-
Notifications
You must be signed in to change notification settings - Fork 295
/
train.py
executable file
·1449 lines (1239 loc) · 46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang,
# Wei Kang,
# Mingshuang Luo,)
# Zengwei Yao)
# 2023 Johns Hopkins University (author: Desh Raj)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
export CUDA_VISIBLE_DEVICES="0,1,2,3"
cd egs/libricss/SURT
./prepare.sh
./dprnn_zipformer/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--exp-dir dprnn_zipformer/exp \
--max-duration 300
# For mix precision training:
./dprnn_zipformer/train.py \
--world-size 4 \
--num-epochs 30 \
--start-epoch 1 \
--use-fp16 1 \
--exp-dir dprnn_zipformer/exp \
--max-duration 550
"""
import argparse
import copy
import logging
import warnings
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, Optional, Tuple, Union
import k2
import optim
import sentencepiece as spm
import torch
import torch.multiprocessing as mp
import torch.nn as nn
from asr_datamodule import LibriCssAsrDataModule
from decoder import Decoder
from dprnn import DPRNN
from einops.layers.torch import Rearrange
from joiner import Joiner
from lhotse.dataset.sampling.base import CutSampler
from lhotse.utils import LOG_EPSILON, fix_random_seed
from model import SURT
from optim import Eden, ScaledAdam
from scaling import ScaledLSTM
from torch import Tensor
from torch.cuda.amp import GradScaler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.tensorboard import SummaryWriter
from zipformer import Zipformer
from icefall import diagnostics
from icefall.checkpoint import load_checkpoint, remove_checkpoints
from icefall.checkpoint import save_checkpoint as save_checkpoint_impl
from icefall.checkpoint import (
save_checkpoint_with_global_batch_idx,
update_averaged_model,
)
from icefall.dist import cleanup_dist, setup_dist
from icefall.env import get_env_info
from icefall.err import raise_grad_scale_is_too_small_error
from icefall.utils import AttributeDict, MetricsTracker, setup_logger, str2bool
LRSchedulerType = Union[torch.optim.lr_scheduler._LRScheduler, optim.LRScheduler]
def set_batch_count(model: Union[nn.Module, DDP], batch_count: float) -> None:
if isinstance(model, DDP):
# get underlying nn.Module
model = model.module
for module in model.modules():
if hasattr(module, "batch_count"):
module.batch_count = batch_count
def add_model_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--num-mask-encoder-layers",
type=int,
default=4,
help="Number of layers in the DPRNN based mask encoder.",
)
parser.add_argument(
"--mask-encoder-dim",
type=int,
default=256,
help="Hidden dimension of the LSTM blocks in DPRNN.",
)
parser.add_argument(
"--mask-encoder-segment-size",
type=int,
default=32,
help="Segment size of the SegLSTM in DPRNN. Ideally, this should be equal to the "
"decode-chunk-length of the zipformer encoder.",
)
parser.add_argument(
"--chunk-width-randomization",
type=bool,
default=False,
help="Whether to randomize the chunk width in DPRNN.",
)
# Zipformer config is based on:
# https://github.com/k2-fsa/icefall/pull/745#issuecomment-1405282740
parser.add_argument(
"--num-encoder-layers",
type=str,
default="2,2,2,2,2",
help="Number of zipformer encoder layers, comma separated.",
)
parser.add_argument(
"--feedforward-dims",
type=str,
default="768,768,768,768,768",
help="Feedforward dimension of the zipformer encoder layers, comma separated.",
)
parser.add_argument(
"--nhead",
type=str,
default="8,8,8,8,8",
help="Number of attention heads in the zipformer encoder layers.",
)
parser.add_argument(
"--encoder-dims",
type=str,
default="256,256,256,256,256",
help="Embedding dimension in the 2 blocks of zipformer encoder layers, comma separated",
)
parser.add_argument(
"--attention-dims",
type=str,
default="192,192,192,192,192",
help="""Attention dimension in the 2 blocks of zipformer encoder layers, comma separated;
not the same as embedding dimension.""",
)
parser.add_argument(
"--encoder-unmasked-dims",
type=str,
default="192,192,192,192,192",
help="Unmasked dimensions in the encoders, relates to augmentation during training. "
"Must be <= each of encoder_dims. Empirically, less than 256 seems to make performance "
" worse.",
)
parser.add_argument(
"--zipformer-downsampling-factors",
type=str,
default="1,2,4,8,2",
help="Downsampling factor for each stack of encoder layers.",
)
parser.add_argument(
"--cnn-module-kernels",
type=str,
default="31,31,31,31,31",
help="Sizes of kernels in convolution modules",
)
parser.add_argument(
"--use-joint-encoder-layer",
type=str,
default="lstm",
choices=["linear", "lstm", "none"],
help="Whether to use a joint layer to combine all branches.",
)
parser.add_argument(
"--decoder-dim",
type=int,
default=512,
help="Embedding dimension in the decoder model.",
)
parser.add_argument(
"--joiner-dim",
type=int,
default=512,
help="""Dimension used in the joiner model.
