forked from starry-sky6688/MADDPG
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.py
85 lines (80 loc) · 3.54 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from tqdm import tqdm
from agent import Agent
from common.replay_buffer import Buffer
import torch
import os
import numpy as np
import matplotlib.pyplot as plt
class Runner:
def __init__(self, args, env):
self.args = args
self.noise = args.noise_rate
self.epsilon = args.epsilon
self.episode_limit = args.max_episode_len
self.env = env
self.agents = self._init_agents()
self.buffer = Buffer(args)
self.save_path = self.args.save_dir + '/' + self.args.scenario_name
if not os.path.exists(self.save_path):
os.makedirs(self.save_path)
def _init_agents(self):
agents = []
for i in range(self.args.n_agents):
agent = Agent(i, self.args)
agents.append(agent)
return agents
def run(self):
returns = []
for time_step in tqdm(range(self.args.time_steps)):
# reset the environment
if time_step % self.episode_limit == 0:
s = self.env.reset()
u = []
actions = []
with torch.no_grad():
for agent_id, agent in enumerate(self.agents):
action = agent.select_action(s[agent_id], self.noise, self.epsilon)
u.append(action)
actions.append(action)
for i in range(self.args.n_agents, self.args.n_players):
actions.append([0, np.random.rand() * 2 - 1, 0, np.random.rand() * 2 - 1, 0])
s_next, r, done, info = self.env.step(actions)
self.buffer.store_episode(s[:self.args.n_agents], u, r[:self.args.n_agents], s_next[:self.args.n_agents])
s = s_next
if self.buffer.current_size >= self.args.batch_size:
transitions = self.buffer.sample(self.args.batch_size)
for agent in self.agents:
other_agents = self.agents.copy()
other_agents.remove(agent)
agent.learn(transitions, other_agents)
if time_step > 0 and time_step % self.args.evaluate_rate == 0:
returns.append(self.evaluate())
plt.figure()
plt.plot(range(len(returns)), returns)
plt.xlabel('episode * ' + str(self.args.evaluate_rate / self.episode_limit))
plt.ylabel('average returns')
plt.savefig(self.save_path + '/plt.png', format='png')
self.noise = max(0.05, self.noise - 0.0000005)
self.epsilon = max(0.05, self.noise - 0.0000005)
np.save(self.save_path + '/returns.pkl', returns)
def evaluate(self):
returns = []
for episode in range(self.args.evaluate_episodes):
# reset the environment
s = self.env.reset()
rewards = 0
for time_step in range(self.args.evaluate_episode_len):
self.env.render()
actions = []
with torch.no_grad():
for agent_id, agent in enumerate(self.agents):
action = agent.select_action(s[agent_id], 0, 0)
actions.append(action)
for i in range(self.args.n_agents, self.args.n_players):
actions.append([0, np.random.rand() * 2 - 1, 0, np.random.rand() * 2 - 1, 0])
s_next, r, done, info = self.env.step(actions)
rewards += r[0]
s = s_next
returns.append(rewards)
print('Returns is', rewards)
return sum(returns) / self.args.evaluate_episodes