-
Notifications
You must be signed in to change notification settings - Fork 79
/
amazon_main_logit_3way_best.py
241 lines (194 loc) · 9.92 KB
/
amazon_main_logit_3way_best.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
""" Amazon Access Challenge Code for ensemble
Marios Michaildis script for Amazon .
Uses 3-way interactions with forward feature selection and logistic regression
based on Paul Duan's Script.
"""
from __future__ import division
import numpy as np
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
import XGBoostClassifier as xg
from sklearn.cross_validation import StratifiedKFold
SEED = 42 # always use a seed for randomized procedures
def load_data(filename, use_labels=True):
"""
Load data from CSV files and return them as numpy arrays
The use_labels parameter indicates whether one should
read the first column (containing class labels). If false,
return all 0s.
"""
# load column 1 to 8 (ignore last one)
data = np.loadtxt(open( filename), delimiter=',',
usecols=range(1, 9), skiprows=1)
if use_labels:
labels = np.loadtxt(open( filename), delimiter=',',
usecols=[0], skiprows=1)
else:
labels = np.zeros(data.shape[0])
return labels, data
def save_results(predictions, filename):
"""Given a vector of predictions, save results in CSV format."""
with open(filename, 'w') as f:
f.write("id,ACTION\n")
for i, pred in enumerate(predictions):
f.write("%d,%f\n" % (i + 1, pred))
def bagged_set(X_t,y_c,model, seed, estimators, xt, update_seed=True):
# create array object to hold predictions
baggedpred=[ 0.0 for d in range(0, (xt.shape[0]))]
#loop for as many times as we want bags
for n in range (0, estimators):
#shuff;e first, aids in increasing variance and forces different results
#X_t,y_c=shuffle(Xs,ys, random_state=seed+n)
if update_seed: # update seed if requested, to give a slightly different model
model.set_params(random_state=seed + n)
model.fit(X_t,y_c) # fit model0.0917411475506
preds=model.predict_proba(xt)[:,1] # predict probabilities
# update bag's array
for j in range (0, (xt.shape[0])):
baggedpred[j]+=preds[j]
# divide with number of bags to create an average estimate
for j in range (0, len(baggedpred)):
baggedpred[j]/=float(estimators)
# return probabilities
return np.array(baggedpred)
# using numpy to print results
def printfilcsve(X, filename):
np.savetxt(filename,X)
# compute all pairs of variables
def Make_3way(X, Xt,model, y, seed, n, atleast):
grand_auc = 0.0
kfolder=StratifiedKFold(y, n_folds= n,shuffle=True, random_state=seed)
encoder = preprocessing.OneHotEncoder()
Xs = encoder.fit_transform(X) # Returns a sparse matrix (see numpy.sparse)
i=0
for train_index, test_index in kfolder: # for each train and test pair of indices in the kfolder object
# creaning and validation sets
X_train, X_cv = Xs[train_index], Xs[test_index]
y_train, y_cv = np.array(y)[train_index], np.array(y)[test_index]
preds=bagged_set(X_train,y_train,model, SEED , 1, X_cv, update_seed=True)
# compute AUC metric for this CV fold
roc_auc = roc_auc_score(y_cv, preds)
print "AUC (fold %d/%d): %f" % (i + 1, n, roc_auc)
grand_auc+=roc_auc
grand_auc/=n
print ("Total AUC is %f" % (grand_auc))
columns_length=X.shape[1]
for j in range (columns_length):
for d in range (j+1,columns_length):
print("Adding columns' interraction %d and %d" % (j, d) )
new_column_train=X[:,j]+X[:,d]
new_column_test=Xt[:,j]+Xt[:,d]
X=np.column_stack((X,new_column_train))
Xt=np.column_stack((Xt,new_column_test))
encoder = preprocessing.OneHotEncoder()
Xs = encoder.fit_transform(X) # Returns a sparse matrix (see numpy.sparse)
mean_auc = 0.0
i=0
for train_index, test_index in kfolder: # for each train and test pair of indices in the kfolder object
# creaning and validation sets
X_train, X_cv = Xs[train_index], Xs[test_index]
y_train, y_cv = np.array(y)[train_index], np.array(y)[test_index]
preds=bagged_set(X_train,y_train,model, SEED , 1, X_cv, update_seed=True)
# compute AUC metric for this CV fold
roc_auc = roc_auc_score(y_cv, preds)
print "AUC (fold %d/%d): %f" % (i + 1, n, roc_auc)
mean_auc+=roc_auc
mean_auc/=n
if mean_auc >grand_auc +atleast: # if Auc is best than previous + thresold