Outputs from the encoder and decoder model are projected
to this dimension before adding.
""",
)
parser.add_argument(
"--short-chunk-size",
type=int,
default=50,
help="""Chunk length of dynamic training, the chunk size would be either
max sequence length of current batch or uniformly sampled from (1, short_chunk_size).
""",
)
parser.add_argument(
"--num-left-chunks",
type=int,
default=4,
help="How many left context can be seen in chunks when calculating attention.",
)
parser.add_argument(
"--decode-chunk-len",
type=int,
default=32,
help="The chunk size for decoding (in frames before subsampling)",
)
def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--world-size",
type=int,
default=1,
help="Number of GPUs for DDP training.",
)
parser.add_argument(
"--master-port",
type=int,
default=12354,
help="Master port to use for DDP training.",
)
parser.add_argument(
"--tensorboard",
type=str2bool,
default=True,
help="Should various information be logged in tensorboard.",
)
parser.add_argument(
"--num-epochs",
type=int,
default=30,
help="Number of epochs to train.",
)
parser.add_argument(
"--start-epoch",
type=int,
default=1,
help="""Resume training from this epoch. It should be positive.
If larger than 1, it will load checkpoint from
exp-dir/epoch-{start_epoch-1}.pt
""",
)
parser.add_argument(
"--start-batch",
type=int,
default=0,
help="""If positive, --start-epoch is ignored and
it loads the checkpoint from exp-dir/checkpoint-{start_batch}.pt
""",
)
parser.add_argument(
"--exp-dir",
type=str,
default="conv_lstm_transducer_stateless_ctc/exp",
help="""The experiment dir.
It specifies the directory where all training related
files, e.g., checkpoints, log, etc, are saved
""",
)
parser.add_argument(
"--model-init-ckpt",
type=str,
default=None,
help="""The model checkpoint to initialize the model (either full or part).
If not specified, the model is randomly initialized.
""",
)
parser.add_argument(
"--bpe-model",
type=str,
default="data/lang_bpe_500/bpe.model",
help="Path to the BPE model",
)
parser.add_argument(
"--base-lr", type=float, default=0.004, help="The base learning rate."
)
parser.add_argument(
"--lr-batches",
type=float,
default=5000,
help="""Number of steps that affects how rapidly the learning rate
decreases. We suggest not to change this.""",
)
parser.add_argument(
"--lr-epochs",
type=float,
default=6,
help="""Number of epochs that affects how rapidly the learning rate decreases.
