forked from laxmimerit/NLP-Models-Tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepro_utils.py
164 lines (139 loc) · 5.03 KB
/
prepro_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# coding=utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unicodedata
import six
from functools import partial
SPIECE_UNDERLINE = '▁'
def printable_text(text):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode('utf-8', 'ignore')
else:
raise ValueError('Unsupported string type: %s' % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, unicode):
return text.encode('utf-8')
else:
raise ValueError('Unsupported string type: %s' % (type(text)))
else:
raise ValueError('Not running on Python2 or Python 3?')
def print_(*args):
new_args = []
for arg in args:
if isinstance(arg, list):
s = [printable_text(i) for i in arg]
s = ' '.join(s)
new_args.append(s)
else:
new_args.append(printable_text(arg))
print(*new_args)
def preprocess_text(
inputs, lower = False, remove_space = True, keep_accents = False
):
if remove_space:
outputs = ' '.join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace('``', '"').replace("''", '"')
if six.PY2 and isinstance(outputs, str):
outputs = outputs.decode('utf-8')
if not keep_accents:
outputs = unicodedata.normalize('NFKD', outputs)
outputs = ''.join([c for c in outputs if not unicodedata.combining(c)])
if lower:
outputs = outputs.lower()
return outputs
def encode_pieces(sp_model, text, return_unicode = True, sample = False):
# return_unicode is used only for py2
# note(zhiliny): in some systems, sentencepiece only accepts str for py2
if six.PY2 and isinstance(text, unicode):
text = text.encode('utf-8')
if not sample:
pieces = sp_model.EncodeAsPieces(text)
else:
pieces = sp_model.SampleEncodeAsPieces(text, 64, 0.1)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == ',' and piece[-2].isdigit():
cur_pieces = sp_model.EncodeAsPieces(
piece[:-1].replace(SPIECE_UNDERLINE, '')
)
if (
piece[0] != SPIECE_UNDERLINE
and cur_pieces[0][0] == SPIECE_UNDERLINE
):
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
# note(zhiliny): convert back to unicode for py2
if six.PY2 and return_unicode:
ret_pieces = []
for piece in new_pieces:
if isinstance(piece, str):
piece = piece.decode('utf-8')
ret_pieces.append(piece)
new_pieces = ret_pieces
return new_pieces
def encode_ids(sp_model, text, sample = False):
pieces = encode_pieces(
sp_model, text, return_unicode = False, sample = sample
)
ids = [sp_model.PieceToId(piece) for piece in pieces]
return ids
if __name__ == '__main__':
import sentencepiece as spm
sp = spm.SentencePieceProcessor()
sp.load('sp10m.uncased.v3.model')
print_(u'I was born in 2000, and this is falsé.')
print_(
u'ORIGINAL',
sp.EncodeAsPieces(u'I was born in 2000, and this is falsé.'),
)
print_(
u'OURS', encode_pieces(sp, u'I was born in 2000, and this is falsé.')
)
print(encode_ids(sp, u'I was born in 2000, and this is falsé.'))
print_('')
prepro_func = partial(preprocess_text, lower = True)
print_(prepro_func('I was born in 2000, and this is falsé.'))
print_(
'ORIGINAL',
sp.EncodeAsPieces(
prepro_func('I was born in 2000, and this is falsé.')
),
)
print_(
'OURS',
encode_pieces(
sp, prepro_func('I was born in 2000, and this is falsé.')
),
)
print(encode_ids(sp, prepro_func('I was born in 2000, and this is falsé.')))
print_('')
print_('I was born in 2000, and this is falsé.')
print_(
'ORIGINAL', sp.EncodeAsPieces('I was born in 2000, and this is falsé.')
)
print_('OURS', encode_pieces(sp, 'I was born in 2000, and this is falsé.'))
print(encode_ids(sp, 'I was born in 2000, and this is falsé.'))
print_('')
print_('I was born in 92000, and this is falsé.')
print_(
'ORIGINAL', sp.EncodeAsPieces('I was born in 92000, and this is falsé.')
)
print_('OURS', encode_pieces(sp, 'I was born in 92000, and this is falsé.'))
print(encode_ids(sp, 'I was born in 92000, and this is falsé.'))