Skip to content

Latest commit

 

History

History
129 lines (122 loc) · 8.33 KB

README.md

File metadata and controls

129 lines (122 loc) · 8.33 KB

cvpr_2017-2018_paper_terms

Term Frequency in CVPR2017 and CVPR2018 Paper Titles.

====================================================
cvpr_2017_titles : 783
cvpr_2018_titles : 979

====================================================
sort by 'sum', ascending: False
            2017   2018  diff    sum  2017_norm  2018_norm  norm_diff
for        305.0  384.0  79.0  689.0   0.047068   0.048102   0.001034
learning   141.0  216.0  75.0  357.0   0.021759   0.027057   0.005298
and        159.0  189.0  30.0  348.0   0.024537   0.023675  -0.000862
with       120.0  141.0  21.0  261.0   0.018519   0.017663  -0.000856
deep       126.0  122.0  -4.0  248.0   0.019444   0.015282  -0.004162
a          105.0  131.0  26.0  236.0   0.016204   0.016410   0.000206
networks   102.0  112.0  10.0  214.0   0.015741   0.014030  -0.001711
of          93.0  115.0  22.0  208.0   0.014352   0.014406   0.000054
image       92.0  107.0  15.0  199.0   0.014198   0.013403  -0.000794
in          85.0   92.0   7.0  177.0   0.013117   0.011524  -0.001593
network     66.0   95.0  29.0  161.0   0.010185   0.011900   0.001715
from        63.0   80.0  17.0  143.0   0.009722   0.010021   0.000299
3d          57.0   79.0  22.0  136.0   0.008796   0.009896   0.001100
object      52.0   72.0  20.0  124.0   0.008025   0.009019   0.000994
the         62.0   62.0   0.0  124.0   0.009568   0.007767  -0.001801
detection   54.0   69.0  15.0  123.0   0.008333   0.008643   0.000310
to          52.0   67.0  15.0  119.0   0.008025   0.008393   0.000368
neural      57.0   57.0   0.0  114.0   0.008796   0.007140  -0.001656
visual      51.0   62.0  11.0  113.0   0.007870   0.007767  -0.000104
using       56.0   52.0  -4.0  108.0   0.008642   0.006514  -0.002128

====================================================
sort by 'diff', ascending: False
                   2017   2018  diff    sum  2017_norm  2018_norm  norm_diff
for               305.0  384.0  79.0  689.0   0.047068   0.048102   0.001034
learning          141.0  216.0  75.0  357.0   0.021759   0.027057   0.005298
adversarial        16.0   61.0  45.0   77.0   0.002469   0.007641   0.005172
and               159.0  189.0  30.0  348.0   0.024537   0.023675  -0.000862
network            66.0   95.0  29.0  161.0   0.010185   0.011900   0.001715
video              39.0   67.0  28.0  106.0   0.006019   0.008393   0.002374
a                 105.0  131.0  26.0  236.0   0.016204   0.016410   0.000206
of                 93.0  115.0  22.0  208.0   0.014352   0.014406   0.000054
by                 28.0   50.0  22.0   78.0   0.004321   0.006263   0.001942
3d                 57.0   79.0  22.0  136.0   0.008796   0.009896   0.001100
with              120.0  141.0  21.0  261.0   0.018519   0.017663  -0.000856
estimation         34.0   55.0  21.0   89.0   0.005247   0.006890   0.001643
object             52.0   72.0  20.0  124.0   0.008025   0.009019   0.000994
generative         17.0   35.0  18.0   52.0   0.002623   0.004384   0.001761
attention          12.0   30.0  18.0   42.0   0.001852   0.003758   0.001906
feature            16.0   34.0  18.0   50.0   0.002469   0.004259   0.001790
reidentification   13.0   30.0  17.0   43.0   0.002006   0.003758   0.001752
from               63.0   80.0  17.0  143.0   0.009722   0.010021   0.000299
towards             2.0   17.0  15.0   19.0   0.000309   0.002130   0.001821
detection          54.0   69.0  15.0  123.0   0.008333   0.008643   0.000310