""",
)
parser.add_argument(
"--context-size",
type=int,
default=2,
help="The context size in the decoder. 1 means bigram; 2 means tri-gram",
)
parser.add_argument(
"--prune-range",
type=int,
default=5,
help="The prune range for rnnt loss, it means how many symbols(context)"
"we are using to compute the loss",
)
parser.add_argument(
"--lm-scale",
type=float,
default=0.25,
help="The scale to smooth the loss with lm "
"(output of prediction network) part.",
)
parser.add_argument(
"--am-scale",
type=float,
default=0.0,
help="The scale to smooth the loss with am (output of encoder network) part.",
)
parser.add_argument(
"--simple-loss-scale",
type=float,
default=0.5,
help="To get pruning ranges, we will calculate a simple version"
"loss(joiner is just addition), this simple loss also uses for"
"training (as a regularization item). We will scale the simple loss"
"with this parameter before adding to the final loss.",
)
parser.add_argument(
"--ctc-loss-scale",
type=float,
default=0.2,
help="Scale for CTC loss.",
)
parser.add_argument(
"--heat-loss-scale",
type=float,
default=0.0,
help="Scale for HEAT loss on separated sources.",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="The seed for random generators intended for reproducibility",
)
parser.add_argument(
"--print-diagnostics",
type=str2bool,
default=False,
help="Accumulate stats on activations, print them and exit.",
)
parser.add_argument(
"--save-every-n",
type=int,
default=2000,
help="""Save checkpoint after processing this number of batches"
periodically. We save checkpoint to exp-dir/ whenever
params.batch_idx_train % save_every_n == 0. The checkpoint filename
has the form: f'exp-dir/checkpoint-{params.batch_idx_train}.pt'
Note: It also saves checkpoint to `exp-dir/epoch-xxx.pt` at the
end of each epoch where `xxx` is the epoch number counting from 0.
""",
)
parser.add_argument(
"--keep-last-k",
type=int,
default=1,
help="""Only keep this number of checkpoints on disk.
For instance, if it is 3, there are only 3 checkpoints
in the exp-dir with filenames `checkpoint-xxx.pt`.
It does not affect checkpoints with name `epoch-xxx.pt`.
""",
)
parser.add_argument(
"--average-period",
type=int,
default=100,
help="""Update the averaged model, namely `model_avg`, after processing
this number of batches. `model_avg` is a separate version of model,
in which each floating-point parameter is the average of all the
parameters from the start of training. Each time we take the average,
we do: `model_avg = model * (average_period / batch_idx_train) +
model_avg * ((batch_idx_train - average_period) / batch_idx_train)`.
""",
)
parser.add_argument(
"--use-fp16",
type=str2bool,
default=False,
help="Whether to use half precision training.",
)
add_model_arguments(parser)
return parser
def get_params() -> AttributeDict:
"""Return a dict containing training parameters.
All training related parameters that are not passed from the commandline
are saved in the variable `params`.
Commandline options are merged into `params` after they are parsed, so
you can also access them via `params`.
Explanation of options saved in `params`:
- best_train_loss: Best training loss so far. It is used to select
the model that has the lowest training loss. It is
updated during the training.
- best_valid_loss: Best validation loss so far. It is used to select
the model that has the lowest validation loss. It is
updated during the training.
- best_train_epoch: It is the epoch that has the best training loss.
- best_valid_epoch: It is the epoch that has the best validation loss.
- batch_idx_train: Used to writing statistics to tensorboard. It
contains number of batches trained so far across
epochs.
- log_interval: Print training loss if batch_idx % log_interval` is 0
- reset_interval: Reset statistics if batch_idx % reset_interval is 0
- valid_interval: Run validation if batch_idx % valid_interval is 0
- feature_dim: The model input dim. It has to match the one used
in computing features.
- subsampling_factor: The subsampling factor for the model.
- num_decoder_layers: Number of decoder layer of transformer decoder.
- warm_step: The warm_step for Noam optimizer.
