-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmerkle.py
207 lines (179 loc) · 8.12 KB
/
merkle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from hashlib import sha256
from math import log
import codecs
hash_function = sha256
class MerkleError(Exception):
pass
class Node(object):
"""Each node has, as attributes, references to left (l) and right (r) child nodes, parent (p),
and sibling (sib) node. It can also be aware of whether it is on the left or right hand side (side).
data is hashed automatically by default, but does not have to be, if prehashed param is set to True.
"""
__slots__ = ['l', 'r', 'p', 'sib', 'side', 'val']
def __init__(self, data, prehashed=False, hash_fn=None):
hash_fn = hash_fn or hash_function
if prehashed:
self.val = data
else:
self.val = hash_fn(data).digest()
self.l = None
self.r = None
self.p = None
self.sib = None
self.side = None
def __repr__(self):
return "Val: <" + str(codecs.encode(self.val, 'hex_codec')) + ">"
class MerkleTree(object):
"""A Merkle tree implementation. Added values are stored in a list until the tree is built.
A list of data elements for Node values can be optionally supplied to the constructor.
Data supplied to the constructor is hashed by default, but this can be overridden by
providing prehashed=True in which case, node values should be hex encoded.
"""
def __init__(self, leaves=None, prehashed=False, raw_digests=False, hash_fn=None):
leaves = leaves or []
self.hash_fn = hash_fn or hash_function
if prehashed and raw_digests:
self.leaves = [Node(leaf, prehashed=True, hash_fn=self.hash_fn) for leaf in leaves]
elif prehashed:
self.leaves = [Node(codecs.decode(leaf, 'hex_codec'), prehashed=True, hash_fn=self.hash_fn) for leaf in leaves]
else:
self.leaves = [Node(leaf, hash_fn=self.hash_fn) for leaf in leaves]
self.root = None
def __eq__(self, obj):
return (self.root.val == obj.root.val) and (self.__class__ == obj.__class__)
def add(self, data):
"""Add a Node to the tree, providing data, which is hashed automatically.
"""
self.leaves.append(Node(data, hash_fn=self.hash_fn))
def add_hash(self, value):
"""Add a Node based on a precomputed, hex encoded, hash value.
"""
self.leaves.append(Node(codecs.decode(value, 'hex_codec'), prehashed=True, hash_fn=self.hash_fn))
def clear(self):
"""Clears the Merkle Tree by releasing the Merkle root and each leaf's references, the rest
should be garbage collected. This may be useful for situations where you want to take an existing
tree, make changes to the leaves, but leave it uncalculated for some time, without node
references that are no longer correct still hanging around. Usually it is better just to make
a new tree.
"""
self.root = None
for leaf in self.leaves:
leaf.p, leaf.sib, leaf.side = (None, ) * 3
def build(self):
"""Calculate the merkle root and make references between nodes in the tree.
"""
if not self.leaves:
raise MerkleError('The tree has no leaves and cannot be calculated.')
layer = self.leaves[::]
while len(layer) != 1:
layer = self._build(layer)
self.root = layer[0]
return self.root.val
def build_fun(self, layer=None):
"""Calculate the merkle root and make references between nodes in the tree.
Written in functional style purely for fun.
"""
if not layer:
if not self.leaves:
raise MerkleError('The tree has no leaves and cannot be calculated.')
layer = self.leaves[::]
layer = self._build(layer)
if len(layer) == 1:
self.root = layer[0]
else:
self.build_fun(layer=layer)
return self.root.val
def _build(self, leaves):
"""Private helper function to create the next aggregation level and put all references in place.
"""
new, odd = [], None
# check if even number of leaves, promote odd leaf to next level, if not
if len(leaves) % 2 == 1:
odd = leaves.pop(-1)
for i in range(0, len(leaves), 2):
newnode = Node(leaves[i].val + leaves[i + 1].val, hash_fn=self.hash_fn)
newnode.l, newnode.r = leaves[i], leaves[i + 1]
leaves[i].side, leaves[i + 1].side, leaves[i].p, leaves[i + 1].p = 'L', 'R', newnode, newnode
leaves[i].sib, leaves[i + 1].sib = leaves[i + 1], leaves[i]
new.append(newnode)
if odd:
new.append(odd)
return new
def get_chain(self, index):
"""Assemble and return the chain leading from a given node to the merkle root of this tree.
"""
chain = []
this = self.leaves[index]
chain.append((this.val, 'SELF'))
while this.p:
chain.append((this.sib.val, this.sib.side))
this = this.p
chain.append((this.val, 'ROOT'))
return chain
def get_all_chains(self):
"""Assemble and return a list of all chains for all leaf nodes to the merkle root.
"""
return [self.get_chain(i) for i in range(len(self.leaves))]
def get_hex_chain(self, index):
"""Assemble and return the chain leading from a given node to the merkle root of this tree
with hash values in hex form
"""
return [(codecs.encode(i[0], 'hex_codec'), i[1]) for i in self.get_chain(index)]
def get_all_hex_chains(self):
"""Assemble and return a list of all chains for all nodes to the merkle root, hex encoded.
"""
return [[(codecs.encode(i[0], 'hex_codec'), i[1]) for i in j] for j in self.get_all_chains()]
def _get_whole_subtrees(self):
"""Returns an array of nodes in the tree that have balanced subtrees beneath them,
moving from left to right.
"""
subtrees = []
loose_leaves = len(self.leaves) - 2**int(log(len(self.leaves), 2))
the_node = self.root
while loose_leaves:
subtrees.append(the_node.l)
the_node = the_node.r
loose_leaves = loose_leaves - 2**int(log(loose_leaves, 2))
subtrees.append(the_node)
return subtrees
def add_adjust(self, data, prehashed=False):
"""Add a new leaf, and adjust the tree, without rebuilding the whole thing.
"""
subtrees = self._get_whole_subtrees()
new_node = Node(data, prehashed=prehashed, hash_fn=self.hash_fn)
self.leaves.append(new_node)
for node in reversed(subtrees):
new_parent = Node(node.val + new_node.val, hash_fn=self.hash_fn)
node.p, new_node.p = new_parent, new_parent
new_parent.l, new_parent.r = node, new_node
node.sib, new_node.sib = new_node, node
node.side, new_node.side = 'L', 'R'
new_node = new_node.p
self.root = new_node
def check_chain(chain):
"""Verify a merkle chain to see if the Merkle root can be reproduced.
"""
link = chain[0][0]
for i in range(1, len(chain) - 1):
if chain[i][1] == 'R':
link = hash_function(link + chain[i][0]).digest()
elif chain[i][1] == 'L':
link = hash_function(chain[i][0] + link).digest()
else:
raise MerkleError('Link %s has no side value: %s' % (str(i), str(codecs.encode(chain[i][0], 'hex_codec'))))
if link == chain[-1][0]:
return link
else:
raise MerkleError('The Merkle Chain is not valid.')
def check_hex_chain(chain):
"""Verify a merkle chain, with hashes hex encoded, to see if the Merkle root can be reproduced.
"""
return codecs.encode(check_chain([(codecs.decode(i[0], 'hex_codec'), i[1]) for i in chain]), 'hex_codec')
def join_chains(low, high):
"""Join two hierarchical merkle chains in the case where the root of a lower tree is an input
to a higher level tree. The resulting chain should check out using the check functions. Use on either
hex or binary chains.
"""
if not low[-1][0] == high[0][0]:
raise MerkleError('The two chains do not connect.')
return low[:-1] + high[1:]