-
Notifications
You must be signed in to change notification settings - Fork 21
/
shape_inversion.py
506 lines (433 loc) · 19.2 KB
/
shape_inversion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
import os
import os.path as osp
from copy import deepcopy
import numpy as np
import torch
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F
import torchvision
from torch.autograd import Variable
from model.treegan_network import Generator, Discriminator
from utils.common_utils import *
from loss import *
from evaluation.pointnet import *
import time
from external.ChamferDistancePytorch.chamfer_python import distChamfer, distChamfer_raw
class ShapeInversion(object):
def __init__(self, args):
self.args = args
if self.args.dist:
self.rank = dist.get_rank()
self.world_size = dist.get_world_size()
else:
self.rank, self.world_size = 0, 1
# init seed for static masks: ball_hole, knn_hole, voxel_mask
self.to_reset_mask = True
self.mask_type = self.args.mask_type
self.update_G_stages = self.args.update_G_stages
self.iterations = self.args.iterations
self.G_lrs = self.args.G_lrs
self.z_lrs = self.args.z_lrs
self.select_num = self.args.select_num
self.loss_log = []
# create model
self.G = Generator(features=args.G_FEAT, degrees=args.DEGREE, support=args.support,args=self.args).cuda()
self.D = Discriminator(features=args.D_FEAT).cuda()
self.G.optim = torch.optim.Adam(
[{'params': self.G.get_params(i)}
for i in range(7)],
lr=self.G_lrs[0],
betas=(0,0.99),
weight_decay=0,
eps=1e-8)
self.z = torch.zeros((1, 1, 96)).normal_().cuda()
self.z = Variable(self.z, requires_grad=True)
self.z_optim = torch.optim.Adam([self.z], lr=self.args.z_lrs[0], betas=(0,0.99))
# load weights
checkpoint = torch.load(args.ckpt_load, map_location=self.args.device)
self.G.load_state_dict(checkpoint['G_state_dict'])
self.D.load_state_dict(checkpoint['D_state_dict'])
self.G.eval()
if self.D is not None:
self.D.eval()
self.G_weight = deepcopy(self.G.state_dict())
# prepare latent variable and optimizer
self.G_scheduler = LRScheduler(self.G.optim, self.args.warm_up)
self.z_scheduler = LRScheduler(self.z_optim, self.args.warm_up)
# loss functions
self.ftr_net = self.D
self.criterion = DiscriminatorLoss()
if self.args.directed_hausdorff:
self.directed_hausdorff = DirectedHausdorff()
# for visualization
self.checkpoint_pcd = [] # to save the staged checkpoints
self.checkpoint_flags = [] # plot subtitle
if len(args.w_D_loss) == 1:
self.w_D_loss = args.w_D_loss * len(args.G_lrs)
else:
self.w_D_loss = args.w_D_loss
def reset_G(self,pcd_id=None):
"""
to call in every new fine_tuning
before the 1st one also okay
"""
self.G.load_state_dict(self.G_weight, strict=False)
if self.args.random_G:
self.G.train()
else:
self.G.eval()
self.checkpoint_pcd = [] # to save the staged checkpoints
self.checkpoint_flags = []
self.pcd_id = pcd_id # for
if self.mask_type == 'voxel_mask':
self.to_reset_mask = True # reset hole center for each shape
def set_target(self, gt=None, partial=None):
'''
set target
'''
if gt is not None:
self.gt = gt.unsqueeze(0)
# for visualization
self.checkpoint_flags.append('GT')
self.checkpoint_pcd.append(self.gt)
else:
self.gt = None
if partial is not None:
if self.args.target_downsample_method.lower() == 'fps':
target_size = self.args.target_downsample_size
self.target = self.downsample(partial.unsqueeze(0), target_size)
else:
self.target = partial.unsqueeze(0)
else:
