-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmycurve02
121 lines (101 loc) · 4.32 KB
/
mycurve02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from joblib import Parallel, delayed
import numpy as np
import matplotlib.pyplot as plt
import time
from scipy.optimize import differential_evolution
from scipy.special import erf
from sklearn.metrics import r2_score
import time
from scipy.stats import sem
# Define the function to be optimized
def refractive_index(x,m,k,t,h,a,d,h1,a1,d1,h2,a2,d2):
y = (np.exp(-m + k/(x) + t*np.log(x))) + (a*(x)*np.exp(-((np.log(h*x))**2/d))) + (a1*(x)*np.exp(-((np.log(h1*x))**2/d1))) + (a2*(x)*np.exp(-((np.log(h2*x))**2/d2)))
return np.clip(y, y_output_bounds[0], y_output_bounds[1])
# Define the objective function to be minimized
def objective(params, x_data, y_data, y_output_bounds):
m,k,t,h,a,d,h1,a1,d1,h2,a2,d2 = params
y_pred = refractive_index(x_data,m,k,t,h,a,d,h1,a1,d1,h2,a2,d2)
mape = np.mean(np.abs((y_data - y_pred) / y_data)) * 10
mask = np.logical_and(x_data >= 0.35, x_data <= 0.75)
x_data_filtered = x_data[mask]
y_data_filtered = y_data[mask]
mape2 = np.mean(np.abs((y_data[mask] - y_pred[mask]) / y_data[mask])) * 10
#error[np.isnan(error)] = 0
error_mape = mape * (2*mape2)
return np.sum(error_mape ** 2)
# Load data from file
data = np.loadtxt('bk7_extinction.txt')
x_data = data[:, 0]
y_data = data[:, 1]
# Set bounds for the output function
x_output_bounds = (0.3, 2.5)
y_output_bounds = (1e-9, 1e-6)
# Set initial parameters
m_int = 33
k_int = 12
t_int = 17
h_int = 1.5
a_int = 2e-8
d_int = 0.03
h1_int = 2.1
a1_int = 2e-8
d1_int = 0.01
h2_int = 0.3
a2_int = 1e-6
d2_int = 0.1
params_init = [m_int, k_int, t_int, h_int, a_int, d_int, h1_int, a1_int, d1_int]
# Set bounds for the parameters
bounds = [(26, 45), (7, 22), (10, 26), (0.5, 2), (-5e-08, 5e-08), (0.001, 0.2), (0.5, 4), (-5e-08, 5e-08), (0.005, 0.05), (0.05, 0.6), (5e-07, 3e-06), (0.05, 0.5)]
# Perform first optimization with differential evolution
def optimize(bounds, x_data, y_data, y_output_bounds):
result = differential_evolution(objective, bounds, tol=1e-3, atol=1e-3, init='sobol', maxiter=8048, popsize=32, strategy='rand1bin', args=(x_data, y_data, y_output_bounds))
return result
# 'best2bin', 'rand1bin', 'rand2bin', 'randtobest1bin', 'currenttobest1bin', 'best1exp', 'rand1exp', and 'rand2exp'.
def main():
# Define the number of cores to use
n_jobs = 8
start_time = time.time() # Start the timer
# Run the optimization using multiple cores
results_all = Parallel(n_jobs=n_jobs)(
delayed(optimize)(bounds, x_data, y_data, y_output_bounds) for _ in range(n_jobs))
end_time = time.time() # End the timer
print(f"Total execution time: {end_time - start_time:.6f} seconds")
# Print and plot results
for i, result in enumerate(results_all):
# Calculate R-squared value
y_pred = refractive_index(x_data, *result.x)
r2 = r2_score(y_data, y_pred)
print(f"R-squared value for job {i+1}: {r2:.8f}")
print('Optimized parameters for job {i+1}:')
print('m =', result.x[0])
print('k =', result.x[1])
print('t =', result.x[2])
print('h =', result.x[3])
print('a =', result.x[4])
print('d =', result.x[5])
print('h1 =', result.x[6])
print('a1 =', result.x[7])
print('d1 =', result.x[8])
mape = np.mean(np.abs((y_data - y_pred) / y_data)) * 1
print(f"Mean absolute percentage error (MAPE): {mape:.6f}")
print("Optimization successful:", result.success)
print("Objective function value:", result.fun)
print("Number of iterations:", result.nit)
# Plot the data and the fitted curve for job i+1
x_plot = np.linspace(0.3, 2.2, 1000)
y_plot = refractive_index(x_plot, *result.x)
# Filter data between 0.5 and 1.2
mask = np.logical_and(x_data >= 0.3, x_data <= 2.2)
x_data_filtered = x_data[mask]
y_data_filtered = y_data[mask]
y_data_masked = y_data[mask]
print(f'Min y for job {i+1}:', np.min(y_data_masked))
print(f'Max y for job {i+1}:', np.max(y_data_masked))
plt.plot(x_data_filtered, y_data_filtered, 'bo')
plt.plot(x_plot, y_plot, 'r-', linewidth=2)
plt.xlabel('Wavelength (µm)')
plt.ylabel('Refractive index')
plt.show()
#print(f"Total execution time: {end_time - start_time:.6f} seconds")
if __name__ == '__main__':
main()