-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathminimum-cost-to-separate-sentence-into-rows.cpp
93 lines (90 loc) · 3.4 KB
/
minimum-cost-to-separate-sentence-into-rows.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
// Time: O(s + n * k), n is the number of the word_lens
// Space: O(k)
class Solution {
public:
int minimumCost(string sentence, int k) {
vector<int> word_lens, dp; // dp[i]: min cost of word_lens[-1-i:]
for (int i = size(sentence) - 1, j = size(sentence) - 1, t = -1; i >= -1; --i) {
if (i != -1 && sentence[i] != ' ') {
continue;
}
const int l = j - i;
j = i - 1;
word_lens.emplace_back(l);
dp.emplace_back(numeric_limits<int>::max());
t += l + 1;
if (t <= k) {
dp.back() = 0;
continue;
}
int total = l;
for (int j = size(dp) - 2; j >= 0; --j) {
dp.back() = min(dp.back(), dp[j] + (k - total) * (k - total));
total += (word_lens[j] + 1);
if (total > k) {
word_lens = vector<int>(cbegin(word_lens) + j, cend(word_lens)); // minimize len(word_lens) s.t. sum(word_lens) > k
dp = vector<int>(cbegin(dp) + j, cend(dp));
break;
}
}
}
return !empty(dp) ? dp.back() : 0;
}
};
// Time: O(s + n * k), n is the number of the word_lens
// Space: O(n)
class Solution2 {
public:
int minimumCost(string sentence, int k) {
vector<int> word_lens;
for (int i = 0, j = 0; i <= size(sentence); ++i) {
if (i != size(sentence) && sentence[i] != ' ') {
continue;
}
word_lens.emplace_back(i - j);
j = i + 1;
}
vector<int> dp(size(word_lens), numeric_limits<int>::max()); // dp[i]: min cost of word_lens[i:]
int i = size(word_lens) - 1;
for (int total = -1; i >= 0 && total + (word_lens[i] + 1) <= k; --i) { // find max i s.t. the length of the last line > k
total += (word_lens[i] + 1);
dp[i] = 0;
}
for (; i >= 0; --i) {
for (int j = i + 1, total = word_lens[i]; j < size(dp) && total <= k; total += (word_lens[j++] + 1)) {
dp[i] = min(dp[i], dp[j] + (k - total) * (k - total));
}
}
return dp[0];
}
};
// Time: O(s + n * k), n is the number of the word_lens
// Space: O(n)
class Solution3 {
public:
int minimumCost(string sentence, int k) {
vector<int> word_lens;
for (int i = 0, j = 0; i <= size(sentence); ++i) {
if (i != size(sentence) && sentence[i] != ' ') {
continue;
}
word_lens.emplace_back(i - j);
j = i + 1;
}
vector<int> dp(1 + (size(word_lens) - 1), numeric_limits<int>::max()); // dp[i]: min cost of the first i word_lens where i in [0, len(words)-1]
dp[0] = 0;
for (int i = 1; i <= (size(word_lens) - 1); ++i) {
for (int j = i - 1, total = word_lens[i - 1]; j >= 0 && total <= k; --j) {
dp[i] = min(dp[i], dp[j] + (k - total) * (k - total));
if (j - 1 >= 0) {
total += (word_lens[j - 1] + 1);
}
}
}
int i = size(word_lens) - 1;
for (int total = -1; i >= 0 && total + (word_lens[i] + 1) <= k; --i) { // find max i s.t. the length of the last line > k
total += (word_lens[i] + 1);
}
return *min_element(cbegin(dp) + (i + 1), cend(dp));
}
};