"""
params = AttributeDict(
{
"best_train_loss": float("inf"),
"best_valid_loss": float("inf"),
"best_train_epoch": -1,
"best_valid_epoch": -1,
"batch_idx_train": 0,
"log_interval": 50,
"reset_interval": 200,
"valid_interval": 2000,
# parameters for SURT
"num_channels": 2,
"feature_dim": 80,
"subsampling_factor": 4, # not passed in, this is fixed
# parameters for Noam
"model_warm_step": 5000, # arg given to model, not for lrate
# parameters for ctc loss
"beam_size": 10,
"use_double_scores": True,
"env_info": get_env_info(),
}
)
return params
def get_mask_encoder_model(params: AttributeDict) -> nn.Module:
mask_encoder = DPRNN(
feature_dim=params.feature_dim,
input_size=params.mask_encoder_dim,
hidden_size=params.mask_encoder_dim,
output_size=params.feature_dim * params.num_channels,
segment_size=params.mask_encoder_segment_size,
num_blocks=params.num_mask_encoder_layers,
chunk_width_randomization=params.chunk_width_randomization,
)
return mask_encoder
def get_encoder_model(params: AttributeDict) -> nn.Module:
# TODO: We can add an option to switch between Zipformer and Transformer
def to_int_tuple(s: str):
return tuple(map(int, s.split(",")))
encoder = Zipformer(
num_features=params.feature_dim,
output_downsampling_factor=2,
zipformer_downsampling_factors=to_int_tuple(
params.zipformer_downsampling_factors
),
encoder_dims=to_int_tuple(params.encoder_dims),
attention_dim=to_int_tuple(params.attention_dims),
encoder_unmasked_dims=to_int_tuple(params.encoder_unmasked_dims),
nhead=to_int_tuple(params.nhead),
feedforward_dim=to_int_tuple(params.feedforward_dims),
cnn_module_kernels=to_int_tuple(params.cnn_module_kernels),
num_encoder_layers=to_int_tuple(params.num_encoder_layers),
num_left_chunks=params.num_left_chunks,
short_chunk_size=params.short_chunk_size,
decode_chunk_size=params.decode_chunk_len // 2,
)
return encoder
def get_joint_encoder_layer(params: AttributeDict) -> nn.Module:
class TakeFirst(nn.Module):
def forward(self, x):
return x[0]
if params.use_joint_encoder_layer == "linear":
encoder_dim = int(params.encoder_dims.split(",")[-1])
joint_layer = nn.Sequential(
Rearrange("(c b) t d -> b t (c d)", c=params.num_channels),
nn.Linear(
params.num_channels * encoder_dim, params.num_channels * encoder_dim
),
nn.ReLU(),
Rearrange("b t (c d) -> (c b) t d", c=params.num_channels),
)
elif params.use_joint_encoder_layer == "lstm":
encoder_dim = int(params.encoder_dims.split(",")[-1])
joint_layer = nn.Sequential(
Rearrange("(c b) t d -> b t (c d)", c=params.num_channels),
ScaledLSTM(
input_size=params.num_channels * encoder_dim,
hidden_size=params.num_channels * encoder_dim,
num_layers=1,
bias=True,
batch_first=True,
dropout=0.0,
bidirectional=False,
),
TakeFirst(),
nn.ReLU(),
Rearrange("b t (c d) -> (c b) t d", c=params.num_channels),
)
elif params.use_joint_encoder_layer == "none":
joint_layer = None
else:
raise ValueError(
f"Unknown joint encoder layer type: {params.use_joint_encoder_layer}"
)
return joint_layer
def get_decoder_model(params: AttributeDict) -> nn.Module:
decoder = Decoder(
vocab_size=params.vocab_size,
decoder_dim=params.decoder_dim,
blank_id=params.blank_id,
context_size=params.context_size,
)
return decoder
def get_joiner_model(params: AttributeDict) -> nn.Module:
joiner = Joiner(
encoder_dim=int(params.encoder_dims.split(",")[-1]),
decoder_dim=params.decoder_dim,
joiner_dim=params.joiner_dim,
vocab_size=params.vocab_size,
)
return joiner
def get_surt_model(
params: AttributeDict,
) -> nn.Module:
mask_encoder = get_mask_encoder_model(params)
encoder = get_encoder_model(params)
joint_layer = get_joint_encoder_layer(params)
decoder = get_decoder_model(params)
joiner = get_joiner_model(params)
model = SURT(
mask_encoder=mask_encoder,
encoder=encoder,
joint_encoder_layer=joint_layer,
decoder=decoder,
joiner=joiner,
num_channels=params.num_channels,
encoder_dim=int(params.encoder_dims.split(",")[-1]),
decoder_dim=params.decoder_dim,
joiner_dim=params.joiner_dim,
vocab_size=params.vocab_size,
)
return model
def load_checkpoint_if_available(
params: AttributeDict,
model: nn.Module,
model_avg: nn.Module = None,
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
) -> Optional[Dict[str, Any]]:
"""Load checkpoint from file.
