.html b/previews/PR3919/tutorials/linear/finance/index.html index ca0e2720263..baecc28dbf3 100644 --- a/previews/PR3919/tutorials/linear/finance/index.html +++ b/previews/PR3919/tutorials/linear/finance/index.html @@ -50,4 +50,4 @@ 1.0 -0.0 -0.0 - 0.0 + 0.0 diff --git a/previews/PR3919/tutorials/linear/geographic_clustering/index.html b/previews/PR3919/tutorials/linear/geographic_clustering/index.html index c0e3049a559..1487bec6c16 100644 --- a/previews/PR3919/tutorials/linear/geographic_clustering/index.html +++ b/previews/PR3919/tutorials/linear/geographic_clustering/index.html @@ -135,4 +135,4 @@ 5 │ San Francisco, CA 0.837 37.7749 -122.419 3.0 6 │ El Paso, TX 0.674 31.7775 -106.442 3.0 -sum(group.population) = 9.261000000000001 +sum(group.population) = 9.261000000000001 diff --git a/previews/PR3919/tutorials/linear/introduction/index.html b/previews/PR3919/tutorials/linear/introduction/index.html index 8e429ce89f4..76c91fce726 100644 --- a/previews/PR3919/tutorials/linear/introduction/index.html +++ b/previews/PR3919/tutorials/linear/introduction/index.html @@ -7,4 +7,4 @@ \min_{x \in \mathbb{R}^n} & \sum\limits_{i=1}^n c_i x_i \\ \;\;\text{s.t.} & l_j \le \sum\limits_{i=1}^n a_{ij} x_i \le u_j & j = 1 \ldots m \\ & l_i \le x_i \le u_i & i = 1 \ldots n. -\end{align}\]

    The most important thing to note is that all terms are of the form coefficient * variable, and that there are no nonlinear terms or multiplications between variables.

    Mixed-integer linear programs (MILPs) are extensions of linear programs in which some (or all) of the decision variables take discrete values.

    How to choose a solver

    Almost all solvers support linear programs; look for "LP" in the list of Supported solvers. However, fewer solvers support mixed-integer linear programs. Solvers supporting discrete variables start with "(MI)" in the list of Supported solvers.

    How these tutorials are structured

    Having a high-level overview of how this part of the documentation is structured will help you know where to look for certain things.

    • The following tutorials are worked examples that present a problem in words, then formulate it in mathematics, and then solve it in JuMP. This usually involves some sort of visualization of the solution. Start here if you are new to JuMP.
    • The Tips and tricks tutorial contains a number of helpful reformulations and tricks you can use when modeling linear programs. Look here if you are stuck trying to formulate a problem as a linear program.
    • The Sensitivity analysis of a linear program tutorial explains how to create sensitivity reports like those produced by the Excel Solver.
    • The Callbacks tutorial explains how to write a variety of solver-independent callbacks. Look here if you want to write a callback.
    • The remaining tutorials are less verbose and styled in the form of short code examples. These tutorials have less explanation, but may contain useful code snippets, particularly if they are similar to a problem you are trying to solve.
    +\end{align}\]

    The most important thing to note is that all terms are of the form coefficient * variable, and that there are no nonlinear terms or multiplications between variables.

    Mixed-integer linear programs (MILPs) are extensions of linear programs in which some (or all) of the decision variables take discrete values.

    How to choose a solver

    Almost all solvers support linear programs; look for "LP" in the list of Supported solvers. However, fewer solvers support mixed-integer linear programs. Solvers supporting discrete variables start with "(MI)" in the list of Supported solvers.

    How these tutorials are structured

    Having a high-level overview of how this part of the documentation is structured will help you know where to look for certain things.

    • The following tutorials are worked examples that present a problem in words, then formulate it in mathematics, and then solve it in JuMP. This usually involves some sort of visualization of the solution. Start here if you are new to JuMP.
    • The Tips and tricks tutorial contains a number of helpful reformulations and tricks you can use when modeling linear programs. Look here if you are stuck trying to formulate a problem as a linear program.
    • The Sensitivity analysis of a linear program tutorial explains how to create sensitivity reports like those produced by the Excel Solver.
    • The Callbacks tutorial explains how to write a variety of solver-independent callbacks. Look here if you want to write a callback.
    • The remaining tutorials are less verbose and styled in the form of short code examples. These tutorials have less explanation, but may contain useful code snippets, particularly if they are similar to a problem you are trying to solve.
    diff --git a/previews/PR3919/tutorials/linear/knapsack/index.html b/previews/PR3919/tutorials/linear/knapsack/index.html index 076afa7b8bd..2ebd342a795 100644 --- a/previews/PR3919/tutorials/linear/knapsack/index.html +++ b/previews/PR3919/tutorials/linear/knapsack/index.html @@ -49,7 +49,7 @@ Dual objective value : NaN * Work counters - Solve time (sec) : 5.04732e-04 + Solve time (sec) : 5.38111e-04 Simplex iterations : 1 Barrier iterations : -1 Node count : 1 @@ -84,4 +84,4 @@ solve_knapsack_problem(; profit = profit, weight = weight, capacity = capacity)
    3-element Vector{Int64}:
      1
      4
    - 5

    We observe that the chosen items (1, 4, and 5) have the best profit to weight ratio in this particular example.

    Next steps

    Here are some things to try next:

    • Call the function with different data. What happens as the capacity increases?
    • What happens if the profit and weight vectors are different lengths?
    • Instead of creating a binary variable with Bin, we could have written @variable(model, 0 <= x[1:n] <= 1, Int). Verify that this formulation finds the same solution. What happens if we are allowed to take more than one of each item?
    + 5

    We observe that the chosen items (1, 4, and 5) have the best profit to weight ratio in this particular example.

    Next steps

    Here are some things to try next:

    • Call the function with different data. What happens as the capacity increases?
    • What happens if the profit and weight vectors are different lengths?
    • Instead of creating a binary variable with Bin, we could have written @variable(model, 0 <= x[1:n] <= 1, Int). Verify that this formulation finds the same solution. What happens if we are allowed to take more than one of each item?
    diff --git a/previews/PR3919/tutorials/linear/lp_sensitivity/index.html b/previews/PR3919/tutorials/linear/lp_sensitivity/index.html index efdef5bee0f..49cd651e040 100644 --- a/previews/PR3919/tutorials/linear/lp_sensitivity/index.html +++ b/previews/PR3919/tutorials/linear/lp_sensitivity/index.html @@ -40,11 +40,11 @@ c3 : 0.00000e+00 * Work counters - Solve time (sec) : 2.71082e-04 + Solve time (sec) : 2.74181e-04 Simplex iterations : 2 Barrier iterations : 0 Node count : -1 -

    Can you identify:

    • The objective coefficient of each variable?
    • The right-hand side of each constraint?
    • The optimal primal and dual solutions?

    Sensitivity reports

    Now let's call lp_sensitivity_report:

    report = lp_sensitivity_report(model)
    SensitivityReport{Float64}(Dict{ConstraintRef, Tuple{Float64, Float64}}(x ≥ 0 => (-Inf, 15.0), c1 : 6 x + 8 y ≥ 100 => (-4.0, 2.857142857142857), c2 : 7 x + 12 y ≥ 120 => (-3.3333333333333335, 4.666666666666667), c3 : x + y ≤ 20 => (-3.75, Inf), z ≤ 1 => (-Inf, Inf), y ≥ 0 => (-Inf, 1.25), y ≤ 3 => (-1.75, Inf)), Dict{VariableRef, Tuple{Float64, Float64}}(y => (-4.0, 0.5714285714285714), x => (-0.3333333333333333, 3.0), z => (-Inf, 1.0)))

    It returns a SensitivityReport object, which maps:

    • Every variable reference to a tuple (d_lo, d_hi)::Tuple{Float64,Float64}, explaining how much the objective coefficient of the corresponding variable can change by, such that the original basis remains optimal.
    • Every constraint reference to a tuple (d_lo, d_hi)::Tuple{Float64,Float64}, explaining how much the right-hand side of the corresponding constraint can change by, such that the basis remains optimal.

    Both tuples are relative, rather than absolute. So, given an objective coefficient of 1.0 and a tuple (-0.5, 0.5), the objective coefficient can range between 1.0 - 0.5 an 1.0 + 0.5.

    For example:

    report[x]
    (-0.3333333333333333, 3.0)

    indicates that the objective coefficient on x, that is, 12, can decrease by -0.333 or increase by 3.0 and the primal solution (15, 1.25) will remain optimal. In addition:

    report[c1]
    (-4.0, 2.857142857142857)

    means that the right-hand side of the c1 constraint (100), can decrease by 4 units, or increase by 2.85 units, and the primal solution (15, 1.25) will remain optimal.

    Variable sensitivity

    By themselves, the tuples aren't informative. Let's put them in context by collating a range of other information about a variable:

    function variable_report(xi)
    +

    Can you identify:

    • The objective coefficient of each variable?
    • The right-hand side of each constraint?
    • The optimal primal and dual solutions?

    Sensitivity reports

    Now let's call lp_sensitivity_report:

    report = lp_sensitivity_report(model)
    SensitivityReport{Float64}(Dict{ConstraintRef, Tuple{Float64, Float64}}(z ≤ 1 => (-Inf, Inf), c2 : 7 x + 12 y ≥ 120 => (-3.3333333333333335, 4.666666666666667), c3 : x + y ≤ 20 => (-3.75, Inf), x ≥ 0 => (-Inf, 15.0), y ≥ 0 => (-Inf, 1.25), y ≤ 3 => (-1.75, Inf), c1 : 6 x + 8 y ≥ 100 => (-4.0, 2.857142857142857)), Dict{VariableRef, Tuple{Float64, Float64}}(y => (-4.0, 0.5714285714285714), x => (-0.3333333333333333, 3.0), z => (-Inf, 1.0)))

    It returns a SensitivityReport object, which maps:

    • Every variable reference to a tuple (d_lo, d_hi)::Tuple{Float64,Float64}, explaining how much the objective coefficient of the corresponding variable can change by, such that the original basis remains optimal.
    • Every constraint reference to a tuple (d_lo, d_hi)::Tuple{Float64,Float64}, explaining how much the right-hand side of the corresponding constraint can change by, such that the basis remains optimal.

    Both tuples are relative, rather than absolute. So, given an objective coefficient of 1.0 and a tuple (-0.5, 0.5), the objective coefficient can range between 1.0 - 0.5 an 1.0 + 0.5.