self.target = self.pre_process(self.gt, stage=-1)
# for visualization
self.checkpoint_flags.append('target')
self.checkpoint_pcd.append(self.target)
def run(self, ith=-1):
loss_dict = {}
curr_step = 0
count = 0
for stage, iteration in enumerate(self.iterations):
for i in range(iteration):
curr_step += 1
# setup learning rate
self.G_scheduler.update(curr_step, self.args.G_lrs[stage])
self.z_scheduler.update(curr_step, self.args.z_lrs[stage])
# forward
self.z_optim.zero_grad()
if self.update_G_stages[stage]:
self.G.optim.zero_grad()
tree = [self.z]
x = self.G(tree)
# masking
x_map = self.pre_process(x,stage=stage)
### compute losses
ftr_loss = self.criterion(self.ftr_net, x_map, self.target)
dist1, dist2 , _, _ = distChamfer(x_map, self.target)
cd_loss = dist1.mean() + dist2.mean()
# optional early stopping
if self.args.early_stopping:
if cd_loss.item() < self.args.stop_cd:
break
# nll corresponds to a negative log-likelihood loss
nll = self.z**2 / 2
nll = nll.mean()
### loss
loss = ftr_loss * self.w_D_loss[stage] + nll * self.args.w_nll \
+ cd_loss * 1
# optional to use directed_hausdorff
if self.args.directed_hausdorff:
directed_hausdorff_loss = self.directed_hausdorff(self.target, x)
loss += directed_hausdorff_loss*self.args.w_directed_hausdorff_loss
# backward
loss.backward()
self.z_optim.step()
if self.update_G_stages[stage]:
self.G.optim.step()
# save checkpoint for each stage
self.checkpoint_flags.append('s_'+str(stage)+' x')
self.checkpoint_pcd.append(x)
self.checkpoint_flags.append('s_'+str(stage)+' x_map')
self.checkpoint_pcd.append(x_map)
# test only for each stage
if self.gt is not None:
dist1, dist2 , _, _ = distChamfer(x,self.gt)
test_cd = dist1.mean() + dist2.mean()
with open(self.args.log_pathname, "a") as file_object:
msg = str(self.pcd_id) + ',' + 'stage'+str(stage) + ',' + 'cd' +',' + '{:6.5f}'.format(test_cd.item())
file_object.write(msg+'\n')
if self.gt is not None:
loss_dict = {
'ftr_loss': np.asscalar(ftr_loss.detach().cpu().numpy()),
'nll': np.asscalar(nll.detach().cpu().numpy()),
'cd': np.asscalar(test_cd.detach().cpu().numpy()),
}
self.loss_log.append(loss_dict)
### save point clouds
self.x = x
if not osp.isdir(self.args.save_inversion_path):
os.mkdir(self.args.save_inversion_path)
x_np = x[0].detach().cpu().numpy()
x_map_np = x_map[0].detach().cpu().numpy()
target_np = self.target[0].detach().cpu().numpy()
if ith == -1:
basename = str(self.pcd_id)
else:
basename = str(self.pcd_id)+'_'+str(ith)
if self.gt is not None:
gt_np = self.gt[0].detach().cpu().numpy()
np.savetxt(osp.join(self.args.save_inversion_path,basename+'_gt.txt'), gt_np, fmt = "%f;%f;%f")
np.savetxt(osp.join(self.args.save_inversion_path,basename+'_x.txt'), x_np, fmt = "%f;%f;%f")
np.savetxt(osp.join(self.args.save_inversion_path,basename+'_xmap.txt'), x_map_np, fmt = "%f;%f;%f")
np.savetxt(osp.join(self.args.save_inversion_path,basename+'_target.txt'), target_np, fmt = "%f;%f;%f")
# jittering mode
if self.args.inversion_mode == 'jittering':
self.jitter(self.target)
def diversity_search(self, select_y=False):
"""
produce batch by batch
search by 2pf and partial
but constrainted to z dimension are large
"""
batch_size = 50
num_batch = int(self.select_num/batch_size)
x_ls = []
z_ls = []
cd_ls = []
tic = time.time()
with torch.no_grad():
for i in range(num_batch):
z = torch.randn(batch_size, 1, 96).cuda()
tree = [z]
x = self.G(tree)
dist1, dist2 , _, _ = distChamfer(self.target.repeat(batch_size,1,1),x)
