forked from laxmimerit/NLP-Models-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dnc.py
142 lines (114 loc) · 4.85 KB
/
dnc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright 2017 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""DNC Cores.
These modules create a DNC core. They take input, pass parameters to the memory
access module, and integrate the output of memory to form an output.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import numpy as np
import sonnet as snt
import tensorflow as tf
import access
DNCState = collections.namedtuple('DNCState', ('access_output', 'access_state',
'controller_state'))
class DNC(snt.RNNCore):
"""DNC core module.
Contains controller and memory access module.
"""
def __init__(self,
access_config,
controller_config,
output_size,
clip_value=None,
name='dnc'):
"""Initializes the DNC core.
Args:
access_config: dictionary of access module configurations.
controller_config: dictionary of controller (LSTM) module configurations.
output_size: output dimension size of core.
clip_value: clips controller and core output values to between
`[-clip_value, clip_value]` if specified.
name: module name (default 'dnc').
Raises:
TypeError: if direct_input_size is not None for any access module other
than KeyValueMemory.
"""
super(DNC, self).__init__(name=name)
with self._enter_variable_scope():
self._controller = snt.LSTM(**controller_config)
self._access = access.MemoryAccess(**access_config)
self._access_output_size = np.prod(self._access.output_size.as_list())
self._output_size = output_size
self._clip_value = clip_value or 0
self._output_size = tf.TensorShape([output_size])
self._state_size = DNCState(
access_output=self._access_output_size,
access_state=self._access.state_size,
controller_state=self._controller.state_size)
def _clip_if_enabled(self, x):
if self._clip_value > 0:
return tf.clip_by_value(x, -self._clip_value, self._clip_value)
else:
return x
def _build(self, inputs, prev_state):
"""Connects the DNC core into the graph.
Args:
inputs: Tensor input.
prev_state: A `DNCState` tuple containing the fields `access_output`,
`access_state` and `controller_state`. `access_state` is a 3-D Tensor
of shape `[batch_size, num_reads, word_size]` containing read words.
`access_state` is a tuple of the access module's state, and
`controller_state` is a tuple of controller module's state.
Returns:
A tuple `(output, next_state)` where `output` is a tensor and `next_state`
is a `DNCState` tuple containing the fields `access_output`,
`access_state`, and `controller_state`.
"""
prev_access_output = prev_state.access_output
prev_access_state = prev_state.access_state
prev_controller_state = prev_state.controller_state
batch_flatten = snt.BatchFlatten()
controller_input = tf.concat(
[batch_flatten(inputs), batch_flatten(prev_access_output)], 1)
controller_output, controller_state = self._controller(
controller_input, prev_controller_state)
controller_output = self._clip_if_enabled(controller_output)
controller_state = snt.nest.map(self._clip_if_enabled, controller_state)
access_output, access_state = self._access(controller_output,
prev_access_state)
output = tf.concat([controller_output, batch_flatten(access_output)], 1)
output = snt.Linear(
output_size=self._output_size.as_list()[0],
name='output_linear')(output)
output = self._clip_if_enabled(output)
return output, DNCState(
access_output=access_output,
access_state=access_state,
controller_state=controller_state)
def initial_state(self, batch_size, dtype=tf.float32):
return DNCState(
controller_state=self._controller.initial_state(batch_size, dtype),
access_state=self._access.initial_state(batch_size, dtype),
access_output=tf.zeros(
[batch_size] + self._access.output_size.as_list(), dtype))
@property
def state_size(self):
return self._state_size
@property
def output_size(self):
return self._output_size