-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.c
589 lines (536 loc) · 14.5 KB
/
main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
#include <iostm8s103f3.h>
#include <intrinsics.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include "dispatcher.h"
#include "rc.h"
#include "awu.h"
#define HSI_CLOCK 16000000
#define CPU_CLOCK 16000000
#ifndef NDEBUG
#define BAUDRATE_SUPPORT_9600
#define BAUDRATE_SUPPORT_115200
uint8_t txbuf[8];
volatile int8_t tx1;
volatile int8_t tx2;
#pragma vector = UART1_T_TXE_vector
__interrupt void UART1_TXE_Isr(void)
{
int8_t tmp = tx2;
if (tx1 == tmp)
{
UART1_CR2_TIEN = 0;
PB_ODR_bit.ODR5 = 1;
}
else
{
UART1_DR = txbuf[tmp & 7];
PB_ODR_bit.ODR5 = 0;
++tmp;
tx2 = tmp & 15;
}
}
typedef enum
{
#ifdef BAUDRATE_SUPPORT_9600
BAURATE_9600,
#endif
#ifdef BAUDRATE_SUPPORT_19200
BAURATE_19200,
#endif
#ifdef BAUDRATE_SUPPORT_57600
BAURATE_57600,
#endif
#ifdef BAUDRATE_SUPPORT_115200
BAURATE_115200,
#endif
#ifdef BAUDRATE_SUPPORT_1000000
BAURATE_1000000,
#endif
BAUDRATE_SUPPORTED_COUNT
} baud_rate_t;
typedef struct
{
uint8_t brr1;
uint8_t brr2;
} brr_t;
#define BRR_DIV(clk, br) (((clk) + (br) - 1) / (br))
#define BRR1_VALUE(clk, br) (BRR_DIV((clk), (br)) >> 4)
#define BRR2_VALUE(clk, br) ((BRR_DIV((clk), (br)) & 0xF) | ((BRR_DIV((clk), (br)) >> 8)))
const brr_t uart_dividers_for_clock[BAUDRATE_SUPPORTED_COUNT][8] = {
#ifdef BAUDRATE_SUPPORT_9600
{
{ BRR1_VALUE(HSI_CLOCK / 1, 9600), BRR2_VALUE(HSI_CLOCK / 1, 9600) },
{ BRR1_VALUE(HSI_CLOCK / 2, 9600), BRR2_VALUE(HSI_CLOCK / 2, 9600) },
{ BRR1_VALUE(HSI_CLOCK / 4, 9600), BRR2_VALUE(HSI_CLOCK / 4, 9600) },
{ BRR1_VALUE(HSI_CLOCK / 8, 9600), BRR2_VALUE(HSI_CLOCK / 8, 9600) },
},
#endif
#ifdef BAUDRATE_SUPPORT_19200
{
{ BRR1_VALUE(HSI_CLOCK / 1, 19200), BRR2_VALUE(HSI_CLOCK / 1, 19200) },
{ BRR1_VALUE(HSI_CLOCK / 2, 19200), BRR2_VALUE(HSI_CLOCK / 2, 19200) },
{ BRR1_VALUE(HSI_CLOCK / 4, 19200), BRR2_VALUE(HSI_CLOCK / 4, 19200) },
{ BRR1_VALUE(HSI_CLOCK / 8, 19200), BRR2_VALUE(HSI_CLOCK / 8, 19200) },
},
#endif
#ifdef BAUDRATE_SUPPORT_57600
{
{ BRR1_VALUE(HSI_CLOCK / 1, 57600), BRR2_VALUE(HSI_CLOCK / 1, 57600) },
{ BRR1_VALUE(HSI_CLOCK / 2, 57600), BRR2_VALUE(HSI_CLOCK / 2, 57600) },
{ BRR1_VALUE(HSI_CLOCK / 4, 57600), BRR2_VALUE(HSI_CLOCK / 4, 57600) },
{ BRR1_VALUE(HSI_CLOCK / 8, 57600), BRR2_VALUE(HSI_CLOCK / 8, 57600) },
},
#endif
#ifdef BAUDRATE_SUPPORT_115200
{
{ BRR1_VALUE(HSI_CLOCK / 1, 115200), BRR2_VALUE(HSI_CLOCK / 1, 115200) },
{ BRR1_VALUE(HSI_CLOCK / 2, 115200), BRR2_VALUE(HSI_CLOCK / 2, 115200) },