====================================================
sort by 'diff', ascending: True
                2017  2018  diff    sum  2017_norm  2018_norm  norm_diff
classification  28.0  16.0 -12.0   44.0   0.004321   0.002004  -0.002317
binary          13.0   1.0 -12.0   14.0   0.002006   0.000125  -0.001881
objects         16.0   6.0 -10.0   22.0   0.002469   0.000752  -0.001718
flow            19.0  10.0  -9.0   29.0   0.002932   0.001253  -0.001679
recognition     57.0  48.0  -9.0  105.0   0.008796   0.006013  -0.002784
joint           19.0  11.0  -8.0   30.0   0.002932   0.001378  -0.001554
adaptive        13.0   5.0  -8.0   18.0   0.002006   0.000626  -0.001380
matrix          10.0   2.0  -8.0   12.0   0.001543   0.000251  -0.001293
search          10.0   3.0  -7.0   13.0   0.001543   0.000376  -0.001167
bayesian         7.0   0.0  -7.0    7.0   0.001080   0.000000  -0.001080
convolutional   46.0  39.0  -7.0   85.0   0.007099   0.004885  -0.002213
spatiotemporal  13.0   6.0  -7.0   19.0   0.002006   0.000752  -0.001255
fully           11.0   4.0  -7.0   15.0   0.001698   0.000501  -0.001196
multimodal      13.0   6.0  -7.0   19.0   0.002006   0.000752  -0.001255
temporal        16.0  10.0  -6.0   26.0   0.002469   0.001253  -0.001216
multiperson      6.0   1.0  -5.0    7.0   0.000926   0.000125  -0.000801
representation  18.0  13.0  -5.0   31.0   0.002778   0.001628  -0.001149
residual        13.0   8.0  -5.0   21.0   0.002006   0.001002  -0.001004
rank             7.0   2.0  -5.0    9.0   0.001080   0.000251  -0.000830
models          20.0  15.0  -5.0   35.0   0.003086   0.001879  -0.001207

====================================================
sort by 'norm_diff', ascending: False
                   2017   2018  diff    sum  2017_norm  2018_norm  norm_diff
learning          141.0  216.0  75.0  357.0   0.021759   0.027057   0.005298
adversarial        16.0   61.0  45.0   77.0   0.002469   0.007641   0.005172
video              39.0   67.0  28.0  106.0   0.006019   0.008393   0.002374
by                 28.0   50.0  22.0   78.0   0.004321   0.006263   0.001942
attention          12.0   30.0  18.0   42.0   0.001852   0.003758   0.001906
towards             2.0   17.0  15.0   19.0   0.000309   0.002130   0.001821
feature            16.0   34.0  18.0   50.0   0.002469   0.004259   0.001790
generative         17.0   35.0  18.0   52.0   0.002623   0.004384   0.001761
reidentification   13.0   30.0  17.0   43.0   0.002006   0.003758   0.001752
network            66.0   95.0  29.0  161.0   0.010185   0.011900   0.001715
estimation         34.0   55.0  21.0   89.0   0.005247   0.006890   0.001643
transfer           12.0   26.0  14.0   38.0   0.001852   0.003257   0.001405
generation          9.0   22.0  13.0   31.0   0.001389   0.002756   0.001367
adaptation         10.0   23.0  13.0   33.0   0.001543   0.002881   0.001338
answering           8.0   20.0  12.0   28.0   0.001235   0.002505   0.001271
question            9.0   21.0  12.0   30.0   0.001389   0.002631   0.001242
inference           6.0   17.0  11.0   23.0   0.000926   0.002130   0.001204
person             19.0   33.0  14.0   52.0   0.002932   0.004134   0.001202
unsupervised       17.0   30.0  13.0   47.0   0.002623   0.003758   0.001135
pose               26.0   41.0  15.0   67.0   0.004012   0.005136   0.001124

====================================================
sort by 'norm_diff', ascending: True
                 2017   2018  diff    sum  2017_norm  2018_norm  norm_diff
deep            126.0  122.0  -4.0  248.0   0.019444   0.015282  -0.004162
recognition      57.0   48.0  -9.0  105.0   0.008796   0.006013  -0.002784
classification   28.0   16.0 -12.0   44.0   0.004321   0.002004  -0.002317
convolutional    46.0   39.0  -7.0   85.0   0.007099   0.004885  -0.002213
using            56.0   52.0  -4.0  108.0   0.008642   0.006514  -0.002128
binary           13.0    1.0 -12.0   14.0   0.002006   0.000125  -0.001881
semantic         47.0   43.0  -4.0   90.0   0.007253   0.005386  -0.001867
the              62.0   62.0   0.0  124.0   0.009568   0.007767  -0.001801
objects          16.0    6.0 -10.0   22.0   0.002469   0.000752  -0.001718
networks        102.0  112.0  10.0  214.0   0.015741   0.014030  -0.001711
flow             19.0   10.0  -9.0   29.0   0.002932   0.001253  -0.001679
neural           57.0   57.0   0.0  114.0   0.008796   0.007140  -0.001656
in               85.0   92.0   7.0  177.0   0.013117   0.011524  -0.001593
joint            19.0   11.0  -8.0   30.0   0.002932   0.001378  -0.001554
adaptive         13.0    5.0  -8.0   18.0   0.002006   0.000626  -0.001380
action           32.0   29.0  -3.0   61.0   0.004938   0.003633  -0.001306
matrix           10.0    2.0  -8.0   12.0   0.001543   0.000251  -0.001293
spatiotemporal   13.0    6.0  -7.0   19.0   0.002006   0.000752  -0.001255
multimodal       13.0    6.0  -7.0   19.0   0.002006   0.000752  -0.001255
temporal         16.0   10.0  -6.0   26.0   0.002469   0.001253  -0.001216