print ("There is uplift by considering variables %d and %d as new auc: %f with previous best: %f, difference of %f !" % (j,d, mean_auc,grand_auc ,mean_auc-grand_auc) )
grand_auc= mean_auc
else :# we remove the column sinc eit did not yield uplift
X = np.delete(X,-1,1)
Xt= np.delete(Xt,-1,1)
for j in range (columns_length):
for d in range (j+1,columns_length):
for m in range (d+1,columns_length):
print("Adding columns' interraction %d and %d and %d" % (j, d, m) )
new_column_train=X[:,j]+X[:,d]+X[:,m]
new_column_test=Xt[:,j]+Xt[:,d]+Xt[:,m]
X=np.column_stack((X,new_column_train))
Xt=np.column_stack((Xt,new_column_test))
encoder = preprocessing.OneHotEncoder()
Xs = encoder.fit_transform(X) # Returns a sparse matrix (see numpy.sparse)
mean_auc = 0.0
i=0
for train_index, test_index in kfolder: # for each train and test pair of indices in the kfolder object
# creaning and validation sets
X_train, X_cv = Xs[train_index], Xs[test_index]
y_train, y_cv = np.array(y)[train_index], np.array(y)[test_index]
preds=bagged_set(X_train,y_train,model, SEED , 1, X_cv, update_seed=True)
# compute AUC metric for this CV fold
roc_auc = roc_auc_score(y_cv, preds)
print "AUC (fold %d/%d): %f" % (i + 1, n, roc_auc)
mean_auc+=roc_auc
mean_auc/=n
if mean_auc >grand_auc +atleast: # if Auc is best than previous + thresold
print ("There is uplift by considering variables %d and %d and %d as new auc: %f with previous best: %f, difference of %f !" % (j,d,m, mean_auc,grand_auc ,mean_auc-grand_auc) )
grand_auc= mean_auc
else :# we remove the column sinc eit did not yield uplift
X = np.delete(X,-1,1)
Xt= np.delete(Xt,-1,1)
return X, Xt
def main():
"""
Fit models and make predictions.
We'll use one-hot encoding to transform our categorical features
into binary features.
y and X will be numpy array objects.
"""
filename="main_logit_3way_best" # nam prefix
model = LogisticRegression(C=0.7, penalty="l2") # the classifier we'll use
# === load data in memory === #
print "loading data"
y, X = load_data('train.csv')
y_test, X_test = load_data('test.csv', use_labels=False)
#X,X_test= Make_3way(X, X_test)# add interractions
X,X_test=Make_3way(X, X_test, model, y, 1, 5, 0.000075)
# === one-hot encoding === #
# we want to encode the category IDs encountered both in
# the training and the test set, so we fit the encoder on both
encoder = preprocessing.OneHotEncoder()
encoder.fit(np.vstack((X, X_test)))
X = encoder.transform(X) # Returns a sparse matrix (see numpy.sparse)
X_test = encoder.transform(X_test)
# if you want to create new features, you'll need to compute them
# before the encoding, and append them to your dataset after
#create arrays to hold cv an dtest predictions
train_stacker=[ 0.0 for k in range (0,(X.shape[0])) ]
# === training & metrics === #
mean_auc = 0.0
bagging=1 # number of models trained with different seeds
n = 5 # number of folds in strattified cv
kfolder=StratifiedKFold(y, n_folds= n,shuffle=True, random_state=SEED)
i=0
for train_index, test_index in kfolder: # for each train and test pair of indices in the kfolder object
# creaning and validation sets
X_train, X_cv = X[train_index], X[test_index]
y_train, y_cv = np.array(y)[train_index], np.array(y)[test_index]
#print (" train size: %d. test size: %d, cols: %d " % ((X_train.shape[0]) ,(X_cv.shape[0]) ,(X_train.shape[1]) ))
# if you want to perform feature selection / hyperparameter
# optimization, this is where you want to do it
# train model and make predictions
preds=bagged_set(X_train,y_train,model, SEED , bagging, X_cv, update_seed=True)
# compute AUC metric for this CV fold
roc_auc = roc_auc_score(y_cv, preds)
print "AUC (fold %d/%d): %f" % (i + 1, n, roc_auc)
mean_auc += roc_auc
no=0
for real_index in test_index:
train_stacker[real_index]=(preds[no])
no+=1
i+=1
mean_auc/=n
print (" Average AUC: %f" % (mean_auc) )
print (" printing train datasets ")
printfilcsve(np.array(train_stacker), filename + ".train.csv")
# === Predictions === #
# When making predictions, retrain the model on the whole training set
preds=bagged_set(X, y,model, SEED, bagging, X_test, update_seed=True)
#create submission file
printfilcsve(np.array(preds), filename+ ".test.csv")
#save_results(preds, filename+"_submission_" +str(mean_auc) + ".csv")
if __name__ == '__main__':
main()