    For example:

    report[x]
    (-0.3333333333333333, 3.0)

    indicates that the objective coefficient on x, that is, 12, can decrease by -0.333 or increase by 3.0 and the primal solution (15, 1.25) will remain optimal. In addition:

    report[c1]
    (-4.0, 2.857142857142857)

    means that the right-hand side of the c1 constraint (100), can decrease by 4 units, or increase by 2.85 units, and the primal solution (15, 1.25) will remain optimal.

    Variable sensitivity

    By themselves, the tuples aren't informative. Let's put them in context by collating a range of other information about a variable:

    function variable_report(xi)
         return (
             name = name(xi),
             lower_bound = has_lower_bound(xi) ? lower_bound(xi) : -Inf,
    @@ -71,4 +71,4 @@
     c1_report = constraint_report(c1)
    (name = "c1", value = 100.0, rhs = 100.0, slack = 0.0, shadow_price = -0.25, allowed_decrease = -4.0, allowed_increase = 2.857142857142857)

    That's a bit hard to read, so let's call this on every variable in the model and put things into a DataFrame:

    constraint_df = DataFrames.DataFrame(
         constraint_report(ci) for (F, S) in list_of_constraint_types(model) for
         ci in all_constraints(model, F, S) if F == AffExpr
    -)
    3×7 DataFrame
    Rownamevaluerhsslackshadow_priceallowed_decreaseallowed_increase
    StringFloat64Float64Float64Float64Float64Float64
    1c1100.0100.00.0-0.25-4.02.85714
    2c2120.0120.00.0-1.5-3.333334.66667
    3c316.2520.03.750.0-3.75Inf

    Analysis questions

    Now we can use these dataframes to ask questions of the solution.

    For example, we can find basic variables by looking for variables with a reduced cost of 0:

    basic = filter(row -> iszero(row.reduced_cost), variable_df)
    2×8 DataFrame
    Rownamelower_boundvalueupper_boundreduced_costobj_coefficientallowed_decreaseallowed_increase
    StringFloat64Float64Float64Float64Float64Float64Float64
    1x0.015.0Inf0.012.0-0.3333333.0
    2y0.01.253.00.020.0-4.00.571429

    and non-basic variables by looking for non-zero reduced costs:

    non_basic = filter(row -> !iszero(row.reduced_cost), variable_df)
    1×8 DataFrame
    Rownamelower_boundvalueupper_boundreduced_costobj_coefficientallowed_decreaseallowed_increase
    StringFloat64Float64Float64Float64Float64Float64Float64
    1z-Inf1.01.0-1.0-1.0-Inf1.0

    we can also find constraints that are binding by looking for zero slacks:

    binding = filter(row -> iszero(row.slack), constraint_df)
    2×7 DataFrame
    Rownamevaluerhsslackshadow_priceallowed_decreaseallowed_increase
    StringFloat64Float64Float64Float64Float64Float64
    1c1100.0100.00.0-0.25-4.02.85714
    2c2120.0120.00.0-1.5-3.333334.66667

    or non-zero shadow prices:

    binding2 = filter(row -> !iszero(row.shadow_price), constraint_df)
    2×7 DataFrame
    Rownamevaluerhsslackshadow_priceallowed_decreaseallowed_increase
    StringFloat64Float64Float64Float64Float64Float64
    1c1100.0100.00.0-0.25-4.02.85714
    2c2120.0120.00.0-1.5-3.333334.66667
    +)
    3×7 DataFrame
    Rownamevaluerhsslackshadow_priceallowed_decreaseallowed_increase
    StringFloat64Float64Float64Float64Float64Float64
    1c1100.0100.00.0-0.25-4.02.85714
    2c2120.0120.00.0-1.5-3.333334.66667
    3c316.2520.03.750.0-3.75Inf

    Analysis questions

    Now we can use these dataframes to ask questions of the solution.

    For example, we can find basic variables by looking for variables with a reduced cost of 0:

    basic = filter(row -> iszero(row.reduced_cost), variable_df)
    2×8 DataFrame
    Rownamelower_boundvalueupper_boundreduced_costobj_coefficientallowed_decreaseallowed_increase
    StringFloat64Float64Float64Float64Float64Float64Float64
    1x0.015.0Inf0.012.0-0.3333333.0
    2y0.01.253.00.020.0-4.00.571429

    and non-basic variables by looking for non-zero reduced costs:

    non_basic = filter(row -> !iszero(row.reduced_cost), variable_df)
    1×8 DataFrame
    Rownamelower_boundvalueupper_boundreduced_costobj_coefficientallowed_decreaseallowed_increase
    StringFloat64Float64Float64Float64Float64Float64Float64
    1z-Inf1.01.0-1.0-1.0-Inf1.0

    we can also find constraints that are binding by looking for zero slacks:

    binding = filter(row -> iszero(row.slack), constraint_df)
    2×7 DataFrame
    Rownamevaluerhsslackshadow_priceallowed_decreaseallowed_increase
    StringFloat64Float64Float64Float64Float64Float64
    1c1100.0100.00.0-0.25-4.02.85714
    2c2120.0120.00.0-1.5-3.333334.66667

    or non-zero shadow prices:

    binding2 = filter(row -> !iszero(row.shadow_price), constraint_df)
    2×7 DataFrame
    Rownamevaluerhsslackshadow_priceallowed_decreaseallowed_increase
    StringFloat64Float64Float64Float64Float64Float64
    1c1100.0100.00.0-0.25-4.02.85714
    2c2120.0120.00.0-1.5-3.333334.66667
    diff --git a/previews/PR3919/tutorials/linear/mip_duality/index.html b/previews/PR3919/tutorials/linear/mip_duality/index.html index 186bce5e930..2de01a2676e 100644 --- a/previews/PR3919/tutorials/linear/mip_duality/index.html +++ b/previews/PR3919/tutorials/linear/mip_duality/index.html @@ -113,4 +113,4 @@ g[2] ≤ 1000 w ≤ 200 dispatch[1] binary - dispatch[2] binary + dispatch[2] binary diff --git a/previews/PR3919/tutorials/linear/multi/index.html b/previews/PR3919/tutorials/linear/multi/index.html index 4c8506ded56..b39e6610ab3 100644 --- a/previews/PR3919/tutorials/linear/multi/index.html +++ b/previews/PR3919/tutorials/linear/multi/index.html @@ -118,7 +118,7 @@ INNER JOIN locations b ON a.type = 'origin' AND b.type = 'destination' """, -)
    SQLite.Query{false}(SQLite.Stmt(SQLite.DB("/home/runner/work/JuMP.jl/JuMP.jl/docs/build/tutorials/linear/multi.sqlite"), Base.RefValue{Ptr{SQLite.C.sqlite3_stmt}}(Ptr{SQLite.C.sqlite3_stmt} @0x000000004a145d58), Dict{Int64, Any}()), Base.RefValue{Int32}(100), [:origin, :destination], Type[Union{Missing, String}, Union{Missing, String}], Dict(:origin => 1, :destination => 2), Base.RefValue{Int64}(0))

    With a constraint that we cannot send more than 625 units between each pair:

    for r in Tables.rows(od_pairs)
    +)
    SQLite.Query{false}(SQLite.Stmt(SQLite.DB("/home/runner/work/JuMP.jl/JuMP.jl/docs/build/tutorials/linear/multi.sqlite"), Base.RefValue{Ptr{SQLite.C.sqlite3_stmt}}(Ptr{SQLite.C.sqlite3_stmt} @0x000000004a50e818), Dict{Int64, Any}()), Base.RefValue{Int32}(100), [:origin, :destination], Type[Union{Missing, String}, Union{Missing, String}], Dict(:origin => 1, :destination => 2), Base.RefValue{Int64}(0))

    With a constraint that we cannot send more than 625 units between each pair:

    for r in Tables.rows(od_pairs)
         @constraint(model, sum(x[r.origin, r.destination, :]) <= 625)
     end

    Solution

    Finally, we can optimize the model:

    optimize!(model)
     Test.@test is_solved_and_feasible(model)
    @@ -139,7 +139,7 @@
       Dual objective value : 2.25700e+05
     
     * Work counters
    -  Solve time (sec)   : 6.80208e-04
    +  Solve time (sec)   : 6.77824e-04
       Simplex iterations : 54
       Barrier iterations : 0
       Node count         : -1
    @@ -170,4 +170,4 @@
     PITT WIN    75   250    .
     PITT STL   400    25   200
     PITT FRE    .    450   100
    -PITT LAF   250   125    .
    +PITT LAF 250 125 . diff --git a/previews/PR3919/tutorials/linear/multi_commodity_network/index.html b/previews/PR3919/tutorials/linear/multi_commodity_network/index.html index a1d2e6849c5..d66c764ad53 100644 --- a/previews/PR3919/tutorials/linear/multi_commodity_network/index.html +++ b/previews/PR3919/tutorials/linear/multi_commodity_network/index.html @@ -87,7 +87,7 @@ Dual objective value : 1.43228e+02 * Work counters - Solve time (sec) : 3.49522e-04 + Solve time (sec) : 4.23908e-04 Simplex iterations : 8 Barrier iterations : 0 Node count : -1 @@ -95,4 +95,4 @@ df_supply.x_supply = value.(df_supply.x_supply);

    and display the optimal solution for flows:

    DataFrames.select(
         filter!(row -> row.x_flow > 0.0, df_shipping),
         [:origin, :destination, :product, :x_flow],
    -)
    9×4 DataFrame
    Roworigindestinationproductx_flow
    StringStringStringFloat64
    1waikatoaucklandmilk10.0
    2waikatowellingtonmilk2.0
    3taurangaaucklandmilk2.0
    4taurangawaikatomilk2.0
    5christchurchaucklandmilk4.0
    6aucklandchristchurchkiwifruit4.0
    7waikatoaucklandkiwifruit20.0
    8waikatowellingtonkiwifruit2.0
    9taurangawaikatokiwifruit22.0
    +)
    9×4 DataFrame
    Roworigindestinationproductx_flow
    StringStringStringFloat64
    1waikatoaucklandmilk10.0
    2waikatowellingtonmilk2.0
    3taurangaaucklandmilk2.0
    4taurangawaikatomilk2.0
    5christchurchaucklandmilk4.0
    6aucklandchristchurchkiwifruit4.0
    7waikatoaucklandkiwifruit20.0
    8waikatowellingtonkiwifruit2.0
    9taurangawaikatokiwifruit22.0
    diff --git a/previews/PR3919/tutorials/linear/multi_objective_examples/index.html b/previews/PR3919/tutorials/linear/multi_objective_examples/index.html index 26ecbe04c31..766435cb5ac 100644 --- a/previews/PR3919/tutorials/linear/multi_objective_examples/index.html +++ b/previews/PR3919/tutorials/linear/multi_objective_examples/index.html @@ -29,7 +29,7 @@ Objective bound : [0.00000e+00,-9.00000e+00] * Work counters - Solve time (sec) : 1.23191e-03 + Solve time (sec) : 1.20187e-03
    for i in 1:result_count(model)
         @assert is_solved_and_feasible(model; result = i)
         print(i, ": z = ", round.(Int, objective_value(model; result = i)), " | ")
    @@ -62,7 +62,7 @@
       Objective bound    : [6.00000e+00,7.00000e+00]
     