{ BRR1_VALUE(HSI_CLOCK / 4, 115200), BRR2_VALUE(HSI_CLOCK / 4, 115200) },
{ BRR1_VALUE(HSI_CLOCK / 8, 115200), BRR2_VALUE(HSI_CLOCK / 8, 115200) },
},
#endif
#ifdef BAUDRATE_SUPPORT_1000000
{
{ BRR1_VALUE(HSI_CLOCK / 1, 1000000), BRR2_VALUE(HSI_CLOCK / 1, 1000000) },
{ BRR1_VALUE(HSI_CLOCK / 2, 1000000), BRR2_VALUE(HSI_CLOCK / 2, 1000000) },
{ BRR1_VALUE(HSI_CLOCK / 4, 1000000), BRR2_VALUE(HSI_CLOCK / 4, 1000000) },
{ BRR1_VALUE(HSI_CLOCK / 8, 1000000), BRR2_VALUE(HSI_CLOCK / 8, 1000000) },
},
#endif
};
#if MASTER_CLOCK_ALLOW_16000000
#endif
#if MASTER_CLOCK_ALLOW_8000000
#endif
#if MASTER_CLOCK_ALLOW_4000000
#endif
#if MASTER_CLOCK_ALLOW_2000000
#endif
void set_baudrate(baud_rate_t br)
{
UART1_BRR2 = uart_dividers_for_clock[br][CLK_CKDIVR_HSIDIV].brr2;
UART1_BRR1 = uart_dividers_for_clock[br][CLK_CKDIVR_HSIDIV].brr1;
}
size_t __write(int handle, const unsigned char *buf, size_t bufSize)
{
size_t i;
uint8_t tmp = tx1;
for (i = 0; i < bufSize; ++i)
{
// If output buffer if full wait till free space shows up
while (abs(tmp - tx2) == 8)
{
UART1_CR2_TIEN = 1;
__wait_for_interrupt();
}
// put char in output buffer, for interrupt to use
txbuf[tmp & 7] = *buf++;
tmp = (tmp + 1) & 15;
tx1 = tmp;
UART1_CR2_TIEN = 1;
}
return bufSize;
}
#endif // NDEBUG
__no_init uint8_t eeprom_data[5] @ ".eeprom.noinit";
uint8_t brightness;
uint8_t power_mask;
uint8_t led_mask[3];
static void restore_eeprom_values(void)
{
brightness = eeprom_data[0];
power_mask = eeprom_data[1] ? 0xFF : 0;
led_mask[0] = eeprom_data[2];
led_mask[1] = eeprom_data[3];
led_mask[2] = eeprom_data[4];
}
static uint8_t eeprom_write_needed(void)
{
return (eeprom_data[0] != brightness) ||
(eeprom_data[1] != power_mask) ||
(eeprom_data[2] != led_mask[0]) ||
(eeprom_data[3] != led_mask[1]) ||
(eeprom_data[4] != led_mask[2]);
}
static void store_eeprom_values(void)
{
if (FLASH_IAPSR_DUL == 0)
{
FLASH_DUKR = 0xAE;
FLASH_DUKR = 0x56;
}
if (eeprom_data[0] != brightness)
eeprom_data[0] = brightness;
if (eeprom_data[1] != power_mask)
eeprom_data[1] = power_mask;
if (eeprom_data[2] != led_mask[0])
eeprom_data[2] = led_mask[0];
if (eeprom_data[3] != led_mask[1])
eeprom_data[3] = led_mask[1];
if (eeprom_data[4] != led_mask[2])
eeprom_data[4] = led_mask[2];
FLASH_IAPSR_DUL = 0;
}
#define EVENT_10MS_TICK 20
#pragma vector = TIM2_OVR_UIF_vector
__interrupt void TIM2_Isr(void)
{
ADD_EVENT(EVENT_10MS_TICK);
// Clear interrupt
TIM2_SR1_UIF = 0;
}
//static const uint8_t bm[] = { 0, 10, 20, 30, 50, 75, 100, 128, 152, 180, 205, 230, 255 };
static const uint8_t bm[] = { 0, 6, 12, 18, 30, 45, 60, 78, 92, 109, 124, 140, 156 };
