-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinreg_closedform.py
68 lines (49 loc) · 1.79 KB
/
linreg_closedform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
'''
Sample implementation of linear regression using direct computation of the solution
AUTHOR Eric Eaton
'''
import numpy as np
#-----------------------------------------------------------------
# Class LinearRegression - Closed Form Implementation
#-----------------------------------------------------------------
class LinearRegressionClosedForm:
def __init__(self, regLambda = 1E-8):
'''
Constructor
'''
self.regLambda = regLambda;
def fit(self, X, y):
'''
Trains the model
Arguments:
X is a n-by-d array
y is an n-by-1 array
Returns:
No return value
'''
n = len(X)
# add 1s column
Xex = np.c_[np.ones([n, 1]), X];
n,d = Xex.shape
d = d-1 # remove 1 for the extra column of ones we added to get the original num features
# construct reg matrix
regMatrix = self.regLambda * np.eye(d + 1)
regMatrix[0,0] = 0
# analytical solution (X'X + regMatrix)^-1 X' y
self.theta = np.linalg.pinv(Xex.T.dot(Xex) + regMatrix).dot(Xex.T).dot(y);
def predict(self, X):
'''
Use the trained model to predict values for each instance in X
Arguments:
X is a n-by-d numpy array
Returns:
an n-by-1 numpy array of the predictions
'''
n = len(X)
# add 1s column
Xex = np.c_[np.ones([n, 1]), X];
# predict
return Xex.dot(self.theta);
#-----------------------------------------------------------------
# End of Class LinearRegression - Closed Form Implementation
#-----------------------------------------------------------------