     * Work counters
    -  Solve time (sec)   : 8.87084e-03
    +  Solve time (sec)   : 1.00601e-02
     
    for i in 1:result_count(model)
         @assert is_solved_and_feasible(model; result = i)
         print(i, ": z = ", round.(Int, objective_value(model; result = i)), " | ")
    @@ -115,7 +115,7 @@
       Objective bound    : [8.00000e+00,4.00000e+00]
     
     * Work counters
    -  Solve time (sec)   : 5.52011e-03
    +  Solve time (sec)   : 7.20191e-03
     
    for i in 1:result_count(model)
         @assert is_solved_and_feasible(model; result = i)
         print(i, ": z = ", round.(Int, objective_value(model; result = i)), " | ")
    @@ -129,4 +129,4 @@
     end
    1: z = [8, 9] | Path: 1->2 2->4 4->6
     2: z = [10, 7] | Path: 1->2 2->5 5->6
     3: z = [11, 5] | Path: 1->2 2->6
    -4: z = [13, 4] | Path: 1->3 3->4 4->6
    +4: z = [13, 4] | Path: 1->3 3->4 4->6 diff --git a/previews/PR3919/tutorials/linear/multi_objective_knapsack/a18412a8.svg b/previews/PR3919/tutorials/linear/multi_objective_knapsack/c3a0c8b3.svg similarity index 87% rename from previews/PR3919/tutorials/linear/multi_objective_knapsack/a18412a8.svg rename to previews/PR3919/tutorials/linear/multi_objective_knapsack/c3a0c8b3.svg index 86021a171f3..17127fbd6c8 100644 --- a/previews/PR3919/tutorials/linear/multi_objective_knapsack/a18412a8.svg +++ b/previews/PR3919/tutorials/linear/multi_objective_knapsack/c3a0c8b3.svg @@ -1,53 +1,53 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/multi_objective_knapsack/a7c8bc8f.svg b/previews/PR3919/tutorials/linear/multi_objective_knapsack/e4059e08.svg similarity index 83% rename from previews/PR3919/tutorials/linear/multi_objective_knapsack/a7c8bc8f.svg rename to previews/PR3919/tutorials/linear/multi_objective_knapsack/e4059e08.svg index 429e59955bd..c436f764e2f 100644 --- a/previews/PR3919/tutorials/linear/multi_objective_knapsack/a7c8bc8f.svg +++ b/previews/PR3919/tutorials/linear/multi_objective_knapsack/e4059e08.svg @@ -1,55 +1,55 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/multi_objective_knapsack/index.html b/previews/PR3919/tutorials/linear/multi_objective_knapsack/index.html index 460d5d36502..748d2823b85 100644 --- a/previews/PR3919/tutorials/linear/multi_objective_knapsack/index.html +++ b/previews/PR3919/tutorials/linear/multi_objective_knapsack/index.html @@ -25,7 +25,7 @@ xlabel = "Profit", ylabel = "Desire", legend = false, -)Example block output

    The goal of the bi-objective knapsack problem is to choose a subset which maximizes both objectives.

    JuMP formulation

    Our JuMP formulation is a direct translation of the mathematical formulation:

    model = Model()
    +)
    Example block output

    The goal of the bi-objective knapsack problem is to choose a subset which maximizes both objectives.

    JuMP formulation

    Our JuMP formulation is a direct translation of the mathematical formulation:

    model = Model()
     @variable(model, x[1:N], Bin)
     @constraint(model, sum(weight[i] * x[i] for i in 1:N) <= capacity)
     @expression(model, profit_expr, sum(profit[i] * x[i] for i in 1:N))
    @@ -50,7 +50,7 @@
       Objective bound    : [9.55000e+02,9.83000e+02]
     
     * Work counters
    -  Solve time (sec)   : 1.01753e-01
    +  Solve time (sec)   : 9.94561e-02
     

    There are 9 solutions available. We can also use result_count to see how many solutions are available:

    result_count(model)
    9

    Accessing multiple solutions

    Access the nine different solutions in the model using the result keyword to solution_summary, value, and objective_value:

    solution_summary(model; result = 5)
    * Solver : MOA[algorithm=MultiObjectiveAlgorithms.EpsilonConstraint, optimizer=HiGHS]
     
     * Status
    @@ -77,7 +77,7 @@
         Plots.annotate!(y[1] - 1, y[2], (i, 10))
     end
     ideal_point = objective_bound(model)
    -Plots.scatter!([ideal_point[1]], [ideal_point[2]]; label = "Ideal point")
    Example block output

    Visualizing the objective space lets the decision maker choose a solution that suits their personal preferences. For example, result #7 is close to the maximum value of profit, but offers significantly higher desirability compared with solutions #8 and #9.

    The set of items that are chosen in solution #7 are:

    items_chosen = [i for i in 1:N if value(x[i]; result = 7) > 0.9]
    11-element Vector{Int64}:
    +Plots.scatter!([ideal_point[1]], [ideal_point[2]]; label = "Ideal point")
    Example block output

    Visualizing the objective space lets the decision maker choose a solution that suits their personal preferences. For example, result #7 is close to the maximum value of profit, but offers significantly higher desirability compared with solutions #8 and #9.

    The set of items that are chosen in solution #7 are:

    items_chosen = [i for i in 1:N if value(x[i]; result = 7) > 0.9]
    11-element Vector{Int64}:
       1
       2
       3
    @@ -88,4 +88,4 @@
      11
      15
      16
    - 17

    Next steps

    MultiObjectiveAlgorithms.jl implements a number of different algorithms. Try solving the same problem using MOA.Dichotomy(). Does it find the same solution?

    + 17

    Next steps

    MultiObjectiveAlgorithms.jl implements a number of different algorithms. Try solving the same problem using MOA.Dichotomy(). Does it find the same solution?

    diff --git a/previews/PR3919/tutorials/linear/multiple_solutions/index.html b/previews/PR3919/tutorials/linear/multiple_solutions/index.html index f97d8c1af5d..ad684fea484 100644 --- a/previews/PR3919/tutorials/linear/multiple_solutions/index.html +++ b/previews/PR3919/tutorials/linear/multiple_solutions/index.html @@ -42,7 +42,7 @@ Dual objective value : 0.00000e+00 * Work counters - Solve time (sec) : 4.57840e-02 + Solve time (sec) : 4.55310e-02 Simplex iterations : 1587 Barrier iterations : 0 Node count : 255 @@ -69,7 +69,7 @@ Dual objective value : 0.00000e+00 * Work counters - Solve time (sec) : 3.76610e-01 + Solve time (sec) : 3.75063e-01 Simplex iterations : 19526 Barrier iterations : 0 Node count : 4661 @@ -203,4 +203,4 @@ 3 2 1 6 2 0 4 7 + 1 4 9 5 -= 6 7 5 8

    The result is the full list of feasible solutions. So the answer to "how many such squares are there?" turns out to be 20.

    += 6 7 5 8

    The result is the full list of feasible solutions. So the answer to "how many such squares are there?" turns out to be 20.

    diff --git a/previews/PR3919/tutorials/linear/n-queens/index.html b/previews/PR3919/tutorials/linear/n-queens/index.html index fe53e1c7945..2d28d8dab6f 100644 --- a/previews/PR3919/tutorials/linear/n-queens/index.html +++ b/previews/PR3919/tutorials/linear/n-queens/index.html @@ -23,4 +23,4 @@ 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 - 0 1 0 0 0 0 0 0 + 0 1 0 0 0 0 0 0 diff --git a/previews/PR3919/tutorials/linear/network_flows/index.html b/previews/PR3919/tutorials/linear/network_flows/index.html index a750a8efb07..d477adbc1db 100644 --- a/previews/PR3919/tutorials/linear/network_flows/index.html +++ b/previews/PR3919/tutorials/linear/network_flows/index.html @@ -91,4 +91,4 @@ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 - 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 + 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/7d4267dd.svg b/previews/PR3919/tutorials/linear/piecewise_linear/11bd4796.svg similarity index 81% rename from previews/PR3919/tutorials/linear/piecewise_linear/7d4267dd.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/11bd4796.svg index 1dbfc717afb..b83ff54b3da 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/7d4267dd.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/11bd4796.svg @@ -1,45 +1,45 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/dd6d9910.svg b/previews/PR3919/tutorials/linear/piecewise_linear/260828d3.svg similarity index 78% rename from previews/PR3919/tutorials/linear/piecewise_linear/dd6d9910.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/260828d3.svg index 152fe6e81d9..80fd79ba4a0 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/dd6d9910.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/260828d3.svg @@ -1,60 +1,60 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/bbf657b2.svg b/previews/PR3919/tutorials/linear/piecewise_linear/2a732aad.svg similarity index 85% rename from previews/PR3919/tutorials/linear/piecewise_linear/bbf657b2.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/2a732aad.svg index b6b620a6759..e6a85562cf4 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/bbf657b2.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/2a732aad.svg @@ -1,46 +1,46 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/10a04df6.svg b/previews/PR3919/tutorials/linear/piecewise_linear/407a968e.svg similarity index 82% rename from previews/PR3919/tutorials/linear/piecewise_linear/10a04df6.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/407a968e.svg index 836e4682fe8..914e7aed35b 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/10a04df6.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/407a968e.svg @@ -1,61 +1,61 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/95c3d798.svg b/previews/PR3919/tutorials/linear/piecewise_linear/4a9d65c9.svg similarity index 84% rename from previews/PR3919/tutorials/linear/piecewise_linear/95c3d798.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/4a9d65c9.svg index 64c8e8c4caa..e0175f854ce 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/95c3d798.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/4a9d65c9.svg @@ -1,65 +1,65 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/72172501.svg b/previews/PR3919/tutorials/linear/piecewise_linear/4f5d77be.svg similarity index 80% rename from previews/PR3919/tutorials/linear/piecewise_linear/72172501.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/4f5d77be.svg index 64d1d643e5d..962c6409c42 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/72172501.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/4f5d77be.svg @@ -1,63 +1,63 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/fee7ea10.svg b/previews/PR3919/tutorials/linear/piecewise_linear/56842870.svg similarity index 92% rename from previews/PR3919/tutorials/linear/piecewise_linear/fee7ea10.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/56842870.svg index 06394289181..44512a28b6a 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/fee7ea10.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/56842870.svg @@ -1,63 +1,63 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/c36de71a.svg b/previews/PR3919/tutorials/linear/piecewise_linear/ac563f8f.svg similarity index 85% rename from previews/PR3919/tutorials/linear/piecewise_linear/c36de71a.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/ac563f8f.svg index 8c48a04f56d..d5aa584fbc4 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/c36de71a.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/ac563f8f.svg @@ -1,44 +1,44 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/b79d4b90.svg b/previews/PR3919/tutorials/linear/piecewise_linear/bcef44e2.svg similarity index 82% rename from previews/PR3919/tutorials/linear/piecewise_linear/b79d4b90.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/bcef44e2.svg index d6e6e7b8ab7..26edddf53e9 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/b79d4b90.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/bcef44e2.svg @@ -1,48 +1,48 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/f0dda662.svg b/previews/PR3919/tutorials/linear/piecewise_linear/df9c2979.svg similarity index 86% rename from previews/PR3919/tutorials/linear/piecewise_linear/f0dda662.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/df9c2979.svg index 39cbf83c10a..2e8307f40fa 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/f0dda662.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/df9c2979.svg @@ -1,43 +1,43 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/aa313eaa.svg b/previews/PR3919/tutorials/linear/piecewise_linear/e2b40c90.svg similarity index 94% rename from previews/PR3919/tutorials/linear/piecewise_linear/aa313eaa.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/e2b40c90.svg index 6788a67d4d8..25a5f09ae40 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/aa313eaa.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/e2b40c90.svg @@ -1,48 +1,48 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/a96ab105.svg b/previews/PR3919/tutorials/linear/piecewise_linear/ed494786.svg similarity index 86% rename from previews/PR3919/tutorials/linear/piecewise_linear/a96ab105.svg rename to previews/PR3919/tutorials/linear/piecewise_linear/ed494786.svg index be662e0bb86..13e68ac6867 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/a96ab105.svg +++ b/previews/PR3919/tutorials/linear/piecewise_linear/ed494786.svg @@ -1,50 +1,50 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/linear/piecewise_linear/index.html b/previews/PR3919/tutorials/linear/piecewise_linear/index.html index 50baec9432a..5917548ab5e 100644 --- a/previews/PR3919/tutorials/linear/piecewise_linear/index.html +++ b/previews/PR3919/tutorials/linear/piecewise_linear/index.html @@ -7,11 +7,11 @@ import HiGHS import Plots