If params.start_batch is positive, it will load the checkpoint from
`params.exp_dir/checkpoint-{params.start_batch}.pt`. Otherwise, if
params.start_epoch is larger than 1, it will load the checkpoint from
`params.start_epoch - 1`.
Apart from loading state dict for `model` and `optimizer` it also updates
`best_train_epoch`, `best_train_loss`, `best_valid_epoch`,
and `best_valid_loss` in `params`.
Args:
params:
The return value of :func:`get_params`.
model:
The training model.
model_avg:
The stored model averaged from the start of training.
optimizer:
The optimizer that we are using.
scheduler:
The scheduler that we are using.
Returns:
Return a dict containing previously saved training info.
"""
if params.start_batch > 0:
filename = params.exp_dir / f"checkpoint-{params.start_batch}.pt"
elif params.start_epoch > 1:
filename = params.exp_dir / f"epoch-{params.start_epoch-1}.pt"
else:
return None
assert filename.is_file(), f"{filename} does not exist!"
saved_params = load_checkpoint(
filename,
model=model,
model_avg=model_avg,
optimizer=optimizer,
scheduler=scheduler,
)
keys = [
"best_train_epoch",
"best_valid_epoch",
"batch_idx_train",
"best_train_loss",
"best_valid_loss",
]
for k in keys:
params[k] = saved_params[k]
if params.start_batch > 0:
if "cur_epoch" in saved_params:
params["start_epoch"] = saved_params["cur_epoch"]
return saved_params
def save_checkpoint(
params: AttributeDict,
model: Union[nn.Module, DDP],
model_avg: Optional[nn.Module] = None,
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[LRSchedulerType] = None,
sampler: Optional[CutSampler] = None,
scaler: Optional[GradScaler] = None,
rank: int = 0,
) -> None:
"""Save model, optimizer, scheduler and training stats to file.
Args:
params:
It is returned by :func:`get_params`.
model:
The training model.
model_avg:
The stored model averaged from the start of training.
optimizer:
The optimizer used in the training.
sampler:
The sampler for the training dataset.
scaler:
The scaler used for mix precision training.
"""
if rank != 0:
return
filename = params.exp_dir / f"epoch-{params.cur_epoch}.pt"
save_checkpoint_impl(
filename=filename,
model=model,
model_avg=model_avg,
params=params,
optimizer=optimizer,
scheduler=scheduler,
sampler=sampler,
scaler=scaler,
rank=rank,
)
if params.best_train_epoch == params.cur_epoch:
best_train_filename = params.exp_dir / "best-train-loss.pt"
copyfile(src=filename, dst=best_train_filename)
if params.best_valid_epoch == params.cur_epoch:
best_valid_filename = params.exp_dir / "best-valid-loss.pt"
copyfile(src=filename, dst=best_valid_filename)
def compute_heat_loss(x_masked, batch, num_channels=2) -> Tensor:
"""
Compute HEAT loss for separated sources using the output of mask encoder.
Args:
x_masked:
The output of mask encoder. It is a tensor of shape (B, T, C).
batch:
A batch of data. See `lhotse.dataset.K2SurtDatasetWithSources()`
for the content in it.
num_channels:
The number of output branches in the SURT model.