static const uint8_t digi[10] = { 0, 1, 2, 4, 6, 7, 8, 9, 10, 12 };
void init_tick(void)
{
TIM2_CR1_CEN = 0;
TIM2_CR1_ARPE = 0;
TIM2_CR1_URS = 0;
TIM2_PSCR = 10;
TIM2_ARRH = 0;
TIM2_ARRL = 156; // count to 156 ~10ms period at PSC 10
TIM2_CR1_OPM = 0; // Continues mode = 0, One shot = 1
TIM2_SR1_UIF = 0;
TIM2_IER_UIE = 1;
TIM2_CR1_CEN = 1;
}
void pwm(uint8_t r, uint8_t g, uint8_t b)
{
// Red
TIM2_CCMR1_OC1M = 7; // PWM = 7, 4 - force low
TIM2_CCMR1_OC1PE = 0; // Preload 1 - enabled, 0 - disable
TIM2_CCMR1_CC1S = 0; // CC1 output
TIM2_CCER1_CC1P = 1; // CC1 output polarity
TIM2_CCER1_CC1E = 1; // CC1 output enabled
TIM2_CCR1H = 0;
TIM2_CCR1L = r; // switch at on_time
// Green
TIM2_CCMR2_OC2M = 7; // PWM = 7, 4 - force low
TIM2_CCMR2_OC2PE = 0; // Preload 1 - enabled, 0 - disable
TIM2_CCMR2_CC2S = 0; // CC1 output
TIM2_CCER1_CC2P = 1; // CC1 output polarity
TIM2_CCER1_CC2E = 1; // CC1 output enabled
TIM2_CCR2H = 0;
TIM2_CCR2L = g; // switch at on_time
// Blue
TIM2_CCMR3_OC3M = 7; // PWM = 7, 4 - force low
TIM2_CCMR3_OC3PE = 0; // Preload 1 - enabled, 0 - disable
TIM2_CCMR3_CC3S = 0; // CC1 output
TIM2_CCER2_CC3P = 1; // CC1 output polarity
TIM2_CCER2_CC3E = 1; // CC1 output enabled
TIM2_CCR3H = 0;
TIM2_CCR3L = b; // switch at on_time
TIM2_CR1_CEN = 1;
}
void key(void *arg)
{
#ifndef NDEBUG
puts((char *)arg);
#endif
}
#define EVENT_EEPROM_WRITE 0x20
static uint8_t delayed_write_handle_event(uint8_t event)
{
if (event != EVENT_EEPROM_WRITE)
return 0;
store_eeprom_values();
return 1;
}
static void delayed_eeprom_write(void)
{
if (eeprom_write_needed())
set_awu_timeout(5, EVENT_EEPROM_WRITE);
}
static void update_leds(void)
{
pwm(bm[brightness] & led_mask[0] & power_mask,
bm[brightness] & led_mask[1] & power_mask,
bm[brightness] & led_mask[2] & power_mask);
delayed_eeprom_write();
}
void down(void)
{
#ifndef NDEBUG
puts("down");
#endif
if (brightness)
{
brightness--;
update_leds();
}
}
void up(void)
{
#ifndef NDEBUG
puts("up");
#endif
if (brightness < sizeof(bm) - 1)
{
brightness++;
update_leds();
}
}
void yellow(void)
{
#ifndef NDEBUG
puts("yellow");
#endif
power_mask = 0xFF;
led_mask[0] = led_mask[1] = 255;
led_mask[2] = 255;
update_leds();
}
void rc_default(uint8_t len, const uint8_t *rc_buf)
{
#ifndef NDEBUG
printf("RC_CODE%d( ", len);
for (uint8_t i = 0; i != len; ++i)
{
printf("0x%02X, ", rc_buf[i]);
}
puts("KEY_ ),");
#endif
}
void red(void)
{
#ifndef NDEBUG
puts("red");
#endif
power_mask = 0xFF;
led_mask[0] = 255;
led_mask[1] = 0;
led_mask[2] = 0;
update_leds();