    Minimizing a convex function (outer approximation)

    If the function you are approximating is convex, and you want to minimize "down" onto it, then you can use an outer approximation.

    For example, $f(x) = x^2$ is a convex function:

    f(x) = x^2
     ∇f(x) = 2 * x
    -plot = Plots.plot(f, -2:0.01:2; ylims = (-0.5, 4), label = false, width = 3)
    Example block output

    Because $f$ is convex, we know that for any $x_k$, we have: $f(x) \ge f(x_k) + \nabla f(x_k) \cdot (x - x_k)$

    for x_k in -2:1:2  ## Tip: try changing the number of points x_k
    +plot = Plots.plot(f, -2:0.01:2; ylims = (-0.5, 4), label = false, width = 3)
    Example block output

    Because $f$ is convex, we know that for any $x_k$, we have: $f(x) \ge f(x_k) + \nabla f(x_k) \cdot (x - x_k)$

    for x_k in -2:1:2  ## Tip: try changing the number of points x_k
         g = x -> f(x_k) + ∇f(x_k) * (x - x_k)
         Plots.plot!(plot, g, -2:0.01:2; color = :red, label = false, width = 3)
     end
    -plot
    Example block output

    We can use these tangent planes as constraints in our model to create an outer approximation of the function. As we add more planes, the error between the true function and the piecewise linear outer approximation decreases.

    Here is the model in JuMP:

    function outer_approximate_x_squared(x̄)
    +plot
    Example block output

    We can use these tangent planes as constraints in our model to create an outer approximation of the function. As we add more planes, the error between the true function and the piecewise linear outer approximation decreases.

    Here is the model in JuMP:

    function outer_approximate_x_squared(x̄)
         f(x) = x^2
         ∇f(x) = 2x
         model = Model(HiGHS.Optimizer)
    @@ -29,7 +29,7 @@
         ȳ = outer_approximate_x_squared(x̄)
         Plots.scatter!(plot, [x̄], [ȳ]; label = false, color = :black)
     end
    -plot
    Example block output
    Note

    This formulation does not work if we want to maximize y.

    Maximizing a concave function (outer approximation)

    The outer approximation also works if we want to maximize "up" into a concave function.

    f(x) = log(x)
    +plot
    Example block output
    Note

    This formulation does not work if we want to maximize y.

    Maximizing a concave function (outer approximation)

    The outer approximation also works if we want to maximize "up" into a concave function.

    f(x) = log(x)
     ∇f(x) = 1 / x
     X = 0.1:0.1:1.6
     plot = Plots.plot(
    @@ -44,7 +44,7 @@
         g = x -> f(x_k) + ∇f(x_k) * (x - x_k)
         Plots.plot!(plot, g, X; color = :red, label = false, width = 3)
     end
    -plot
    Example block output

    Here is the model in JuMP:

    function outer_approximate_log(x̄)
    +plot
    Example block output

    Here is the model in JuMP:

    function outer_approximate_log(x̄)
         f(x) = log(x)
         ∇f(x) = 1 / x
         model = Model(HiGHS.Optimizer)
    @@ -62,18 +62,18 @@
         ȳ = outer_approximate_log(x̄)
         Plots.scatter!(plot, [x̄], [ȳ]; label = false, color = :black)
     end
    -plot
    Example block output
    Note

    This formulation does not work if we want to minimize y.

    Minimizing a convex function (inner approximation)

    Instead of creating an outer approximation, we can also create an inner approximation. For example, given $f(x) = x^2$, we may want to approximate the true function by the red piecewise linear function:

    f(x) = x^2
    +plot
    Example block output
    Note

    This formulation does not work if we want to minimize y.

    Minimizing a convex function (inner approximation)

    Instead of creating an outer approximation, we can also create an inner approximation. For example, given $f(x) = x^2$, we may want to approximate the true function by the red piecewise linear function:

    f(x) = x^2
     x̂ = -2:0.8:2  ## Tip: try changing the number of points in x̂
     plot = Plots.plot(f, -2:0.01:2; ylims = (-0.5, 4), label = false, linewidth = 3)
     Plots.plot!(plot, f, x̂; label = false, color = :red, linewidth = 3)
    -plot
    Example block output

    To do so, we represent the decision variables $(x, y)$ by the convex combination of a set of discrete points $\{x_k, y_k\}_{k=1}^K$:

    \[\begin{aligned} +plotExample block output

    To do so, we represent the decision variables $(x, y)$ by the convex combination of a set of discrete points $\{x_k, y_k\}_{k=1}^K$:

    \[\begin{aligned} x = \sum\limits_{k=1}^K \lambda_k x_k \\ y = \sum\limits_{k=1}^K \lambda_k y_k \\ \sum\limits_{k=1}^K \lambda_k = 1 \\ \lambda_k \ge 0, k=1,\ldots,k \\ \end{aligned}\]

    The feasible region of the convex combination actually allows any $(x, y)$ point inside this shaded region:

    I = [1, 2, 3, 4, 5, 6, 1]
     Plots.plot!(x̂[I], f.(x̂[I]); fill = (0, 0, "#f004"), width = 0, label = false)
    -plot
    Example block output

    Thus, this formulation does not work if we want to maximize $y$.

    Here is the model in JuMP:

    function inner_approximate_x_squared(x̄)
    +plot
    Example block output

    Thus, this formulation does not work if we want to maximize $y$.

    Here is the model in JuMP:

    function inner_approximate_x_squared(x̄)
         f(x) = x^2
         ∇f(x) = 2x
         x̂ = -2:0.8:2  ## Tip: try changing the number of points in x̂
    @@ -96,13 +96,13 @@
         ȳ = inner_approximate_x_squared(x̄)
         Plots.scatter!(plot, [x̄], [ȳ]; label = false, color = :black)
     end
    -plot
    Example block output

    Maximizing a convex function (inner approximation)

    The inner approximation also works if we want to maximize "up" into a concave function.

    f(x) = log(x)
    +plot
    Example block output

    Maximizing a convex function (inner approximation)

    The inner approximation also works if we want to maximize "up" into a concave function.

    f(x) = log(x)
     x̂ = 0.1:0.5:1.6  ## Tip: try changing the number of points in x̂
     plot = Plots.plot(f, 0.1:0.01:1.6; label = false, linewidth = 3)
     Plots.plot!(x̂, f.(x̂); linewidth = 3, color = :red, label = false)
     I = [1, 2, 3, 4, 1]
     Plots.plot!(x̂[I], f.(x̂[I]); fill = (0, 0, "#f004"), width = 0, label = false)
    -plot
    Example block output

    Here is the model in JuMP:

    function inner_approximate_log(x̄)
    +plot
    Example block output

    Here is the model in JuMP:

    function inner_approximate_log(x̄)
         f(x) = log(x)
         x̂ = 0.1:0.5:1.6  ## Tip: try changing the number of points in x̂
         ŷ = f.(x̂)
    @@ -124,13 +124,13 @@
         ȳ = inner_approximate_log(x̄)
         Plots.scatter!(plot, [x̄], [ȳ]; label = false, color = :black)
     end
    -plot
    Example block output

    Piecewise linear approximation

    If the model is non-convex (or non-concave), then we cannot use an outer approximation, and the inner approximation allows a solution far from the true function. For example, for $f(x) = sin(x)$, we have:

    f(x) = sin(x)
    +plot
    Example block output

    Piecewise linear approximation

    If the model is non-convex (or non-concave), then we cannot use an outer approximation, and the inner approximation allows a solution far from the true function. For example, for $f(x) = sin(x)$, we have:

    f(x) = sin(x)
     plot = Plots.plot(f, 0:0.01:2π; label = false)
     x̂ = range(; start = 0, stop = 2π, length = 7)
     Plots.plot!(x̂, f.(x̂); linewidth = 3, color = :red, label = false)
     I = [1, 5, 6, 7, 3, 2, 1]
     Plots.plot!(x̂[I], f.(x̂[I]); fill = (0, 0, "#f004"), width = 0, label = false)
    -plot
    Example block output

    We can force the inner approximation to stay on the red line by adding the constraint λ in SOS2(). The SOS2 set is a Special Ordered Set of Type 2, and it ensures that at most two elements of λ can be non-zero, and if they are, that they must be adjacent. This prevents the model from taking a convex combination of points 1 and 5 to end up on the lower boundary of the shaded red area.

