-
Notifications
You must be signed in to change notification settings - Fork 8
/
E-selected-solutions.Rmd
387 lines (268 loc) · 11.1 KB
/
E-selected-solutions.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# Solutions to Selected Exercises
```{block, type="epigraph"}
To understand God's thoughts we must study statistics, for these are the measure of His purpose.\
---attributed to Florence Nightingale
```
## Chapter 1 {-}
\noindent
*Exercise 3.* Prisoner A is incorrect. His chances of survival are still only $1/3$. To see why, we can use the same tree as we did for the Monty Hall problem, and just change the labels on the leaves from "Monty Opens X" to "Guard Names X."
\vspace{.5em}\vspace{.5em}\noindent
*Exercise 5.* Option (a): $5/8$.
## Chapter 2 {-}
\noindent
*Exercise 1.* (a) Invalid, (b) Valid, (c) Valid, (d) Valid, (e) Invalid, (f) Valid.
\vspace{.5em}\noindent
*Exercise 2.* (a) Compatible, (b) Compatible, (c) Mutually Exclusive.
\vspace{.5em}\noindent
*Exercise 3.* False.
\vspace{.5em}\noindent
*Exercise 5.* Yes, it is possible.
## Chapter 3 {-}
\noindent
*Exercise 1.* (a) $\neg A$, (b) $A \wedge B$, (c) $A \wedge \neg B$, (d) $\neg A \wedge \neg B$.
\vspace{.5em}\noindent
*Exercise 2a.* These are mutually exclusive: there's only one row where $A \wedge B$ is true, and $A \wedge \neg B$ is false in that row.
\vspace{.5em}\noindent
*Exercise 3b.* These are logically equivalent: their final columns are identical, T T F F.
\vspace{.5em}\noindent
*Exercise 4.* The column for $B \wedge C$ is T F F F T F F F. The column for $A \vee (B \wedge C)$ is T T T T T F F F.
## Chapter 4 {-}
\noindent
*Exercise 1.* (a) Independent, (b) Not Independent, (c) Independent, (d) Not Independent.
\vspace{.5em}\noindent
*Exercise 2.* Option (d): All of the above.
\vspace{.5em}\noindent
*Exercise 3.* Option (e): None of the above.
\vspace{.5em}\noindent
*Exercise 4.* (a) Not a gambler's fallacy, (b) Gambler's fallacy.
## Chapter 5 {-}
\noindent
*Exercise 1.* This is a contradiction so its probability is $0$.
\vspace{.5em}\noindent
*Exercise 4.* (a) $8/15$, (b) $8/15$, (c) No.
\vspace{.5em}\noindent
*Exercise 5.* (a) $0$, (b) $1/6$, (c) No.
\vspace{.5em}\noindent
*Exercise 7.* (a) Yes, (b) No, (c) No.
\vspace{.5em}\noindent
*Exercise 8.* $1/6$.
## Chapter 6 {-}
\noindent
*Exercise 2.* (a) $1/2$, (b) $2/7$.
\vspace{.5em}\noindent
*Exercise 5.* (a) $9/70$, (b) $9/140$, (c) $1/30$, (d) $1/60$, (e) $17/210$, (f) $27/34$.
\vspace{.5em}\noindent
*Exercise 6.* $1/9$.
## Chapter 7 {-}
\noindent
*Exercise 1.* (a) $3/13$, (b) $10/13$, (c) $4/13$, (d) $4/13$, (e) $10/13$
\vspace{.5em}\noindent
*Exercise 4.* $17/32$
\vspace{.5em}\noindent
*Exercise 6.* Yes:
$$
\begin{aligned}
\p(A)
& = \p((A \wedge B) \vee (A \wedge C) \vee (A \wedge D)) & \text{by Equivalence}\\
& = \p(A \wedge B) + \p(A \wedge C) + \p(A \wedge D) & \text{by Addition}\\
& = \p(A \given B)\p(B) + \p(A \given C)\p(C) + \p(A \given D)\p(D) & \text{by General Multiplication}.
\end{aligned}
$$
\vspace{.5em}\noindent
*Exercise 8.* (a) $1/13$, (b) $4/51$, (c) $4/663$, (d) $4/663$, (e) $8/663$, (f) $1/221$
\vspace{.5em}\noindent
*Exercise 25.* First observe that $A \wedge (A \vee B)$ is equivalent to $A$. This can be verified by a truth table or Euler diagram. We then reason as follows:
$$
\begin{aligned}
\p(A \given A \vee B)
& = \frac{\p(A \wedge (A \vee B))}{\p(A \vee B)} & \text{by definition}\\
& = \frac{\p(A)}{\p(A \vee B)} & \text{by Equivalence}\\
& = \frac{\p(A)}{\p(A) + \p(B)} & \text{by Addition.}
\end{aligned}
$$
## Chapter 8 {-}
\noindent
*Exercise 1.* $1/4$
\vspace{.5em}\noindent
*Exercise 3.* $2/3$
\vspace{.5em}\noindent
*Exercise 5.* $9/11$
\vspace{.5em}\noindent
*Exercise 7.* The full formula is:
$$
\p(X \given B)
= \frac{\p(X)\p(B \given X)}{\p(X)\p(B \given X) + \p(Y)\p(B \given Y) + \p(Z)\p(B \given Z)}.
$$
To derive this formula, start with the short form of Bayes' theorem for $\p(X \given B)$. Then apply the version of LTP from Exercise 7.6 to the denominator, $\p(B)$.