}
void green(void)
{
#ifndef NDEBUG
puts("green");
#endif
power_mask = 0xFF;
led_mask[0] = 0;
led_mask[1] = 255;
led_mask[2] = 0;
update_leds();
}
void blue(void)
{
#ifndef NDEBUG
puts("blue");
#endif
power_mask = 0xFF;
led_mask[0] = 0;
led_mask[1] = 0;
led_mask[2] = 255;
update_leds();
}
void power(void)
{
#ifndef NDEBUG
puts("power");
#endif
power_mask ^= 255;
update_leds();
}
void digit(uint8_t d)
{
brightness = digi[d];
power_mask = 0xFF;
#ifndef NDEBUG
d += '0';
putchar(d);
puts("");
#endif
update_leds();
}
enum keys
{
KEY_POWER,
KEY_UP,
KEY_DOWN,
KEY_RED,
KEY_GREEN,
KEY_BLUE,
KEY_YELLOW,
KEY_0,
KEY_1,
KEY_2,
KEY_3,
KEY_4,
KEY_5,
KEY_6,
KEY_7,
KEY_8,
KEY_9,
};
uint16_t tick_count;
uint8_t tick_handle_event(uint8_t e)
{
if (e != EVENT_10MS_TICK)
return 0;
tick_count++;
return 1;
}
uint16_t last_code_tick = 0;
uint8_t last_code = 0xFF;
uint8_t repeate_code = 0;
void rc_key_pressed(uint8_t code)
{
if (code != last_code)
{
// Different key, just store code and time, mark that it's not
// repetition and check key later
last_code = code;
last_code_tick = tick_count;
repeate_code = 0;
}
else
{
uint16_t diff;
uint16_t t;
__disable_interrupt();
t = tick_count;
__enable_interrupt();
diff = tick_count - last_code_tick;
printf("%d\n", diff);
// Last press was very short time ago do nothing
if (diff < 10)
return;
// Last press was slightly later but it's first time after
// press wait a little bit longer if this is first time
if (repeate_code == 0 && diff < 25)
return;
// If previous press time was some time ago treat it as first press
repeate_code = diff < 50;
last_code_tick = t;
}
switch (code)
{
case KEY_POWER:
power();
break;
case KEY_UP:
up();
break;
case KEY_DOWN:
down();
break;
case KEY_RED:
red();
break;
case KEY_GREEN:
green();
break;
case KEY_BLUE:
blue();
break;
case KEY_YELLOW:
yellow();
break;
case KEY_0:
case KEY_1:
case KEY_2:
case KEY_3:
case KEY_4:
case KEY_5:
case KEY_6:
case KEY_7:
case KEY_8:
case KEY_9:
digit(code - KEY_0);
break;
}
}
const uint8_t rc_codes[] =
{
RC_CODE1( 0x4C, KEY_UP ),
RC_CODE1( 0x13, KEY_UP ),
RC_CODE1( 0x4D, KEY_DOWN ),
RC_CODE1( 0x14, KEY_DOWN ),
RC_CODE1( 0x32, KEY_RED ),
RC_CODE1( 0x33, KEY_GREEN ),
RC_CODE1( 0x35, KEY_BLUE ),
RC_CODE1( 0x34, KEY_YELLOW ),
RC_CODE1( 0x15, KEY_POWER ),
RC_CODE1( 0x01, KEY_1),
RC_CODE1( 0x02, KEY_2),
RC_CODE1( 0x03, KEY_3),
RC_CODE1( 0x04, KEY_4),
RC_CODE1( 0x05, KEY_5),
RC_CODE1( 0x06, KEY_6),
RC_CODE1( 0x07, KEY_7),
RC_CODE1( 0x08, KEY_8),
RC_CODE1( 0x09, KEY_9),
RC_CODE1( 0x00, KEY_0),
RC_CODE4( 0x03, 0xFC, 0x04, 0xFB, KEY_UP),