    Here is the model in JuMP:

    function piecewise_linear_sin(x̄)
    +plot
    Example block output

    We can force the inner approximation to stay on the red line by adding the constraint λ in SOS2(). The SOS2 set is a Special Ordered Set of Type 2, and it ensures that at most two elements of λ can be non-zero, and if they are, that they must be adjacent. This prevents the model from taking a convex combination of points 1 and 5 to end up on the lower boundary of the shaded red area.

    Here is the model in JuMP:

    function piecewise_linear_sin(x̄)
         f(x) = sin(x)
         # Tip: try changing the number of points in x̂
         x̂ = range(; start = 0, stop = 2π, length = 7)
    @@ -155,4 +155,4 @@
         ȳ = piecewise_linear_sin(x̄)
         Plots.scatter!(plot, [x̄], [ȳ]; label = false, color = :black)
     end
    -plot
    Example block output +plotExample block output diff --git a/previews/PR3919/tutorials/linear/sudoku/index.html b/previews/PR3919/tutorials/linear/sudoku/index.html index de97b7de054..f907dc06fff 100644 --- a/previews/PR3919/tutorials/linear/sudoku/index.html +++ b/previews/PR3919/tutorials/linear/sudoku/index.html @@ -93,4 +93,4 @@ 7 1 3 9 2 4 8 5 6 9 6 1 5 3 7 2 8 4 2 8 7 4 1 9 6 3 5 - 3 4 5 2 8 6 1 7 9

    Which is the same as we found before:

    sol == csp_sol
    true
    + 3 4 5 2 8 6 1 7 9

    Which is the same as we found before:

    sol == csp_sol
    true
    diff --git a/previews/PR3919/tutorials/linear/tips_and_tricks/index.html b/previews/PR3919/tutorials/linear/tips_and_tricks/index.html index e9a2cbfe1b5..391f4dd9db7 100644 --- a/previews/PR3919/tutorials/linear/tips_and_tricks/index.html +++ b/previews/PR3919/tutorials/linear/tips_and_tricks/index.html @@ -70,4 +70,4 @@ y == sum(ŷ[i] * λ[i] for i in 1:N) sum(λ) == 1 λ in SOS2() - end)(x + λ[1] + 0.5 λ[2] - 0.5 λ[4] - λ[5] - 1.5 λ[6] - 2 λ[7] = 0, y - λ[1] - 0.25 λ[2] - 0.25 λ[4] - λ[5] - 2.25 λ[6] - 4 λ[7] = 0, λ[1] + λ[2] + λ[3] + λ[4] + λ[5] + λ[6] + λ[7] = 1, [λ[1], λ[2], λ[3], λ[4], λ[5], λ[6], λ[7]] ∈ MathOptInterface.SOS2{Float64}([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])) + end)(x + λ[1] + 0.5 λ[2] - 0.5 λ[4] - λ[5] - 1.5 λ[6] - 2 λ[7] = 0, y - λ[1] - 0.25 λ[2] - 0.25 λ[4] - λ[5] - 2.25 λ[6] - 4 λ[7] = 0, λ[1] + λ[2] + λ[3] + λ[4] + λ[5] + λ[6] + λ[7] = 1, [λ[1], λ[2], λ[3], λ[4], λ[5], λ[6], λ[7]] ∈ MathOptInterface.SOS2{Float64}([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0])) diff --git a/previews/PR3919/tutorials/linear/transp/index.html b/previews/PR3919/tutorials/linear/transp/index.html index 23fd74f5c89..b9795592840 100644 --- a/previews/PR3919/tutorials/linear/transp/index.html +++ b/previews/PR3919/tutorials/linear/transp/index.html @@ -74,4 +74,4 @@ end
    solve_transportation_problem (generic function with 1 method)

    Solution

    Let's solve and view the solution:

    solve_transportation_problem(data)
            FRA    DET    LAN    WIN    STL    FRE    LAF
     GARY      .      .      .      .  300.0 1100.0      .
     CLEV      .      .  600.0      . 1000.0      . 1000.0
    -PITT  900.0 1200.0      .  400.0  400.0      .      .
    +PITT 900.0 1200.0 . 400.0 400.0 . . diff --git a/previews/PR3919/tutorials/nonlinear/classifiers/a0b92c67.svg b/previews/PR3919/tutorials/nonlinear/classifiers/077eef88.svg similarity index 62% rename from previews/PR3919/tutorials/nonlinear/classifiers/a0b92c67.svg rename to previews/PR3919/tutorials/nonlinear/classifiers/077eef88.svg index 444fcf76fba..d28cd20b35d 100644 --- a/previews/PR3919/tutorials/nonlinear/classifiers/a0b92c67.svg +++ b/previews/PR3919/tutorials/nonlinear/classifiers/077eef88.svg @@ -1,544 +1,544 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/classifiers/523efa10.svg b/previews/PR3919/tutorials/nonlinear/classifiers/0ed84c5b.svg similarity index 61% rename from previews/PR3919/tutorials/nonlinear/classifiers/523efa10.svg rename to previews/PR3919/tutorials/nonlinear/classifiers/0ed84c5b.svg index cd0bf1ba762..23278a24b54 100644 --- a/previews/PR3919/tutorials/nonlinear/classifiers/523efa10.svg +++ b/previews/PR3919/tutorials/nonlinear/classifiers/0ed84c5b.svg @@ -1,1042 +1,1042 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/classifiers/688d763b.svg b/previews/PR3919/tutorials/nonlinear/classifiers/18edbffb.svg similarity index 62% rename from previews/PR3919/tutorials/nonlinear/classifiers/688d763b.svg rename to previews/PR3919/tutorials/nonlinear/classifiers/18edbffb.svg index 84756d1bbc2..b150cbef02b 100644 --- a/previews/PR3919/tutorials/nonlinear/classifiers/688d763b.svg +++ b/previews/PR3919/tutorials/nonlinear/classifiers/18edbffb.svg @@ -1,550 +1,550 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/classifiers/6b4d2240.svg b/previews/PR3919/tutorials/nonlinear/classifiers/461bb993.svg similarity index 62% rename from previews/PR3919/tutorials/nonlinear/classifiers/6b4d2240.svg rename to previews/PR3919/tutorials/nonlinear/classifiers/461bb993.svg index 1aa159df980..f8f39494f65 100644 --- a/previews/PR3919/tutorials/nonlinear/classifiers/6b4d2240.svg +++ b/previews/PR3919/tutorials/nonlinear/classifiers/461bb993.svg @@ -1,543 +1,543 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/classifiers/1ab115ff.svg b/previews/PR3919/tutorials/nonlinear/classifiers/51af17bd.svg similarity index 73% rename from previews/PR3919/tutorials/nonlinear/classifiers/1ab115ff.svg rename to previews/PR3919/tutorials/nonlinear/classifiers/51af17bd.svg index 15d8660832b..54becfb88d4 100644 --- a/previews/PR3919/tutorials/nonlinear/classifiers/1ab115ff.svg +++ b/previews/PR3919/tutorials/nonlinear/classifiers/51af17bd.svg @@ -1,142 +1,142 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/classifiers/2bd719f5.svg b/previews/PR3919/tutorials/nonlinear/classifiers/5b994629.svg similarity index 62% rename from previews/PR3919/tutorials/nonlinear/classifiers/2bd719f5.svg rename to previews/PR3919/tutorials/nonlinear/classifiers/5b994629.svg index ad41bec274b..b420701c00d 100644 --- a/previews/PR3919/tutorials/nonlinear/classifiers/2bd719f5.svg +++ b/previews/PR3919/tutorials/nonlinear/classifiers/5b994629.svg @@ -1,543 +1,543 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/classifiers/686ef6a1.svg b/previews/PR3919/tutorials/nonlinear/classifiers/7ad3e03a.svg similarity index 73% rename from previews/PR3919/tutorials/nonlinear/classifiers/686ef6a1.svg rename to previews/PR3919/tutorials/nonlinear/classifiers/7ad3e03a.svg index 29a117710a9..49c6d343b72 100644 --- a/previews/PR3919/tutorials/nonlinear/classifiers/686ef6a1.svg +++ b/previews/PR3919/tutorials/nonlinear/classifiers/7ad3e03a.svg @@ -1,143 +1,143 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/classifiers/436ca34d.svg b/previews/PR3919/tutorials/nonlinear/classifiers/ae452008.svg similarity index 69% rename from previews/PR3919/tutorials/nonlinear/classifiers/436ca34d.svg rename to previews/PR3919/tutorials/nonlinear/classifiers/ae452008.svg index a2f192da140..3b25fbd6e49 100644 --- a/previews/PR3919/tutorials/nonlinear/classifiers/436ca34d.svg +++ b/previews/PR3919/tutorials/nonlinear/classifiers/ae452008.svg @@ -1,20913 +1,20913 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/classifiers/4f5d3b38.svg b/previews/PR3919/tutorials/nonlinear/classifiers/c2255665.svg similarity index 63% rename from previews/PR3919/tutorials/nonlinear/classifiers/4f5d3b38.svg rename to previews/PR3919/tutorials/nonlinear/classifiers/c2255665.svg index 69d4a875074..0072e52a4b6 100644 --- a/previews/PR3919/tutorials/nonlinear/classifiers/4f5d3b38.svg +++ b/previews/PR3919/tutorials/nonlinear/classifiers/c2255665.svg @@ -1,551 +1,551 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/classifiers/index.html b/previews/PR3919/tutorials/nonlinear/classifiers/index.html index e970093410c..a0b258dc2ec 100644 --- a/previews/PR3919/tutorials/nonlinear/classifiers/index.html +++ b/previews/PR3919/tutorials/nonlinear/classifiers/index.html @@ -20,9 +20,9 @@ color = :white, size = (600, 600), legend = false, -)Example block output

    We want to split the points into two distinct sets on either side of a dividing line. We'll then label each point depending on which side of the line it happens to fall. Based on the labels of the point, we'll show how to create a classifier using a JuMP model. We can then test how well our classifier reproduces the original labels and the boundary between them.