cd = dist1.mean(1) # single directional CD
x_ls.append(x)
z_ls.append(z)
cd_ls.append(cd)
x_full = torch.cat(x_ls)
cd_full = torch.cat(cd_ls)
z_full = torch.cat(z_ls)
toc = time.time()
cd_candidates, idx = torch.topk(cd_full,self.args.n_z_candidates,largest=False)
z_t = z_full[idx].transpose(0,1)
seeds = farthest_point_sample(z_t, self.args.n_outputs).squeeze(0)
z_ten = z_full[idx][seeds]
self.zs = [itm.unsqueeze(0) for itm in z_ten]
self.xs = []
def select_z(self, select_y=False):
tic = time.time()
with torch.no_grad():
if self.select_num == 0:
self.z.zero_()
return
elif self.select_num == 1:
self.z.normal_()
return
z_all, y_all, loss_all = [], [], []
for i in range(self.select_num):
z = torch.randn(1, 1, 96).cuda()
tree = [z]
with torch.no_grad():
x = self.G(tree)
ftr_loss = self.criterion(self.ftr_net, x, self.target)
z_all.append(z)
loss_all.append(ftr_loss.detach().cpu().numpy())
toc = time.time()
loss_all = np.array(loss_all)
idx = np.argmin(loss_all)
self.z.copy_(z_all[idx])
if select_y:
self.y.copy_(y_all[idx])
x = self.G([self.z])
# visualization
if self.gt is not None:
x_map = self.pre_process(x, stage=-1)
dist1, dist2 , _, _ = distChamfer(x,self.gt)
cd_loss = dist1.mean() + dist2.mean()
with open(self.args.log_pathname, "a") as file_object:
msg = str(self.pcd_id) + ',' + 'init' + ',' + 'cd' +',' + '{:6.5f}'.format(cd_loss.item())
# print(msg)
file_object.write(msg+'\n')
self.checkpoint_flags.append('init x')
self.checkpoint_pcd.append(x)
self.checkpoint_flags.append('init x_map')
self.checkpoint_pcd.append(x_map)
return z_all[idx]
def pre_process(self,pcd,stage=-1):
"""
transfer a pcd in the observation space:
with the following mask_type:
none: for ['reconstruction', 'jittering', 'morphing']
ball_hole, knn_hole: randomly create the holes from complete pcd, similar to PF-Net
voxel_mask: baseline in ShapeInversion
tau_mask: baseline in ShapeInversion
k_mask: proposed component by ShapeInversion
"""
if self.mask_type == 'none':
return pcd
elif self.mask_type in ['ball_hole', 'knn_hole']:
### set static mask for each new partial pcd
if self.to_reset_mask:
# either ball hole or knn_hole, hence there might be unused configs
self.hole_k = self.args.hole_k
self.hole_radius = self.args.hole_radius
self.hole_n = self.args.hole_n
seeds = farthest_point_sample(pcd, self.hole_n) # shape (B,hole_n)
self.hole_centers = torch.stack([img[seed] for img, seed in zip(pcd,seeds)]) # (B, hole_n, 3)
# turn off mask after set mask, until next partial pcd
self.to_reset_mask = False
### preprocess
flag_map = torch.ones(1,2048,1).cuda()
pcd_new = pcd.unsqueeze(2).repeat(1,1,self.hole_n,1)
seeds_new = self.hole_centers.unsqueeze(1).repeat(1,2048,1,1)
delta = pcd_new.add(-seeds_new) # (B, 2048, hole_n, 3)
dist_mat = torch.norm(delta,dim=3)
dist_new = dist_mat.transpose(1,2) # (B, hole_n, 2048)
if self.mask_type == 'knn_hole':
# idx (B, hole_n, hole_k), dist (B, hole_n, hole_k)
dist, idx = torch.topk(dist_new,self.hole_k,largest=False)
for i in range(self.hole_n):
dist_per_hole = dist_new[:,i,:].unsqueeze(2)
if self.mask_type == 'knn_hole':
threshold_dist = dist[:,i, -1]
if self.mask_type == 'ball_hole':
threshold_dist = self.hole_radius
flag_map[dist_per_hole <= threshold_dist] = 0
target = torch.mul(pcd, flag_map)
return target
elif self.mask_type == 'voxel_mask':
"""
voxels in the partial and optionally surroundings are 1, the rest are 0.