"""
B, T, D = x_masked[0].shape
device = x_masked[0].device
# Create training targets for each channel.
targets = []
for i in range(num_channels):
target = torch.ones_like(x_masked[i]) * LOG_EPSILON
targets.append(target)
source_feats = batch["source_feats"]
source_boundaries = batch["source_boundaries"]
input_lens = batch["input_lens"].to(device)
# Assign sources to channels based on the HEAT criteria
for b in range(B):
cut_source_feats = source_feats[b]
cut_source_boundaries = source_boundaries[b]
last_seg_end = [0 for _ in range(num_channels)]
for source_feat, (start, end) in zip(cut_source_feats, cut_source_boundaries):
assigned = False
for i in range(num_channels):
if start >= last_seg_end[i]:
targets[i][b, start:end, :] += source_feat.to(device)
last_seg_end[i] = max(end, last_seg_end[i])
assigned = True
break
if not assigned:
min_end_channel = last_seg_end.index(min(last_seg_end))
targets[min_end_channel][b, start:end, :] += source_feat
last_seg_end[min_end_channel] = max(end, last_seg_end[min_end_channel])
# Get padding mask based on input lengths
pad_mask = torch.arange(T, device=device).expand(B, T) > input_lens.unsqueeze(1)
pad_mask = pad_mask.unsqueeze(-1)
# Compute masked loss for each channel
losses = torch.zeros((num_channels, B, T, D), device=device)
for i in range(num_channels):
loss = nn.functional.mse_loss(x_masked[i], targets[i], reduction="none")
# Apply padding mask to loss
loss.masked_fill_(pad_mask, 0)
losses[i] = loss
# loss: C x B x T x D. pad_mask: B x T x 1
# We want to compute loss for each item in the batch. Each item has loss given
# by the sum over C, and average over T and D. For T, we need to use the padding.
loss = losses.sum(0).mean(-1).sum(-1) / batch["input_lens"].to(device)
return loss
def compute_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
sp: spm.SentencePieceProcessor,
batch: dict,
is_training: bool,
) -> Tuple[Tensor, MetricsTracker]:
"""
Compute RNN-T loss given the model and its inputs.
Args:
params:
Parameters for training. See :func:`get_params`.
model:
The model for training. It is an instance of Conformer in our case.
batch:
A batch of data. See `lhotse.dataset.K2SpeechRecognitionDataset()`
for the content in it.
is_training:
True for training. False for validation. When it is True, this
function enables autograd during computation; when it is False, it
disables autograd.
"""
device = model.device if isinstance(model, DDP) else next(model.parameters()).device
feature = batch["inputs"].to(device)
feature_lens = batch["input_lens"].to(device)
# at entry, feature is (N, T, C)
assert feature.ndim == 3
# The dataloader returns text as a list of cuts, each of which is a list of channel
# text. We flatten this to a list where all channels are together, i.e., it looks like
# [utt1_ch1, utt2_ch1, ..., uttN_ch1, utt1_ch2, ...., uttN,ch2].
text = [val for tup in zip(*batch["text"]) for val in tup]