    Let's make a line to divide the points into two sets by defining a gradient and a constant:

    w_0, g_0 = [5, 3], 8
    +)
    Example block output

    We want to split the points into two distinct sets on either side of a dividing line. We'll then label each point depending on which side of the line it happens to fall. Based on the labels of the point, we'll show how to create a classifier using a JuMP model. We can then test how well our classifier reproduces the original labels and the boundary between them.

    Let's make a line to divide the points into two sets by defining a gradient and a constant:

    w_0, g_0 = [5, 3], 8
     line(v::AbstractArray; w = w_0, g = g_0) = w' * v - g
    -line(x::Real; w = w_0, g = g_0) = -(w[1] * x - g) / w[2];

    Julia's multiple dispatch feature allows us to define the vector and single-variable form of the line function under the same name.

    Let's add this to the plot:

    Plots.plot!(plot, line; linewidth = 5)
    Example block output

    Now we label the points relative to which side of the line they are. It is numerically useful to have the labels +1 and -1 for the upcoming JuMP formulation.

    labels = ifelse.(line.(eachrow(P)) .>= 0, 1, -1)
    +line(x::Real; w = w_0, g = g_0) = -(w[1] * x - g) / w[2];

    Julia's multiple dispatch feature allows us to define the vector and single-variable form of the line function under the same name.

    Let's add this to the plot:

    Plots.plot!(plot, line; linewidth = 5)
    Example block output

    Now we label the points relative to which side of the line they are. It is numerically useful to have the labels +1 and -1 for the upcoming JuMP formulation.

    labels = ifelse.(line.(eachrow(P)) .>= 0, 1, -1)
     Plots.scatter!(
         plot,
         P[:, 1],
    @@ -30,7 +30,7 @@
         shape = ifelse.(labels .== 1, :cross, :xcross),
         markercolor = ifelse.(labels .== 1, :blue, :crimson),
         markersize = 8,
    -)
    Example block output

    Our goal is to show we can reconstruct the line from just the points and the labels.

    Formulation: linear support vector machine

    A classifier known as the linear support vector machine (SVM) looks for the affine function $L(p) = w^\top p - g$ that satisfies $L(p) < 0$ for all points $p$ with a label -1 and $L(p) \ge 0$ for all points $p$ with a label +1.

    The linearly constrained quadratic program that implements this is:

    \[\begin{aligned} +)Example block output

    Our goal is to show we can reconstruct the line from just the points and the labels.

    Formulation: linear support vector machine

    A classifier known as the linear support vector machine (SVM) looks for the affine function $L(p) = w^\top p - g$ that satisfies $L(p) < 0$ for all points $p$ with a label -1 and $L(p) \ge 0$ for all points $p$ with a label +1.

    The linearly constrained quadratic program that implements this is:

    \[\begin{aligned} \min_{w \in \mathbb{R}^n, \; g \in \mathbb{R}, \; y \in \mathbb{R}^m} \quad & \frac{1}{2} w^\top w + C \; \sum_{i=1}^m y_i \\ \text{subject to } \quad & D \cdot (P w - g) + y \geq \mathbf{1} \\ & y \ge 0. @@ -59,7 +59,7 @@ │ ├ AffExpr in MOI.GreaterThan{Float64}: 100 │ └ VariableRef in MOI.GreaterThan{Float64}: 100 └ Names registered in the model - └ :g, :w, :y, Main.classifier)

    With the solution, we can ask: was the value of the penalty constant "sufficiently large" for this data set? This can be judged in part by the range of the slack variables. If the slack is too large, then we need to increase the penalty constant.

    Let's plot the solution and check how we did:

    Plots.plot!(plot, classifier; linewidth = 5, linestyle = :dashdotdot)
    Example block output

    We find that we have recovered the dividing line from just the information of the points and their labels.

    Nonseparable classes of points

    Now, what if the point sets are not cleanly separable by a line (or a hyperplane in higher dimensions)? Does this still work? Let's repeat the process, but this time we will simulate nonseparable classes of points by intermingling a few nearby points across the previously used line.

    nearby_indices = abs.(line.(eachrow(P))) .< 1.1
    +  └ :g, :w, :y, Main.classifier)

    With the solution, we can ask: was the value of the penalty constant "sufficiently large" for this data set? This can be judged in part by the range of the slack variables. If the slack is too large, then we need to increase the penalty constant.

    Let's plot the solution and check how we did:

    Plots.plot!(plot, classifier; linewidth = 5, linestyle = :dashdotdot)
    Example block output

    We find that we have recovered the dividing line from just the information of the points and their labels.

    Nonseparable classes of points

    Now, what if the point sets are not cleanly separable by a line (or a hyperplane in higher dimensions)? Does this still work? Let's repeat the process, but this time we will simulate nonseparable classes of points by intermingling a few nearby points across the previously used line.

    nearby_indices = abs.(line.(eachrow(P))) .< 1.1
     labels_new = ifelse.(nearby_indices, -labels, labels)
     model, classifier = solve_SVM_classifier(P, labels_new)
     plot = Plots.scatter(
    @@ -79,7 +79,7 @@
         markercolor = ifelse.(labels_new .== 1, :blue, :crimson),
         markersize = 8,
     )
    -Plots.plot!(plot, classifier; linewidth = 5, linestyle = :dashdotdot)
    Example block output

    So our JuMP formulation still produces a classifier, but it mis-classifies some of the nonseparable points.

    We can find out which points are contributing to the shape of the line by looking at the dual values of the affine constraints and comparing them to the penalty constant $C$:

    affine_cons = all_constraints(model, AffExpr, MOI.GreaterThan{Float64})
    +Plots.plot!(plot, classifier; linewidth = 5, linestyle = :dashdotdot)
    Example block output

    So our JuMP formulation still produces a classifier, but it mis-classifies some of the nonseparable points.

    We can find out which points are contributing to the shape of the line by looking at the dual values of the affine constraints and comparing them to the penalty constant $C$:

    affine_cons = all_constraints(model, AffExpr, MOI.GreaterThan{Float64})
     active_cons = findall(isapprox.(dual.(affine_cons), C_0; atol = 0.001))
     findall(nearby_indices) ⊆ active_cons
    true

    The last statement tells us that our nonseparable points are actively contributing to how the classifier is defined. The remaining points are of interest and are highlighted:

    P_active = P[setdiff(active_cons, findall(nearby_indices)), :]
     Plots.scatter!(
    @@ -89,7 +89,7 @@
         shape = :hexagon,
         markersize = 8,
         markeropacity = 0.5,
    -)
    Example block output

    Advanced: duality and the kernel method

    We now consider an alternative formulation for a linear SVM by solving the dual problem.

    The dual program

    The dual of the linear SVM program is also a linearly constrained quadratic program:

    \[\begin{aligned} +)Example block output

    Advanced: duality and the kernel method

    We now consider an alternative formulation for a linear SVM by solving the dual problem.

    The dual program

    The dual of the linear SVM program is also a linearly constrained quadratic program:

    \[\begin{aligned} \min_{u \in \mathbb{R}^m} \quad & \frac{1}{2} u^\top D P P^\top D u - \; \mathbf{1}^\top u \\ \text{subject to } \quad & \mathbf{1}^\top D u = 0 \\ & 0 \leq u \leq C\mathbf{1}. @@ -108,7 +108,7 @@ classifier(x) = line(x; w = w, g = g) return classifier end

    solve_dual_SVM_classifier (generic function with 1 method)

    We recover the line gradient vector $w$ through setting $w = P^\top D u$, and the line constant $g$ as the dual value of the single affine constraint.

    The dual problem has fewer variables and fewer constraints, so in many cases it may be simpler to solve the dual form.

    We can check that the dual form has recovered a classifier:

    classifier = solve_dual_SVM_classifier(P, labels)
    -Plots.plot!(plot, classifier; linewidth = 5, linestyle = :dash)
    Example block output

    The kernel method

    Linear SVM techniques are not limited to finding separating hyperplanes in the original space of the dataset. One could first transform the training data under a nonlinear mapping, apply our method, then map the hyperplane back into original space.

    The actual data describing the point set is held in a matrix $P$, but looking at the dual program we see that what actually matters is the Gram matrix $P P^\top$, expressing a pairwise comparison (an inner-product) between each point vector. It follows that any mapping of the point set only needs to be defined at the level of pairwise maps between points. Such maps are known as kernel functions:

    \[k \; : \; \mathbb{R}^n \times \mathbb{R}^n \; \rightarrow \mathbb{R}, \qquad +Plots.plot!(plot, classifier; linewidth = 5, linestyle = :dash)Example block output

    The kernel method

    Linear SVM techniques are not limited to finding separating hyperplanes in the original space of the dataset. One could first transform the training data under a nonlinear mapping, apply our method, then map the hyperplane back into original space.

    The actual data describing the point set is held in a matrix $P$, but looking at the dual program we see that what actually matters is the Gram matrix $P P^\top$, expressing a pairwise comparison (an inner-product) between each point vector. It follows that any mapping of the point set only needs to be defined at the level of pairwise maps between points. Such maps are known as kernel functions:

    \[k \; : \; \mathbb{R}^n \times \mathbb{R}^n \; \rightarrow \mathbb{R}, \qquad (s, t) \mapsto \left< \Phi(s), \Phi(t) \right>\]

    where the right-hand side applies some transformation $\Phi : \mathbb{R}^n \rightarrow \mathbb{R}^{n'}$ followed by an inner-product in that image space.

    In practice, we can avoid having $\Phi$ explicitly given but instead define a kernel function directly between pairs of vectors. This change to using a kernel function without knowing the map is called the kernel method (or sometimes, the kernel trick).

    Classifier using a Gaussian kernel

    We will demonstrate the application of a Gaussian or radial basis function kernel:

    \[k(s, t) = \exp\left( -\mu \lVert s - t \rVert^2_2 \right)\]

    for some positive parameter $\mu$.

    k_gauss(s::Vector, t::Vector; μ = 0.5) = exp(-μ * LinearAlgebra.norm(s - t)^2)
    k_gauss (generic function with 1 method)

    Given a matrix of points expressed row-wise and a kernel, the next function returns the transformed matrix $K$ that replaces $P P^\top$:

    function pairwise_transform(kernel::Function, P::Matrix{T}) where {T}
         m, n = size(P)
         K = zeros(T, m, m)
    @@ -151,7 +151,7 @@
         markersize = ifelse.(labels .== 1, 4, 2),
         size = (600, 600),
         legend = false,
    -)
    Example block output

    Is the technique capable of generating a distinctly nonlinear surface? Let's solve the Gaussian kernel based quadratic problem with these parameters:

    classifier = solve_kernel_SVM_classifier(k_gauss, B, labels; C = 1e5, μ = 10.0)
    +)
    Example block output

    Is the technique capable of generating a distinctly nonlinear surface? Let's solve the Gaussian kernel based quadratic problem with these parameters:

    classifier = solve_kernel_SVM_classifier(k_gauss, B, labels; C = 1e5, μ = 10.0)
     grid = [[x, y] for x in 0:0.01:2, y in 0:0.01:2]
     grid_pos = [Tuple(g) for g in grid if classifier(g) >= 0]
    -Plots.scatter!(plot, grid_pos; markersize = 0.2)
    Example block output

    We find that the kernel method can perform well as a nonlinear classifier.