"""
### set static mask for each new partial pcd
if self.to_reset_mask:
mask_partial = self.voxelize(self.target, n_bins=self.args.voxel_bins, pcd_limit=0.5, threshold=0)
# optional to add surrounding to the mask partial
surrounding = self.args.surrounding
self.mask_dict = {}
for key_gt in mask_partial:
x,y,z = key_gt
surrounding_ls = []
surrounding_ls.append((x,y,z))
for x_s in range(x-surrounding+1, x+surrounding):
for y_s in range(y-surrounding+1, y+surrounding):
for z_s in range(z-surrounding+1, z+surrounding):
surrounding_ls.append((x_s,y_s,z_s))
for xyz in surrounding_ls:
self.mask_dict[xyz] = 1
# turn off mask after set mask, until next partial pcd
self.to_reset_mask = False
### preprocess
n_bins = self.args.voxel_bins
mask_tensor = torch.zeros(2048,1)
pcd_new = pcd*n_bins + n_bins * 0.5
pcd_new = pcd_new.type(torch.int64)
ls_voxels = pcd_new.squeeze(0).tolist() # 2028 of sublists
tuple_voxels = [tuple(itm) for itm in ls_voxels]
for i in range(2048):
tuple_voxel = tuple_voxels[i]
if tuple_voxel in self.mask_dict:
mask_tensor[i] = 1
mask_tensor = mask_tensor.unsqueeze(0).cuda()
pcd_map = torch.mul(pcd, mask_tensor)
return pcd_map
elif self.mask_type == 'k_mask':
pcd_map = self.k_mask(self.target, pcd,stage)
return pcd_map
elif self.mask_type == 'tau_mask':
pcd_map = self.tau_mask(self.target, pcd,stage)
return pcd_map
else:
raise NotImplementedError
def voxelize(self, pcd, n_bins=32, pcd_limit=0.5, threshold=0):
"""
given a partial/GT pcd
return {0,1} masks with resolution n_bins^3
voxel_limit in case the pcd is very small, but still assume it is symmetric
threshold is needed, in case we would need to handle noise
the form of output is a dict, key (x,y,z) , value: count
"""
pcd_new = pcd * n_bins + n_bins * 0.5
pcd_new = pcd_new.type(torch.int64)
ls_voxels = pcd_new.squeeze(0).tolist() # 2028 of sublists
tuple_voxels = [tuple(itm) for itm in ls_voxels]
mask_dict = {}
for tuple_voxel in tuple_voxels:
if tuple_voxel not in mask_dict:
mask_dict[tuple_voxel] = 1
else:
mask_dict[tuple_voxel] += 1
for voxel, cnt in mask_dict.items():
if cnt <= threshold:
del mask_dict[voxel]
return mask_dict
def tau_mask(self, target, x, stage=-1):
"""
tau mask
"""
# dist_mat shape (B, N_target, N_output), where B = 1
stage = max(0, stage)
dist_tau = self.args.tau_mask_dist[stage]
dist_mat = distChamfer_raw(target, x)
idx0, idx1, idx2 = torch.where(dist_mat<dist_tau)
idx = torch.unique(idx2).type(torch.long)
x_map = x[:, idx]
return x_map
def k_mask(self, target, x, stage=-1):
"""
masking based on CD.
target: (1, N, 3), partial, can be < 2048, 2048, > 2048
x: (1, 2048, 3)
x_map: (1, N', 3), N' < 2048
x_map: v1: 2048, 0 masked points
"""
stage = max(0, stage)
knn = self.args.k_mask_k[stage]
if knn == 1:
cd1, cd2, argmin1, argmin2 = distChamfer(target, x)
idx = torch.unique(argmin1).type(torch.long)
elif knn > 1:
# dist_mat shape (B, 2048, 2048), where B = 1
dist_mat = distChamfer_raw(target, x)
# indices (B, 2048, k)
val, indices = torch.topk(dist_mat, k=knn, dim=2,largest=False)
# union of all the indices
idx = torch.unique(indices).type(torch.long)
if self.args.masking_option == 'element_product':
mask_tensor = torch.zeros(2048,1)
mask_tensor[idx] = 1
mask_tensor = mask_tensor.cuda().unsqueeze(0)
x_map = torch.mul(x, mask_tensor)
elif self.args.masking_option == 'indexing':
x_map = x[:, idx]
return x_map
def jitter(self, x):
z_rand = self.z.clone()
stds = [0.3, 0.5, 0.7]
n_jitters = 12
flag_list = ['gt', 'recon']
pcd_list = [self.gt, self.x]
with torch.no_grad():
for std in stds:
for i in range(n_jitters):
z_rand.normal_()
z = self.z + std * z_rand
x_jitter = self.G([z])
x_np = x_jitter.squeeze(0).detach().cpu().numpy()
basename = '{}_std{:3.2f}_{}.txt'.format(self.pcd_id,std,i)
pathname = osp.join(self.args.save_inversion_path,basename)
np.savetxt(pathname, x_np, fmt = "%f;%f;%f")
flag_list.append(basename)
pcd_list.append(x_jitter)
self.checkpoint_pcd = pcd_list
self.checkpoint_flags = flag_list
def downsample(self, dense_pcd, n=2048):
"""
input pcd cpu tensor
return downsampled cpu tensor
"""
idx = farthest_point_sample(dense_pcd,n)
sparse_pcd = dense_pcd[0,idx]
return sparse_pcd