RC_CODE4( 0x03, 0xFC, 0x08, 0xF7, KEY_DOWN),
RC_CODE4( 0x03, 0xFC, 0x00, 0xFF, KEY_POWER),
RC_CODE4( 0x03, 0xFC, 0x4B, 0xB4, KEY_RED),
RC_CODE4( 0x03, 0xFC, 0x4C, 0xB3, KEY_GREEN),
RC_CODE4( 0x03, 0xFC, 0x4E, 0xB1, KEY_BLUE),
RC_CODE4( 0x03, 0xFC, 0x4D, 0xB2, KEY_YELLOW),
RC_CODE4( 0x03, 0xFC, 0x05, 0xFA, KEY_1),
RC_CODE4( 0x03, 0xFC, 0x06, 0xF9, KEY_2),
RC_CODE4( 0x03, 0xFC, 0x07, 0xF8, KEY_3),
RC_CODE4( 0x03, 0xFC, 0x09, 0xF6, KEY_4),
RC_CODE4( 0x03, 0xFC, 0x0A, 0xF5, KEY_5),
RC_CODE4( 0x03, 0xFC, 0x0B, 0xF4, KEY_6),
RC_CODE4( 0x03, 0xFC, 0x0D, 0xF2, KEY_7),
RC_CODE4( 0x03, 0xFC, 0x0E, 0xF1, KEY_8),
RC_CODE4( 0x03, 0xFC, 0x0F, 0xF0, KEY_9),
RC_CODE4( 0x03, 0xFC, 0x12, 0xED, KEY_0),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x34, 0xB4, KEY_UP),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x35, 0xB5, KEY_DOWN),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x3D, 0xBD, KEY_POWER),
RC_CODE6( 0x02, 0x20, 0xB0, 0x00, 0x3D, 0x8D, KEY_POWER),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x70, 0xF0, KEY_RED),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x71, 0xF1, KEY_GREEN),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x73, 0xF3, KEY_BLUE),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x72, 0xF2, KEY_YELLOW),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x10, 0x90, KEY_1),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x11, 0x91, KEY_2),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x12, 0x92, KEY_3),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x13, 0x93, KEY_4),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x14, 0x94, KEY_5),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x15, 0x95, KEY_6),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x16, 0x96, KEY_7),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x17, 0x97, KEY_8),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x18, 0x98, KEY_9),
RC_CODE6( 0x02, 0x20, 0x80, 0x00, 0x19, 0x99, KEY_0),
0,
};
struct event_handler event_handlers[] =
{
{ rc_handle_event },
{ delayed_write_handle_event },
{ tick_handle_event },
{ awu_handle_event },
{ NULL }
};
void __noreturn main(void)
{
// HSI 16 MHz
// HSIDIV = 1
CLK_CKDIVR_HSIDIV = 0;
restore_eeprom_values();
#ifndef NDEBUG
set_baudrate(BAURATE_115200);
UART1_CR2_TEN = 1;
#endif
PD_DDR_DDR2 = 1; // Output
PD_DDR_DDR3 = 1;
PD_ODR_ODR2 = 0; // low
PD_ODR_ODR3 = 0;
PD_CR1_C12 = 1; // Push pull
PD_CR1_C13 = 1;
PD_CR2_C22 = 1; // 10MHz
PD_CR2_C23 = 1;
update_leds();
init_tick();
init_rc();
__enable_interrupt();
event_loop();
}