    The result has a fairly strong dependence on the choice of parameters, with larger values of $\mu$ allowing for a more complex boundary while smaller values lead to a smoother boundary for the classifier. Determining a better performing kernel function and choice of parameters is covered by the process of cross-validation with respect to the dataset, where different testing, training and tuning sets are used to validate the best choice of parameters against a statistical measure of error.

    +Plots.scatter!(plot, grid_pos; markersize = 0.2)Example block output

    We find that the kernel method can perform well as a nonlinear classifier.

    The result has a fairly strong dependence on the choice of parameters, with larger values of $\mu$ allowing for a more complex boundary while smaller values lead to a smoother boundary for the classifier. Determining a better performing kernel function and choice of parameters is covered by the process of cross-validation with respect to the dataset, where different testing, training and tuning sets are used to validate the best choice of parameters against a statistical measure of error.

    diff --git a/previews/PR3919/tutorials/nonlinear/complementarity/index.html b/previews/PR3919/tutorials/nonlinear/complementarity/index.html index a4ab9e3ef62..f8c57eb5d0e 100644 --- a/previews/PR3919/tutorials/nonlinear/complementarity/index.html +++ b/previews/PR3919/tutorials/nonlinear/complementarity/index.html @@ -131,7 +131,7 @@ Objective value : 0.00000e+00 * Work counters - Solve time (sec) : 1.49000e-04 + Solve time (sec) : 1.43000e-04

    An equilibrium solution is to build 389 MW:

    value(x)
    389.31506849315065

    The production in each scenario is:

    value.(Q)
    5-element Vector{Float64}:
      240.0000000000001
      289.9999999999999
    @@ -142,4 +142,4 @@
       60.0
       59.99999999999994
       60.68493150684928
    - 110.68493150684935
    + 110.68493150684935 diff --git a/previews/PR3919/tutorials/nonlinear/introduction/index.html b/previews/PR3919/tutorials/nonlinear/introduction/index.html index 9565d43b2d5..c4568fbefce 100644 --- a/previews/PR3919/tutorials/nonlinear/introduction/index.html +++ b/previews/PR3919/tutorials/nonlinear/introduction/index.html @@ -7,4 +7,4 @@ \min_{x \in \mathbb{R}^n} & f_0(x) \\ \;\;\text{s.t.} & l_j \le f_j(x) \le u_j & j = 1 \ldots m \\ & l_i \le x_i \le u_i & i = 1 \ldots n. -\end{align}\]

    Mixed-integer nonlinear linear programs (MINLPs) are extensions of nonlinear programs in which some (or all) of the decision variables take discrete values.

    How to choose a solver

    JuMP supports a range of nonlinear solvers; look for "NLP" in the list of Supported solvers. However, very few solvers support mixed-integer nonlinear linear programs. Solvers supporting discrete variables start with "(MI)" in the list of Supported solvers.

    If the only nonlinearities in your model are quadratic terms (that is, multiplication between two decision variables), you can also use second-order cone solvers, which are indicated by "SOCP." In most cases, these solvers are restricted to convex quadratic problems and will error if you pass a nonconvex quadratic function; however, Gurobi has the ability to solve nonconvex quadratic terms.

    How these tutorials are structured

    Having a high-level overview of how this part of the documentation is structured will help you know where to look for certain things.

    +\end{align}\]

    Mixed-integer nonlinear linear programs (MINLPs) are extensions of nonlinear programs in which some (or all) of the decision variables take discrete values.

    How to choose a solver

    JuMP supports a range of nonlinear solvers; look for "NLP" in the list of Supported solvers. However, very few solvers support mixed-integer nonlinear linear programs. Solvers supporting discrete variables start with "(MI)" in the list of Supported solvers.

    If the only nonlinearities in your model are quadratic terms (that is, multiplication between two decision variables), you can also use second-order cone solvers, which are indicated by "SOCP." In most cases, these solvers are restricted to convex quadratic problems and will error if you pass a nonconvex quadratic function; however, Gurobi has the ability to solve nonconvex quadratic terms.

    How these tutorials are structured

    Having a high-level overview of how this part of the documentation is structured will help you know where to look for certain things.

    diff --git a/previews/PR3919/tutorials/nonlinear/nested_problems/index.html b/previews/PR3919/tutorials/nonlinear/nested_problems/index.html index 485565469a6..ca156bcaae7 100644 --- a/previews/PR3919/tutorials/nonlinear/nested_problems/index.html +++ b/previews/PR3919/tutorials/nonlinear/nested_problems/index.html @@ -64,7 +64,7 @@ Dual objective value : 0.00000e+00 * Work counters - Solve time (sec) : 4.87616e-01 + Solve time (sec) : 4.98686e-01 Barrier iterations : 32

    The optimal objective value is:

    objective_value(model)
    -418983.48680640775

    and the optimal upper-level decision variables $x$ are:

    value.(x)
    2-element Vector{Float64}:
      154.97862337234338
    @@ -127,8 +127,8 @@
       Dual objective value : 0.00000e+00
     
     * Work counters
    -  Solve time (sec)   : 1.90243e-01
    +  Solve time (sec)   : 1.93651e-01
       Barrier iterations : 32
     

    an we can check we get the same objective value:

    objective_value(model)
    -418983.48680640775

    and upper-level decision variable $x$:

    value.(x)
    2-element Vector{Float64}:
      154.97862337234338
    - 180.0096143098799
    + 180.0096143098799 diff --git a/previews/PR3919/tutorials/nonlinear/operator_ad/index.html b/previews/PR3919/tutorials/nonlinear/operator_ad/index.html index f680fc55ca4..4db1c5fe77e 100644 --- a/previews/PR3919/tutorials/nonlinear/operator_ad/index.html +++ b/previews/PR3919/tutorials/nonlinear/operator_ad/index.html @@ -205,4 +205,4 @@ di_rosenbrock(; backend = DifferentiationInterface.AutoForwardDiff())
    2-element Vector{Float64}:
      0.9999999999999899
    - 0.9999999999999792
    + 0.9999999999999792 diff --git a/previews/PR3919/tutorials/nonlinear/portfolio/faace5bf.svg b/previews/PR3919/tutorials/nonlinear/portfolio/9ac4f1c3.svg similarity index 79% rename from previews/PR3919/tutorials/nonlinear/portfolio/faace5bf.svg rename to previews/PR3919/tutorials/nonlinear/portfolio/9ac4f1c3.svg index 5cd947a7f17..38963db690a 100644 --- a/previews/PR3919/tutorials/nonlinear/portfolio/faace5bf.svg +++ b/previews/PR3919/tutorials/nonlinear/portfolio/9ac4f1c3.svg @@ -1,581 +1,581 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/portfolio/index.html b/previews/PR3919/tutorials/nonlinear/portfolio/index.html index eb7846434d8..3f919bc49a2 100644 --- a/previews/PR3919/tutorials/nonlinear/portfolio/index.html +++ b/previews/PR3919/tutorials/nonlinear/portfolio/index.html @@ -72,7 +72,7 @@ Dual objective value : 4.52688e+04 * Work counters - Solve time (sec) : 3.16691e-03 + Solve time (sec) : 3.09491e-03 Barrier iterations : 11

    The optimal allocation of our assets is:

    value.(x)
    3-element Vector{Float64}:
      497.045529849864
    @@ -103,7 +103,7 @@
       Objective bound    : [5.78303e-09,-7.37159e+01]
     
     * Work counters
    -  Solve time (sec)   : 2.34760e-01
    +  Solve time (sec)   : 2.15408e-01
     

    The algorithm found 50 different solutions. Let's plot them to see how they differ:

    objective_space = Plots.hline(
         [scalar_return];
         label = "Single-objective solution",
    @@ -135,4 +135,4 @@
         ylabel = "Investment (\$)",
         title = "Decision space",
     )
    -Plots.plot(objective_space, decision_space; layout = (2, 1), size = (600, 600))
    Example block output

    Perhaps our trade-off wasn't so bad after all. Our original solution corresponded to picking a solution #17. If we buy more SEHI, we can increase the return, but the variance also increases. If we buy less SEHI, such as a solution like #5 or #6, then we can achieve the corresponding return without deploying all of our capital. We should also note that at no point should we buy WMT.

    +Plots.plot(objective_space, decision_space; layout = (2, 1), size = (600, 600))Example block output

    Perhaps our trade-off wasn't so bad after all. Our original solution corresponded to picking a solution #17. If we buy more SEHI, we can increase the return, but the variance also increases. If we buy less SEHI, such as a solution like #5 or #6, then we can achieve the corresponding return without deploying all of our capital. We should also note that at no point should we buy WMT.

    diff --git a/previews/PR3919/tutorials/nonlinear/querying_hessians/index.html b/previews/PR3919/tutorials/nonlinear/querying_hessians/index.html index 839f9f2062f..660bf1b0789 100644 --- a/previews/PR3919/tutorials/nonlinear/querying_hessians/index.html +++ b/previews/PR3919/tutorials/nonlinear/querying_hessians/index.html @@ -168,4 +168,4 @@ 2.82843 2.82843

    Compare that to the analytic solution:

    y = value.(x)
     [2y[1] 0; 2y[1]+2y[2] 2y[1]+2y[2]]
    2×2 Matrix{Float64}:
      1.58072  0.0
    - 2.82843  2.82843
    + 2.82843 2.82843 diff --git a/previews/PR3919/tutorials/nonlinear/rocket_control/30349884.svg b/previews/PR3919/tutorials/nonlinear/rocket_control/c182777c.svg similarity index 89% rename from previews/PR3919/tutorials/nonlinear/rocket_control/30349884.svg rename to previews/PR3919/tutorials/nonlinear/rocket_control/c182777c.svg index 6595e0978eb..ae2332d282d 100644 --- a/previews/PR3919/tutorials/nonlinear/rocket_control/30349884.svg +++ b/previews/PR3919/tutorials/nonlinear/rocket_control/c182777c.svg @@ -1,130 +1,130 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/rocket_control/index.html b/previews/PR3919/tutorials/nonlinear/rocket_control/index.html index 3e92fb8761b..9a9160ee0c9 100644 --- a/previews/PR3919/tutorials/nonlinear/rocket_control/index.html +++ b/previews/PR3919/tutorials/nonlinear/rocket_control/index.html @@ -48,7 +48,7 @@ Dual objective value : 4.66547e+00 * Work counters - Solve time (sec) : 1.69296e-01 + Solve time (sec) : 1.63015e-01 Barrier iterations : 24