\vspace{.5em}\noindent
*Exercise 8.* $1/57$
\vspace{.5em}\noindent
*Exercise 11.* $1/4$
## Chapter 9 {-}
\noindent
*Exercise 1.* (a) $1/6$, (b) $1/2$, (c) $1/2$.
\vspace{.5em}\noindent
*Exercise 2.* $81/85$.
\vspace{.5em}\noindent
*Exercise 5.*
$$
\begin{aligned}
\p(A \given B \wedge C)
&= \frac{\p(A \wedge (B \wedge C))}{\p(B \wedge C)} & \text{ by definition}\\
&= \frac{\p(A \wedge (C \wedge B))}{\p(C \wedge B)} & \text{ by Equivalence}\\
&= \p(A \given C \wedge B) & \text{ by definition.}
\end{aligned}
$$
\vspace{.5em}\noindent
*Exercise 7.* First note that $\p(C) = \p((A \wedge C) \vee \p(\neg A \wedge C))$ by Equivalence, and thus by Addition we have $\p(\neg A \wedge C) = \p(C) - \p(A \wedge C)$. We then reason as follows:
$$
\begin{aligned}
\p(\neg A \given C)
&= \frac{\p(\neg A \wedge C)}{\p(C)} & \text{ by definition}\\
&= \frac{\p(C) - \p(A \wedge C)}{\p(C)} & \text{ by above}\\
&= \frac{\p(C)}{\p(C)} - \frac{\p(A \wedge C)}{\p(C)} & \text{ by algebra}\\
&= 1 - \frac{\p(A \wedge C)}{\p(C)} & \text{ by algebra}\\
&= 1 - \p(A \given C) & \text{ by definition.}
\end{aligned}
$$
## Chapter 11 {-}
\noindent
*Exercise 2.* $-\$80$.
\vspace{.5em}\noindent
*Exercise 4.* $-\$0.79$.
\vspace{.5em}\noindent
*Exercise 9.* (a) $\$460$ million, (b) $\$580$ million, (c) $\$220$ million, (d) no, they won't conduct the study because it would be a waste of $\$5,000$. (The EMV of enacting the tax will be positive regardless of the study's findings. So doing the study won't help them make their decision.)
\vspace{.5em}\noindent
*Exercise 11.* (a) $-\$60$, (b) $-\$52$.
\vspace{.5em}\noindent
*Exercise 16.* $x = 888$.
\vspace{.5em}\noindent
*Exercise 22.* Suppose that $E(A) = \$x$. Let the possible payoffs of $A$ be $x_1, \ldots, x_n$. Then:
$$
\begin{aligned}
E(\text{Pay $\$x$ for $A$})
&= \p(\$x_1) \cdot (\$x_1 - \$x) + \ldots + \p(\$x_n) \cdot (\$x_n - \$x)\\
&= \left[\p(\$x_1) \cdot \$ x_1 - \p(\$x_1) \cdot \$x \right] + \ldots + \left[\p(\$x_n) \cdot \$x_n - \p(\$x_n) \cdot \$x \right]\\
&= E(A) - \left[\p(\$x_1) \cdot \$ x + \ldots + \p(\$x_n) \cdot \$x \right]\\
&= E(A) - \$x \left[\p(\$x_1) + \ldots + \p(\$x_n) \right]\\
&= E(A) - \$x \\
&= 0.
\end{aligned}
$$
## Chapter 12 {-}
\noindent
*Exercise 2.* (d)
\vspace{.5em}\noindent
*Exercise 3.* $3/5$
\vspace{.5em}\noindent
*Exercise 5.* (a) $3/5$, (b) $2/3$.
\vspace{.5em}\noindent
*Exercise 8.* (a) $103/2$, (b) $490/9$, (c) $45/49$.
\vspace{.5em}\noindent
*Exercise 10.* Suppose action $A$ has only two possible consequences, $C_1$ and $C_2$, such that $\p(C_1) = \p(C_2)$ and $U(C_1) = -U(C_2)$. Since $\p(C_1) = \p(C_2) = 1/2$, we have:
$$
\begin{aligned}
EU(A)
&= \p(C_1) U(C_1) + \p(C_2) U(C_2) \\
&= \frac{1}{2} U(C_1) + \frac{1}{2} U(C_2) \\
&= -\frac{1}{2} U(C_2) + \frac{1}{2} U(C_2) \\
&= 0.