assert len(text) == len(feature) * params.num_channels
# Convert all channel texts to token IDs and create a ragged tensor.
y = sp.encode(text, out_type=int)
y = k2.RaggedTensor(y).to(device)
batch_idx_train = params.batch_idx_train
warm_step = params.model_warm_step
with torch.set_grad_enabled(is_training):
(simple_loss, pruned_loss, ctc_loss, x_masked) = model(
x=feature,
x_lens=feature_lens,
y=y,
prune_range=params.prune_range,
am_scale=params.am_scale,
lm_scale=params.lm_scale,
reduction="none",
subsampling_factor=params.subsampling_factor,
)
simple_loss_is_finite = torch.isfinite(simple_loss)
pruned_loss_is_finite = torch.isfinite(pruned_loss)
ctc_loss_is_finite = torch.isfinite(ctc_loss)
# Compute HEAT loss
if is_training and params.heat_loss_scale > 0.0:
heat_loss = compute_heat_loss(
x_masked, batch, num_channels=params.num_channels
)
else:
heat_loss = torch.tensor(0.0, device=device)
heat_loss_is_finite = torch.isfinite(heat_loss)
is_finite = (
simple_loss_is_finite
& pruned_loss_is_finite
& ctc_loss_is_finite
& heat_loss_is_finite
)
if not torch.all(is_finite):
logging.info(
"Not all losses are finite!\n"
f"simple_losses: {simple_loss}\n"
f"pruned_losses: {pruned_loss}\n"
f"ctc_losses: {ctc_loss}\n"
f"heat_losses: {heat_loss}\n"
)
display_and_save_batch(batch, params=params, sp=sp)
simple_loss = simple_loss[simple_loss_is_finite]
pruned_loss = pruned_loss[pruned_loss_is_finite]
ctc_loss = ctc_loss[ctc_loss_is_finite]
heat_loss = heat_loss[heat_loss_is_finite]
# If either all simple_loss or pruned_loss is inf or nan,
# we stop the training process by raising an exception
if (
torch.all(~simple_loss_is_finite)
or torch.all(~pruned_loss_is_finite)
or torch.all(~ctc_loss_is_finite)
or torch.all(~heat_loss_is_finite)
):
raise ValueError(
"There are too many utterances in this batch "
"leading to inf or nan losses."
)
simple_loss_sum = simple_loss.sum()
pruned_loss_sum = pruned_loss.sum()
ctc_loss_sum = ctc_loss.sum()
heat_loss_sum = heat_loss.sum()
s = params.simple_loss_scale
# take down the scale on the simple loss from 1.0 at the start
# to params.simple_loss scale by warm_step.
simple_loss_scale = (
s
if batch_idx_train >= warm_step
else 1.0 - (batch_idx_train / warm_step) * (1.0 - s)
)
pruned_loss_scale = (
1.0
if batch_idx_train >= warm_step
else 0.1 + 0.9 * (batch_idx_train / warm_step)
)
loss = (
simple_loss_scale * simple_loss_sum
+ pruned_loss_scale * pruned_loss_sum
+ params.ctc_loss_scale * ctc_loss_sum
+ params.heat_loss_scale * heat_loss_sum
)
assert loss.requires_grad == is_training
info = MetricsTracker()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
# info["frames"] is an approximate number for two reasons:
# (1) The acutal subsampling factor is ((lens - 1) // 2 - 1) // 2
# (2) If some utterances in the batch lead to inf/nan loss, they
# are filtered out.
info["frames"] = (feature_lens // params.subsampling_factor).sum().item()
# `utt_duration` and `utt_pad_proportion` would be normalized by `utterances` # noqa
info["utterances"] = feature.size(0)
# averaged input duration in frames over utterances
info["utt_duration"] = feature_lens.sum().item()
# averaged padding proportion over utterances
info["utt_pad_proportion"] = (
((feature.size(1) - feature_lens) / feature.size(1)).sum().item()
)
# Note: We use reduction=sum while computing the loss.
info["loss"] = loss.detach().cpu().item()
info["simple_loss"] = simple_loss_sum.detach().cpu().item()
info["pruned_loss"] = pruned_loss_sum.detach().cpu().item()
if params.ctc_loss_scale > 0.0:
info["ctc_loss"] = ctc_loss_sum.detach().cpu().item()
if params.heat_loss_scale > 0.0:
info["heat_loss"] = heat_loss_sum.detach().cpu().item()
return loss, info
def compute_validation_loss(
params: AttributeDict,
model: Union[nn.Module, DDP],
sp: spm.SentencePieceProcessor,
valid_dl: torch.utils.data.DataLoader,
world_size: int = 1,
) -> MetricsTracker:
"""Run the validation process."""
model.eval()
tot_loss = MetricsTracker()
for batch_idx, batch in enumerate(valid_dl):
loss, loss_info = compute_loss(
params=params,
model=model,
sp=sp,
batch=batch,
is_training=False,
)