    Finally, we plot the solution:

    function plot_trajectory(y; kwargs...)
         return Plots.plot(
    @@ -66,4 +66,4 @@
         plot_trajectory(x_v; ylabel = "Velocity"),
         plot_trajectory(u_t; ylabel = "Thrust");
         layout = (2, 2),
    -)
    Example block output

    Next steps

    • Experiment with different values for the constants. How does the solution change? In particular, what happens if you change T_max?
    • The dynamical equations use rectangular integration for the right-hand side terms. Modify the equations to use the Trapezoidal rule instead. (As an example, x_v[t-1] would become 0.5 * (x_v[t-1] + x_v[t]).) Is there a difference?
    +)Example block output

    Next steps

    • Experiment with different values for the constants. How does the solution change? In particular, what happens if you change T_max?
    • The dynamical equations use rectangular integration for the right-hand side terms. Modify the equations to use the Trapezoidal rule instead. (As an example, x_v[t-1] would become 0.5 * (x_v[t-1] + x_v[t]).) Is there a difference?
    diff --git a/previews/PR3919/tutorials/nonlinear/simple_examples/index.html b/previews/PR3919/tutorials/nonlinear/simple_examples/index.html index cbb712a166f..081576c16d4 100644 --- a/previews/PR3919/tutorials/nonlinear/simple_examples/index.html +++ b/previews/PR3919/tutorials/nonlinear/simple_examples/index.html @@ -100,7 +100,7 @@ Number of equality constraint Jacobian evaluations = 5 Number of inequality constraint Jacobian evaluations = 0 Number of Lagrangian Hessian evaluations = 4 -Total seconds in IPOPT = 0.029 +Total seconds in IPOPT = 0.030 EXIT: Optimal Solution Found. termination_status = LOCALLY_SOLVED @@ -181,4 +181,4 @@ z ≥ 0 Objective value: 0.32699283491387243 x = 0.32699283491387243 -y = 0.2570658388068964 +y = 0.2570658388068964 diff --git a/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/130af623.svg b/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/53168d36.svg similarity index 88% rename from previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/130af623.svg rename to previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/53168d36.svg index 4d1a5b5a9a3..257a17d5637 100644 --- a/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/130af623.svg +++ b/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/53168d36.svg @@ -1,97 +1,97 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/62d404c2.svg b/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/8c54e0f5.svg similarity index 88% rename from previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/62d404c2.svg rename to previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/8c54e0f5.svg index 5fb844f6e8e..803c70499c5 100644 --- a/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/62d404c2.svg +++ b/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/8c54e0f5.svg @@ -1,182 +1,182 @@ - + - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/44df754a.svg b/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/dbf95bbb.svg similarity index 87% rename from previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/44df754a.svg rename to previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/dbf95bbb.svg index b4d439a6ccb..5851f93ac88 100644 --- a/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/44df754a.svg +++ b/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/dbf95bbb.svg @@ -1,48 +1,48 @@ - + - + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/index.html b/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/index.html index c0d2cc7a5ad..219432430ac 100644 --- a/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/index.html +++ b/previews/PR3919/tutorials/nonlinear/space_shuttle_reentry_trajectory/index.html @@ -221,7 +221,7 @@ layout = grid(3, 2), linewidth = 2, size = (700, 700), -)Example block output
    function q(h, v, a)
    +)
    Example block output
    function q(h, v, a)
         ρ(h) = ρ₀ * exp(-h / hᵣ)
         qᵣ(h, v) = 17700 * √ρ(h) * (0.0001 * v)^3.07
         qₐ(a) = c₀ + c₁ * rad2deg(a) + c₂ * rad2deg(a)^2 + c₃ * rad2deg(a)^3
    @@ -255,7 +255,7 @@
         layout = grid(3, 1),
         linewidth = 2,
         size = (700, 700),
    -)
    Example block output
    plot(
    +)
    Example block output
    plot(
         rad2deg.(value.(ϕ)),
         rad2deg.(value.(θ)),
         value.(scaled_h);
    @@ -265,4 +265,4 @@
         xlabel = "Longitude (deg)",
         ylabel = "Latitude (deg)",
         zlabel = "Altitude (100,000 ft)",
    -)
    Example block output +)Example block output diff --git a/previews/PR3919/tutorials/nonlinear/tips_and_tricks/index.html b/previews/PR3919/tutorials/nonlinear/tips_and_tricks/index.html index a3565a1cd66..119240f1346 100644 --- a/previews/PR3919/tutorials/nonlinear/tips_and_tricks/index.html +++ b/previews/PR3919/tutorials/nonlinear/tips_and_tricks/index.html @@ -69,4 +69,4 @@ @assert is_solved_and_feasible(model) Test.@test objective_value(model) ≈ √3 atol = 1e-4 Test.@test value.(x) ≈ [1.0, 1.0] atol = 1e-4 -println("Memoized approach: function_calls = $(function_calls)")
    Memoized approach: function_calls = 22

    Compared to the naive approach, the memoized approach requires half as many function evaluations.

    +println("Memoized approach: function_calls = $(function_calls)")
    Memoized approach: function_calls = 22

    Compared to the naive approach, the memoized approach requires half as many function evaluations.

    diff --git a/previews/PR3919/tutorials/nonlinear/user_defined_hessians/index.html b/previews/PR3919/tutorials/nonlinear/user_defined_hessians/index.html index dd354c7d185..87b1a5ce8a1 100644 --- a/previews/PR3919/tutorials/nonlinear/user_defined_hessians/index.html +++ b/previews/PR3919/tutorials/nonlinear/user_defined_hessians/index.html @@ -39,6 +39,6 @@ Dual solution : * Work counters - Solve time (sec) : 3.70460e-02 + Solve time (sec) : 3.64702e-02 Barrier iterations : 14 - + diff --git a/previews/PR3919/tutorials/transitioning/transitioning_from_matlab/index.html b/previews/PR3919/tutorials/transitioning/transitioning_from_matlab/index.html index c46bde533e7..e43e394f6db 100644 --- a/previews/PR3919/tutorials/transitioning/transitioning_from_matlab/index.html +++ b/previews/PR3919/tutorials/transitioning/transitioning_from_matlab/index.html @@ -58,7 +58,7 @@ 6 1.1746e-09 -1.2507e-09 2.43e-09 1.59e-16 6.59e-17 2.83e-10 3.87e-10 9.90e-01 --------------------------------------------------------------------------------------------- Terminated with status = solved -solve time = 666μs

    The exclamation mark here is a Julia-ism that means the function is modifying its argument, model.

    Querying solution status

    After the optimization is done, you should check for the solution status to see what solution (if any) the solver found.

    Like YALMIP and CVX, JuMP provides a solver-independent way to check it, via the command:

    is_solved_and_feasible(model)
    true

    If the return value is false, you should investigate with termination_status, primal_status, and raw_status, See Solutions for more details on how to query and interpret solution statuses.

    Extracting variables

    Like YALMIP, but unlike CVX, with JuMP you need to explicitly ask for the value of your variables after optimization is done, with the function call value(x) to obtain the value of variable x.

    value.(m[1][1, 1])
    0.0

    A subtlety is that, unlike YALMIP, the function value is only defined for scalars. For vectors and matrices you need to use Julia broadcasting: value.(v).

    value.(m[1])
    3×3 Matrix{Float64}:
    +solve time =  672μs

    The exclamation mark here is a Julia-ism that means the function is modifying its argument, model.

    Querying solution status

    After the optimization is done, you should check for the solution status to see what solution (if any) the solver found.

    Like YALMIP and CVX, JuMP provides a solver-independent way to check it, via the command:

    is_solved_and_feasible(model)
    true

    If the return value is false, you should investigate with termination_status, primal_status, and raw_status, See Solutions for more details on how to query and interpret solution statuses.

    Extracting variables

    Like YALMIP, but unlike CVX, with JuMP you need to explicitly ask for the value of your variables after optimization is done, with the function call value(x) to obtain the value of variable x.

    value.(m[1][1, 1])
    0.0

    A subtlety is that, unlike YALMIP, the function value is only defined for scalars. For vectors and matrices you need to use Julia broadcasting: value.(v).

    value.(m[1])
    3×3 Matrix{Float64}:
      0.0  0.0  0.0
      0.0  0.0  0.0
      0.0  0.0  0.0

    There is also a specialized function for extracting the value of the objective, objective_value(model), which is useful if your objective doesn't have a convenient expression.

    objective_value(model)
    -5.999999998825352

    Dual variables

    Like YALMIP and CVX, JuMP allows you to recover the dual variables. In order to do that, the simplest method is to name the constraint you're interested in, for example, @constraint(model, bob, sum(v) == 1) and then, after the optimzation is done, call dual(bob). See Duality for more details.

    Reformulating problems

    Perhaps the biggest difference between JuMP and YALMIP and CVX is how far the package is willing to go in reformulating the problems you give to it.

    CVX is happy to reformulate anything it can, even using approximations if your solver cannot handle the problem.

    YALMIP will only do exact reformulations, but is still fairly adventurous, for example, being willing to reformulate a nonlinear objective in terms of conic constraints.

    JuMP does no such thing: it only reformulates objectives into objectives, and constraints into constraints, and is fairly conservative at that. As a result, you might need to do some reformulations manually, for which a good guide is the Modeling with cones tutorial.

    Vectorization

    In MATLAB, it is absolutely essential to "vectorize" your code to obtain acceptable performance. This is because MATLAB is a slow interpreted language, which sends your commands to fast libraries. When you "vectorize" your code you are minimizing the MATLAB part of the work and sending it to the fast libraries instead.

    There's no such duality with Julia.

    Everything you write and most libraries you use will compile down to LLVM, so "vectorization" has no effect.

    For example, if you are writing a linear program in MATLAB and instead of the usual constraints = [v >= 0] you write:

    for i = 1:n
    @@ -157,4 +157,4 @@
         x = randn(d, 1) + 1i * randn(d, 1);
         y = x * x';
         rho = y / trace(y);
    -end
    +end