\end{aligned}
$$
## Chapter 13 {-}
\noindent
*Exercise 1.* (d)
\vspace{.5em}\noindent
*Exercise 2.* (a)
\vspace{.5em}\noindent
*Exercise 3.* (b)
\vspace{.5em}\noindent
*Exercise 5.* (c)
\vspace{.5em}\noindent
*Exercise 6.* (c)
\vspace{.5em}\noindent
*Exercise 8.* (d)
## Chapter 14 {-}
\noindent
*Exercise 1.* (d)
\vspace{.5em}\noindent
*Exercise 2.* (b)
\vspace{.5em}\noindent
*Exercise 5.* $f(y) = e^y$. If we plug $e^y$ into $\log(x)$ we get $y$ back: $\log(e^y) = y$.
\vspace{.5em}\noindent
*Exercise 8.* (b)
\vspace{.5em}\noindent
*Exercise 9.* (c)
## Chapter 16 {-}
\noindent
*Exercise 1.* a) $7/10$, b) $4/5$, c) $2/3$.
\vspace{.5em}\noindent
*Exercise 3.* (a) $5/6$, (b) $1/3$, (c) $2/5$
\vspace{.5em}\noindent
*Exercise 4.* (a) $1/2$, (b) $1/3$, (c) $2/3$, (d) $2/9$
## Chapter 17 {-}
\noindent
*Exercise 1.* We make the following deals with Ronnie.
- He pays us $\$.40$; we pay him $\$1$ if $A$ is true.
- He pays us $\$.70$; we pay him $\$1$ if $A$ is false.
Each of these deals is fair according to Ronnie because the betting rates match his personal probabilities. For example, the expected value of the first bet is 0:
$$ (\$1 - \$.40) \p(A) - \$.40 (1 - \p(A)) = (\$.60)(4/10) - \$.40(6/10) = 0. $$
But Ronnie must pay us $1.10 for these bets, and he will only get $1 in return. Whether $A$ is true or false, only one of the bets will pay off for Ronnie. So his net "gain" will be $\$1 - \$1.10 = -\$.10$.
\vspace{.5em}\noindent
*Exercise 2.* We make the following deals with Marco.
- We pay him $\$0.30$; he pays us $\$1$ if $X$ is true.
- We pay him $\$0.20$; he pays us $\$1$ if $Y$ is true.
- He pays us $\$0.60$; we pay him $\$1$ if $X \vee Y$ is true.
The explanation is similar to 17.1: each bet is fair according to Marco's personal probabilities, as can be checked by doing the expected value calculations which come out to $0$ for each one. But he pays us $\$.10$ more up front than we pay him, and he can't possibly win it back. If he wins the third bet, we win one or both of the first two bets.
\vspace{.5em}\noindent
*Exercise 8.* We make the following deals with Piz.
- We pay him $\$1/4$; he pays us $\$1$ if Pia is a basketball player.
- He pays us $\$1/3$; we pay him $\$1$ if Pia is a good basketball player.
Again the deals are fair given his personal probabilities. And again he pays us more up front than we pay him, money which he can't win back. If he wins the second bet, we win the first.
## Chapter 18 {-}
\noindent
*Exercise 1.* (a) $7/10$, (b) $3/10$, (c) same answers as before, (d) different answers: $217/300$ and $11/36$.
\vspace{.5em}\noindent
*Exercise 2.* a) $1/2$, b) $5/8$, c) yes, different answers here: $2/3$ and $21/32$, d) different again: $49/62$ and $713/992$.
\vspace{.5em}\noindent
*Exercise 6.* a) $2/3$, b) $2/1$, c) $1/2$, d) different: $1/3$ now
## Chapter 19 {-}
\noindent
*Exercise 1.*
(a) $\mu = 20, \sigma = 4$,
(b) a bell curve centered at $20$ and reaching $y \approx 0$ around $x \approx 8$,
(c) $a = 16, b = 24$,
(d) $a = 12, b = 28$,
(e) $a = 8, b = 32$,
(f) $7$ or fewer,
(g) $33$ or more,
(h) answers will vary.
\vspace{.5em}\noindent
*Exercise 3.*
(a) $\mu = 144, \sigma = 6$,
(b) $132, 156$,
(c) $126, 162$,
(d) not significant at either level,
(e) false (more accurately, not enough information is given to draw a conclusion either way).
\vspace{.5em}\noindent
*Exercise 8.*
(a) $\mu = 10, \sigma = 3$,
(b) no,
(c) false,
(d) false.
\vspace{.5em}\noindent
*Exercise 9.*
(a) $\mu = 80, \sigma = 4$,
(b) yes,
(c) if the null hypothesis is true, and we repeated the experiment over and over, we would get a result this far from the mean less than $1\%$ of the time.
\vspace{.5em}\noindent
*Exercise 11.* If the null hypothesis is true, the probability of getting a result this "extreme" (i.e. as improbable as this one, or even less probable) is below $.05$.
## Chapter 20 {-}
\noindent
*Exercise 1.* (a) and (b)
\vspace{.5em}\noindent
*Exercise 2.* (a) $25$, (b) $400$, (c) $16/17$ or about $94\%$.
\vspace{.5em}\noindent
*Exercise 3.* (a) 225, (b) $675/676$ or about $99.9\%$.
\vspace{.5em}\noindent
*Exercise 5.* (a) $\mu = 5, \sigma = 2$, (b) yes, (c) $\mu = 5/2, \sigma = 3/2$, (d) yes.