forked from hunglc007/tensorflow-yolov4-tflite
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdetect_simple.py
49 lines (39 loc) · 1.52 KB
/
detect_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import tensorflow as tf
import core.utils as utils
from tensorflow.python.saved_model import tag_constants
import cv2
import numpy as np
MODEL_PATH = './checkpoints/yolov4-416'
IOU_THRESHOLD = 0.45
SCORE_THRESHOLD = 0.25
INPUT_SIZE = 416
# load model
saved_model_loaded = tf.saved_model.load(MODEL_PATH, tags=[tag_constants.SERVING])
infer = saved_model_loaded.signatures['serving_default']
def main(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_input = cv2.resize(img, (INPUT_SIZE, INPUT_SIZE))
img_input = img_input / 255.
img_input = img_input[np.newaxis, ...].astype(np.float32)
img_input = tf.constant(img_input)
pred_bbox = infer(img_input)
for key, value in pred_bbox.items():
boxes = value[:, :, 0:4]
pred_conf = value[:, :, 4:]
boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression(
boxes=tf.reshape(boxes, (tf.shape(boxes)[0], -1, 1, 4)),
scores=tf.reshape(
pred_conf, (tf.shape(pred_conf)[0], -1, tf.shape(pred_conf)[-1])),
max_output_size_per_class=50,
max_total_size=50,
iou_threshold=IOU_THRESHOLD,
score_threshold=SCORE_THRESHOLD
)
pred_bbox = [boxes.numpy(), scores.numpy(), classes.numpy(), valid_detections.numpy()]
result = utils.draw_bbox(img, pred_bbox)
result = cv2.cvtColor(np.array(result), cv2.COLOR_RGB2BGR)
cv2.imwrite('result.png', result)
if __name__ == '__main__':
img_path = './data/kite.jpg'
main(img_path)